summaryrefslogtreecommitdiff
path: root/drivers/net/dsa/sja1105/sja1105_ptp.c
blob: 42cc698fcc908f777c77624c451af2d511868466 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
 */
#include "sja1105.h"

/* The adjfine API clamps ppb between [-32,768,000, 32,768,000], and
 * therefore scaled_ppm between [-2,147,483,648, 2,147,483,647].
 * Set the maximum supported ppb to a round value smaller than the maximum.
 *
 * Percentually speaking, this is a +/- 0.032x adjustment of the
 * free-running counter (0.968x to 1.032x).
 */
#define SJA1105_MAX_ADJ_PPB		32000000
#define SJA1105_SIZE_PTP_CMD		4

/* Timestamps are in units of 8 ns clock ticks (equivalent to a fixed
 * 125 MHz clock) so the scale factor (MULT / SHIFT) needs to be 8.
 * Furthermore, wisely pick SHIFT as 28 bits, which translates
 * MULT into 2^31 (0x80000000).  This is the same value around which
 * the hardware PTPCLKRATE is centered, so the same ppb conversion
 * arithmetic can be reused.
 */
#define SJA1105_CC_SHIFT		28
#define SJA1105_CC_MULT			(8 << SJA1105_CC_SHIFT)

/* Having 33 bits of cycle counter left until a 64-bit overflow during delta
 * conversion, we multiply this by the 8 ns counter resolution and arrive at
 * a comfortable 68.71 second refresh interval until the delta would cause
 * an integer overflow, in absence of any other readout.
 * Approximate to 1 minute.
 */
#define SJA1105_REFRESH_INTERVAL	(HZ * 60)

/*            This range is actually +/- SJA1105_MAX_ADJ_PPB
 *            divided by 1000 (ppb -> ppm) and with a 16-bit
 *            "fractional" part (actually fixed point).
 *                                    |
 *                                    v
 * Convert scaled_ppm from the +/- ((10^6) << 16) range
 * into the +/- (1 << 31) range.
 *
 * This forgoes a "ppb" numeric representation (up to NSEC_PER_SEC)
 * and defines the scaling factor between scaled_ppm and the actual
 * frequency adjustments (both cycle counter and hardware).
 *
 *   ptpclkrate = scaled_ppm * 2^31 / (10^6 * 2^16)
 *   simplifies to
 *   ptpclkrate = scaled_ppm * 2^9 / 5^6
 */
#define SJA1105_CC_MULT_NUM		(1 << 9)
#define SJA1105_CC_MULT_DEM		15625

#define ptp_to_sja1105(d) container_of((d), struct sja1105_private, ptp_caps)
#define cc_to_sja1105(d) container_of((d), struct sja1105_private, tstamp_cc)
#define dw_to_sja1105(d) container_of((d), struct sja1105_private, refresh_work)

struct sja1105_ptp_cmd {
	u64 resptp;       /* reset */
};

int sja1105_get_ts_info(struct dsa_switch *ds, int port,
			struct ethtool_ts_info *info)
{
	struct sja1105_private *priv = ds->priv;

	/* Called during cleanup */
	if (!priv->clock)
		return -ENODEV;

	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
				SOF_TIMESTAMPING_RX_HARDWARE |
				SOF_TIMESTAMPING_RAW_HARDWARE;
	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
			 (1 << HWTSTAMP_TX_ON);
	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT);
	info->phc_index = ptp_clock_index(priv->clock);
	return 0;
}

int sja1105et_ptp_cmd(const void *ctx, const void *data)
{
	const struct sja1105_ptp_cmd *cmd = data;
	const struct sja1105_private *priv = ctx;
	const struct sja1105_regs *regs = priv->info->regs;
	const int size = SJA1105_SIZE_PTP_CMD;
	u8 buf[SJA1105_SIZE_PTP_CMD] = {0};
	/* No need to keep this as part of the structure */
	u64 valid = 1;

	sja1105_pack(buf, &valid,           31, 31, size);
	sja1105_pack(buf, &cmd->resptp,      2,  2, size);

	return sja1105_spi_send_packed_buf(priv, SPI_WRITE, regs->ptp_control,
					   buf, SJA1105_SIZE_PTP_CMD);
}

int sja1105pqrs_ptp_cmd(const void *ctx, const void *data)
{
	const struct sja1105_ptp_cmd *cmd = data;
	const struct sja1105_private *priv = ctx;
	const struct sja1105_regs *regs = priv->info->regs;
	const int size = SJA1105_SIZE_PTP_CMD;
	u8 buf[SJA1105_SIZE_PTP_CMD] = {0};
	/* No need to keep this as part of the structure */
	u64 valid = 1;

	sja1105_pack(buf, &valid,           31, 31, size);
	sja1105_pack(buf, &cmd->resptp,      3,  3, size);

	return sja1105_spi_send_packed_buf(priv, SPI_WRITE, regs->ptp_control,
					   buf, SJA1105_SIZE_PTP_CMD);
}

/* The switch returns partial timestamps (24 bits for SJA1105 E/T, which wrap
 * around in 0.135 seconds, and 32 bits for P/Q/R/S, wrapping around in 34.35
 * seconds).
 *
 * This receives the RX or TX MAC timestamps, provided by hardware as
 * the lower bits of the cycle counter, sampled at the time the timestamp was
 * collected.
 *
 * To reconstruct into a full 64-bit-wide timestamp, the cycle counter is
 * read and the high-order bits are filled in.
 *
 * Must be called within one wraparound period of the partial timestamp since
 * it was generated by the MAC.
 */
u64 sja1105_tstamp_reconstruct(struct sja1105_private *priv, u64 now,
			       u64 ts_partial)
{
	u64 partial_tstamp_mask = CYCLECOUNTER_MASK(priv->info->ptp_ts_bits);
	u64 ts_reconstructed;

	ts_reconstructed = (now & ~partial_tstamp_mask) | ts_partial;

	/* Check lower bits of current cycle counter against the timestamp.
	 * If the current cycle counter is lower than the partial timestamp,
	 * then wraparound surely occurred and must be accounted for.
	 */
	if ((now & partial_tstamp_mask) <= ts_partial)
		ts_reconstructed -= (partial_tstamp_mask + 1);

	return ts_reconstructed;
}

/* Reads the SPI interface for an egress timestamp generated by the switch
 * for frames sent using management routes.
 *
 * SJA1105 E/T layout of the 4-byte SPI payload:
 *
 * 31    23    15    7     0
 * |     |     |     |     |
 * +-----+-----+-----+     ^
 *          ^              |
 *          |              |
 *  24-bit timestamp   Update bit
 *
 *
 * SJA1105 P/Q/R/S layout of the 8-byte SPI payload:
 *
 * 31    23    15    7     0     63    55    47    39    32
 * |     |     |     |     |     |     |     |     |     |
 *                         ^     +-----+-----+-----+-----+
 *                         |                 ^
 *                         |                 |
 *                    Update bit    32-bit timestamp
 *
 * Notice that the update bit is in the same place.
 * To have common code for E/T and P/Q/R/S for reading the timestamp,
 * we need to juggle with the offset and the bit indices.
 */
int sja1105_ptpegr_ts_poll(struct sja1105_private *priv, int port, u64 *ts)
{
	const struct sja1105_regs *regs = priv->info->regs;
	int tstamp_bit_start, tstamp_bit_end;
	int timeout = 10;
	u8 packed_buf[8];
	u64 update;
	int rc;

	do {
		rc = sja1105_spi_send_packed_buf(priv, SPI_READ,
						 regs->ptpegr_ts[port],
						 packed_buf,
						 priv->info->ptpegr_ts_bytes);
		if (rc < 0)
			return rc;

		sja1105_unpack(packed_buf, &update, 0, 0,
			       priv->info->ptpegr_ts_bytes);
		if (update)
			break;

		usleep_range(10, 50);
	} while (--timeout);

	if (!timeout)
		return -ETIMEDOUT;

	/* Point the end bit to the second 32-bit word on P/Q/R/S,
	 * no-op on E/T.
	 */
	tstamp_bit_end = (priv->info->ptpegr_ts_bytes - 4) * 8;
	/* Shift the 24-bit timestamp on E/T to be collected from 31:8.
	 * No-op on P/Q/R/S.
	 */
	tstamp_bit_end += 32 - priv->info->ptp_ts_bits;
	tstamp_bit_start = tstamp_bit_end + priv->info->ptp_ts_bits - 1;

	*ts = 0;

	sja1105_unpack(packed_buf, ts, tstamp_bit_start, tstamp_bit_end,
		       priv->info->ptpegr_ts_bytes);

	return 0;
}

int sja1105_ptp_reset(struct sja1105_private *priv)
{
	struct dsa_switch *ds = priv->ds;
	struct sja1105_ptp_cmd cmd = {0};
	int rc;

	mutex_lock(&priv->ptp_lock);

	cmd.resptp = 1;
	dev_dbg(ds->dev, "Resetting PTP clock\n");
	rc = priv->info->ptp_cmd(priv, &cmd);

	timecounter_init(&priv->tstamp_tc, &priv->tstamp_cc,
			 ktime_to_ns(ktime_get_real()));

	mutex_unlock(&priv->ptp_lock);

	return rc;
}

static int sja1105_ptp_gettime(struct ptp_clock_info *ptp,
			       struct timespec64 *ts)
{
	struct sja1105_private *priv = ptp_to_sja1105(ptp);
	u64 ns;

	mutex_lock(&priv->ptp_lock);
	ns = timecounter_read(&priv->tstamp_tc);
	mutex_unlock(&priv->ptp_lock);

	*ts = ns_to_timespec64(ns);

	return 0;
}

static int sja1105_ptp_settime(struct ptp_clock_info *ptp,
			       const struct timespec64 *ts)
{
	struct sja1105_private *priv = ptp_to_sja1105(ptp);
	u64 ns = timespec64_to_ns(ts);

	mutex_lock(&priv->ptp_lock);
	timecounter_init(&priv->tstamp_tc, &priv->tstamp_cc, ns);
	mutex_unlock(&priv->ptp_lock);

	return 0;
}

static int sja1105_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
	struct sja1105_private *priv = ptp_to_sja1105(ptp);
	s64 clkrate;

	clkrate = (s64)scaled_ppm * SJA1105_CC_MULT_NUM;
	clkrate = div_s64(clkrate, SJA1105_CC_MULT_DEM);

	mutex_lock(&priv->ptp_lock);

	/* Force a readout to update the timer *before* changing its frequency.
	 *
	 * This way, its corrected time curve can at all times be modeled
	 * as a linear "A * x + B" function, where:
	 *
	 * - B are past frequency adjustments and offset shifts, all
	 *   accumulated into the cycle_last variable.
	 *
	 * - A is the new frequency adjustments we're just about to set.
	 *
	 * Reading now makes B accumulate the correct amount of time,
	 * corrected at the old rate, before changing it.
	 *
	 * Hardware timestamps then become simple points on the curve and
	 * are approximated using the above function.  This is still better
	 * than letting the switch take the timestamps using the hardware
	 * rate-corrected clock (PTPCLKVAL) - the comparison in this case would
	 * be that we're shifting the ruler at the same time as we're taking
	 * measurements with it.
	 *
	 * The disadvantage is that it's possible to receive timestamps when
	 * a frequency adjustment took place in the near past.
	 * In this case they will be approximated using the new ppb value
	 * instead of a compound function made of two segments (one at the old
	 * and the other at the new rate) - introducing some inaccuracy.
	 */
	timecounter_read(&priv->tstamp_tc);

	priv->tstamp_cc.mult = SJA1105_CC_MULT + clkrate;

	mutex_unlock(&priv->ptp_lock);

	return 0;
}

static int sja1105_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	struct sja1105_private *priv = ptp_to_sja1105(ptp);

	mutex_lock(&priv->ptp_lock);
	timecounter_adjtime(&priv->tstamp_tc, delta);
	mutex_unlock(&priv->ptp_lock);

	return 0;
}

static u64 sja1105_ptptsclk_read(const struct cyclecounter *cc)
{
	struct sja1105_private *priv = cc_to_sja1105(cc);
	const struct sja1105_regs *regs = priv->info->regs;
	u64 ptptsclk = 0;
	int rc;

	rc = sja1105_xfer_u64(priv, SPI_READ, regs->ptptsclk, &ptptsclk);
	if (rc < 0)
		dev_err_ratelimited(priv->ds->dev,
				    "failed to read ptp cycle counter: %d\n",
				    rc);
	return ptptsclk;
}

static void sja1105_ptp_overflow_check(struct work_struct *work)
{
	struct delayed_work *dw = to_delayed_work(work);
	struct sja1105_private *priv = dw_to_sja1105(dw);
	struct timespec64 ts;

	sja1105_ptp_gettime(&priv->ptp_caps, &ts);

	schedule_delayed_work(&priv->refresh_work, SJA1105_REFRESH_INTERVAL);
}

static const struct ptp_clock_info sja1105_ptp_caps = {
	.owner		= THIS_MODULE,
	.name		= "SJA1105 PHC",
	.adjfine	= sja1105_ptp_adjfine,
	.adjtime	= sja1105_ptp_adjtime,
	.gettime64	= sja1105_ptp_gettime,
	.settime64	= sja1105_ptp_settime,
	.max_adj	= SJA1105_MAX_ADJ_PPB,
};

int sja1105_ptp_clock_register(struct sja1105_private *priv)
{
	struct dsa_switch *ds = priv->ds;

	/* Set up the cycle counter */
	priv->tstamp_cc = (struct cyclecounter) {
		.read = sja1105_ptptsclk_read,
		.mask = CYCLECOUNTER_MASK(64),
		.shift = SJA1105_CC_SHIFT,
		.mult = SJA1105_CC_MULT,
	};
	mutex_init(&priv->ptp_lock);
	priv->ptp_caps = sja1105_ptp_caps;

	priv->clock = ptp_clock_register(&priv->ptp_caps, ds->dev);
	if (IS_ERR_OR_NULL(priv->clock))
		return PTR_ERR(priv->clock);

	INIT_DELAYED_WORK(&priv->refresh_work, sja1105_ptp_overflow_check);
	schedule_delayed_work(&priv->refresh_work, SJA1105_REFRESH_INTERVAL);

	return sja1105_ptp_reset(priv);
}

void sja1105_ptp_clock_unregister(struct sja1105_private *priv)
{
	if (IS_ERR_OR_NULL(priv->clock))
		return;

	cancel_delayed_work_sync(&priv->refresh_work);
	ptp_clock_unregister(priv->clock);
	priv->clock = NULL;
}