1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
|
/*
* Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/sched/types.h>
#include <media/cec-pin.h>
/* All timings are in microseconds */
/* start bit timings */
#define CEC_TIM_START_BIT_LOW 3700
#define CEC_TIM_START_BIT_LOW_MIN 3500
#define CEC_TIM_START_BIT_LOW_MAX 3900
#define CEC_TIM_START_BIT_TOTAL 4500
#define CEC_TIM_START_BIT_TOTAL_MIN 4300
#define CEC_TIM_START_BIT_TOTAL_MAX 4700
/* data bit timings */
#define CEC_TIM_DATA_BIT_0_LOW 1500
#define CEC_TIM_DATA_BIT_0_LOW_MIN 1300
#define CEC_TIM_DATA_BIT_0_LOW_MAX 1700
#define CEC_TIM_DATA_BIT_1_LOW 600
#define CEC_TIM_DATA_BIT_1_LOW_MIN 400
#define CEC_TIM_DATA_BIT_1_LOW_MAX 800
#define CEC_TIM_DATA_BIT_TOTAL 2400
#define CEC_TIM_DATA_BIT_TOTAL_MIN 2050
#define CEC_TIM_DATA_BIT_TOTAL_MAX 2750
/* earliest safe time to sample the bit state */
#define CEC_TIM_DATA_BIT_SAMPLE 850
/* earliest time the bit is back to 1 (T7 + 50) */
#define CEC_TIM_DATA_BIT_HIGH 1750
/* when idle, sample once per millisecond */
#define CEC_TIM_IDLE_SAMPLE 1000
/* when processing the start bit, sample twice per millisecond */
#define CEC_TIM_START_BIT_SAMPLE 500
/* when polling for a state change, sample once every 50 micoseconds */
#define CEC_TIM_SAMPLE 50
#define CEC_TIM_LOW_DRIVE_ERROR (1.5 * CEC_TIM_DATA_BIT_TOTAL)
struct cec_state {
const char * const name;
unsigned int usecs;
};
static const struct cec_state states[CEC_PIN_STATES] = {
{ "Off", 0 },
{ "Idle", CEC_TIM_IDLE_SAMPLE },
{ "Tx Wait", CEC_TIM_SAMPLE },
{ "Tx Wait for High", CEC_TIM_IDLE_SAMPLE },
{ "Tx Start Bit Low", CEC_TIM_START_BIT_LOW },
{ "Tx Start Bit High", CEC_TIM_START_BIT_TOTAL - CEC_TIM_START_BIT_LOW },
{ "Tx Data 0 Low", CEC_TIM_DATA_BIT_0_LOW },
{ "Tx Data 0 High", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_0_LOW },
{ "Tx Data 1 Low", CEC_TIM_DATA_BIT_1_LOW },
{ "Tx Data 1 High", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_1_LOW },
{ "Tx Data 1 Pre Sample", CEC_TIM_DATA_BIT_SAMPLE - CEC_TIM_DATA_BIT_1_LOW },
{ "Tx Data 1 Post Sample", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_SAMPLE },
{ "Rx Start Bit Low", CEC_TIM_SAMPLE },
{ "Rx Start Bit High", CEC_TIM_SAMPLE },
{ "Rx Data Sample", CEC_TIM_DATA_BIT_SAMPLE },
{ "Rx Data Post Sample", CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_SAMPLE },
{ "Rx Data High", CEC_TIM_SAMPLE },
{ "Rx Ack Low", CEC_TIM_DATA_BIT_0_LOW },
{ "Rx Ack Low Post", CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_0_LOW },
{ "Rx Ack High Post", CEC_TIM_DATA_BIT_HIGH },
{ "Rx Ack Finish", CEC_TIM_DATA_BIT_TOTAL_MIN - CEC_TIM_DATA_BIT_HIGH },
{ "Rx Low Drive", CEC_TIM_LOW_DRIVE_ERROR },
{ "Rx Irq", 0 },
};
static void cec_pin_update(struct cec_pin *pin, bool v, bool force)
{
if (!force && v == pin->adap->cec_pin_is_high)
return;
pin->adap->cec_pin_is_high = v;
if (atomic_read(&pin->work_pin_events) < CEC_NUM_PIN_EVENTS) {
pin->work_pin_is_high[pin->work_pin_events_wr] = v;
pin->work_pin_ts[pin->work_pin_events_wr] = ktime_get();
pin->work_pin_events_wr =
(pin->work_pin_events_wr + 1) % CEC_NUM_PIN_EVENTS;
atomic_inc(&pin->work_pin_events);
}
wake_up_interruptible(&pin->kthread_waitq);
}
static bool cec_pin_read(struct cec_pin *pin)
{
bool v = pin->ops->read(pin->adap);
cec_pin_update(pin, v, false);
return v;
}
static void cec_pin_low(struct cec_pin *pin)
{
pin->ops->low(pin->adap);
cec_pin_update(pin, false, false);
}
static bool cec_pin_high(struct cec_pin *pin)
{
pin->ops->high(pin->adap);
return cec_pin_read(pin);
}
static void cec_pin_to_idle(struct cec_pin *pin)
{
/*
* Reset all status fields, release the bus and
* go to idle state.
*/
pin->rx_bit = pin->tx_bit = 0;
pin->rx_msg.len = 0;
memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
pin->state = CEC_ST_IDLE;
pin->ts = ns_to_ktime(0);
}
/*
* Handle Transmit-related states
*
* Basic state changes when transmitting:
*
* Idle -> Tx Wait (waiting for the end of signal free time) ->
* Tx Start Bit Low -> Tx Start Bit High ->
*
* Regular data bits + EOM:
* Tx Data 0 Low -> Tx Data 0 High ->
* or:
* Tx Data 1 Low -> Tx Data 1 High ->
*
* First 4 data bits or Ack bit:
* Tx Data 0 Low -> Tx Data 0 High ->
* or:
* Tx Data 1 Low -> Tx Data 1 High -> Tx Data 1 Pre Sample ->
* Tx Data 1 Post Sample ->
*
* After the last Ack go to Idle.
*
* If it detects a Low Drive condition then:
* Tx Wait For High -> Idle
*
* If it loses arbitration, then it switches to state Rx Data Post Sample.
*/
static void cec_pin_tx_states(struct cec_pin *pin, ktime_t ts)
{
bool v;
bool is_ack_bit, ack;
switch (pin->state) {
case CEC_ST_TX_WAIT_FOR_HIGH:
if (cec_pin_read(pin))
cec_pin_to_idle(pin);
break;
case CEC_ST_TX_START_BIT_LOW:
pin->state = CEC_ST_TX_START_BIT_HIGH;
/* Generate start bit */
cec_pin_high(pin);
break;
case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
/* If the read value is 1, then all is OK */
if (!cec_pin_read(pin)) {
/*
* It's 0, so someone detected an error and pulled the
* line low for 1.5 times the nominal bit period.
*/
pin->tx_msg.len = 0;
pin->work_tx_ts = ts;
pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE;
pin->state = CEC_ST_TX_WAIT_FOR_HIGH;
wake_up_interruptible(&pin->kthread_waitq);
break;
}
if (pin->tx_nacked) {
cec_pin_to_idle(pin);
pin->tx_msg.len = 0;
pin->work_tx_ts = ts;
pin->work_tx_status = CEC_TX_STATUS_NACK;
wake_up_interruptible(&pin->kthread_waitq);
break;
}
/* fall through */
case CEC_ST_TX_DATA_BIT_0_HIGH:
case CEC_ST_TX_DATA_BIT_1_HIGH:
pin->tx_bit++;
/* fall through */
case CEC_ST_TX_START_BIT_HIGH:
if (pin->tx_bit / 10 >= pin->tx_msg.len) {
cec_pin_to_idle(pin);
pin->tx_msg.len = 0;
pin->work_tx_ts = ts;
pin->work_tx_status = CEC_TX_STATUS_OK;
wake_up_interruptible(&pin->kthread_waitq);
break;
}
switch (pin->tx_bit % 10) {
default:
v = pin->tx_msg.msg[pin->tx_bit / 10] &
(1 << (7 - (pin->tx_bit % 10)));
pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
CEC_ST_TX_DATA_BIT_0_LOW;
break;
case 8:
v = pin->tx_bit / 10 == pin->tx_msg.len - 1;
pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
CEC_ST_TX_DATA_BIT_0_LOW;
break;
case 9:
pin->state = CEC_ST_TX_DATA_BIT_1_LOW;
break;
}
cec_pin_low(pin);
break;
case CEC_ST_TX_DATA_BIT_0_LOW:
case CEC_ST_TX_DATA_BIT_1_LOW:
v = pin->state == CEC_ST_TX_DATA_BIT_1_LOW;
pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH :
CEC_ST_TX_DATA_BIT_0_HIGH;
is_ack_bit = pin->tx_bit % 10 == 9;
if (v && (pin->tx_bit < 4 || is_ack_bit))
pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE;
cec_pin_high(pin);
break;
case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
/* Read the CEC value at the sample time */
v = cec_pin_read(pin);
is_ack_bit = pin->tx_bit % 10 == 9;
/*
* If v == 0 and we're within the first 4 bits
* of the initiator, then someone else started
* transmitting and we lost the arbitration
* (i.e. the logical address of the other
* transmitter has more leading 0 bits in the
* initiator).
*/
if (!v && !is_ack_bit) {
pin->tx_msg.len = 0;
pin->work_tx_ts = ts;
pin->work_tx_status = CEC_TX_STATUS_ARB_LOST;
wake_up_interruptible(&pin->kthread_waitq);
pin->rx_bit = pin->tx_bit;
pin->tx_bit = 0;
memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
pin->rx_msg.msg[0] = pin->tx_msg.msg[0];
pin->rx_msg.msg[0] &= ~(1 << (7 - pin->rx_bit));
pin->rx_msg.len = 0;
pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
pin->rx_bit++;
break;
}
pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE;
if (!is_ack_bit)
break;
/* Was the message ACKed? */
ack = cec_msg_is_broadcast(&pin->tx_msg) ? v : !v;
if (!ack) {
/*
* Note: the CEC spec is ambiguous regarding
* what action to take when a NACK appears
* before the last byte of the payload was
* transmitted: either stop transmitting
* immediately, or wait until the last byte
* was transmitted.
*
* Most CEC implementations appear to stop
* immediately, and that's what we do here
* as well.
*/
pin->tx_nacked = true;
}
break;
default:
break;
}
}
/*
* Handle Receive-related states
*
* Basic state changes when receiving:
*
* Rx Start Bit Low -> Rx Start Bit High ->
* Regular data bits + EOM:
* Rx Data Sample -> Rx Data Post Sample -> Rx Data High ->
* Ack bit 0:
* Rx Ack Low -> Rx Ack Low Post -> Rx Data High ->
* Ack bit 1:
* Rx Ack High Post -> Rx Data High ->
* Ack bit 0 && EOM:
* Rx Ack Low -> Rx Ack Low Post -> Rx Ack Finish -> Idle
*/
static void cec_pin_rx_states(struct cec_pin *pin, ktime_t ts)
{
s32 delta;
bool v;
bool ack;
bool bcast, for_us;
u8 dest;
switch (pin->state) {
/* Receive states */
case CEC_ST_RX_START_BIT_LOW:
v = cec_pin_read(pin);
if (!v)
break;
pin->state = CEC_ST_RX_START_BIT_HIGH;
delta = ktime_us_delta(ts, pin->ts);
pin->ts = ts;
/* Start bit low is too short, go back to idle */
if (delta < CEC_TIM_START_BIT_LOW_MIN -
CEC_TIM_IDLE_SAMPLE) {
cec_pin_to_idle(pin);
}
break;
case CEC_ST_RX_START_BIT_HIGH:
v = cec_pin_read(pin);
delta = ktime_us_delta(ts, pin->ts);
if (v && delta > CEC_TIM_START_BIT_TOTAL_MAX -
CEC_TIM_START_BIT_LOW_MIN) {
cec_pin_to_idle(pin);
break;
}
if (v)
break;
pin->state = CEC_ST_RX_DATA_SAMPLE;
pin->ts = ts;
pin->rx_eom = false;
break;
case CEC_ST_RX_DATA_SAMPLE:
v = cec_pin_read(pin);
pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
switch (pin->rx_bit % 10) {
default:
if (pin->rx_bit / 10 < CEC_MAX_MSG_SIZE)
pin->rx_msg.msg[pin->rx_bit / 10] |=
v << (7 - (pin->rx_bit % 10));
break;
case 8:
pin->rx_eom = v;
pin->rx_msg.len = pin->rx_bit / 10 + 1;
break;
case 9:
break;
}
pin->rx_bit++;
break;
case CEC_ST_RX_DATA_POST_SAMPLE:
pin->state = CEC_ST_RX_DATA_HIGH;
break;
case CEC_ST_RX_DATA_HIGH:
v = cec_pin_read(pin);
delta = ktime_us_delta(ts, pin->ts);
if (v && delta > CEC_TIM_DATA_BIT_TOTAL_MAX) {
cec_pin_to_idle(pin);
break;
}
if (v)
break;
/*
* Go to low drive state when the total bit time is
* too short.
*/
if (delta < CEC_TIM_DATA_BIT_TOTAL_MIN) {
cec_pin_low(pin);
pin->state = CEC_ST_LOW_DRIVE;
break;
}
pin->ts = ts;
if (pin->rx_bit % 10 != 9) {
pin->state = CEC_ST_RX_DATA_SAMPLE;
break;
}
dest = cec_msg_destination(&pin->rx_msg);
bcast = dest == CEC_LOG_ADDR_BROADCAST;
/* for_us == broadcast or directed to us */
for_us = bcast || (pin->la_mask & (1 << dest));
/* ACK bit value */
ack = bcast ? 1 : !for_us;
if (ack) {
/* No need to write to the bus, just wait */
pin->state = CEC_ST_RX_ACK_HIGH_POST;
break;
}
cec_pin_low(pin);
pin->state = CEC_ST_RX_ACK_LOW;
break;
case CEC_ST_RX_ACK_LOW:
cec_pin_high(pin);
pin->state = CEC_ST_RX_ACK_LOW_POST;
break;
case CEC_ST_RX_ACK_LOW_POST:
case CEC_ST_RX_ACK_HIGH_POST:
v = cec_pin_read(pin);
if (v && pin->rx_eom) {
pin->work_rx_msg = pin->rx_msg;
pin->work_rx_msg.rx_ts = ktime_to_ns(ts);
wake_up_interruptible(&pin->kthread_waitq);
pin->ts = ts;
pin->state = CEC_ST_RX_ACK_FINISH;
break;
}
pin->rx_bit++;
pin->state = CEC_ST_RX_DATA_HIGH;
break;
case CEC_ST_RX_ACK_FINISH:
cec_pin_to_idle(pin);
break;
default:
break;
}
}
/*
* Main timer function
*
*/
static enum hrtimer_restart cec_pin_timer(struct hrtimer *timer)
{
struct cec_pin *pin = container_of(timer, struct cec_pin, timer);
struct cec_adapter *adap = pin->adap;
ktime_t ts;
s32 delta;
ts = ktime_get();
if (ktime_to_ns(pin->timer_ts)) {
delta = ktime_us_delta(ts, pin->timer_ts);
pin->timer_cnt++;
if (delta > 100 && pin->state != CEC_ST_IDLE) {
/* Keep track of timer overruns */
pin->timer_sum_overrun += delta;
pin->timer_100ms_overruns++;
if (delta > 300)
pin->timer_300ms_overruns++;
if (delta > pin->timer_max_overrun)
pin->timer_max_overrun = delta;
}
}
if (adap->monitor_pin_cnt)
cec_pin_read(pin);
if (pin->wait_usecs) {
/*
* If we are monitoring the pin, then we have to
* sample at regular intervals.
*/
if (pin->wait_usecs > 150) {
pin->wait_usecs -= 100;
pin->timer_ts = ktime_add_us(ts, 100);
hrtimer_forward_now(timer, ns_to_ktime(100000));
return HRTIMER_RESTART;
}
if (pin->wait_usecs > 100) {
pin->wait_usecs /= 2;
pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
hrtimer_forward_now(timer,
ns_to_ktime(pin->wait_usecs * 1000));
return HRTIMER_RESTART;
}
pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
hrtimer_forward_now(timer,
ns_to_ktime(pin->wait_usecs * 1000));
pin->wait_usecs = 0;
return HRTIMER_RESTART;
}
switch (pin->state) {
/* Transmit states */
case CEC_ST_TX_WAIT_FOR_HIGH:
case CEC_ST_TX_START_BIT_LOW:
case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
case CEC_ST_TX_DATA_BIT_0_HIGH:
case CEC_ST_TX_DATA_BIT_1_HIGH:
case CEC_ST_TX_START_BIT_HIGH:
case CEC_ST_TX_DATA_BIT_0_LOW:
case CEC_ST_TX_DATA_BIT_1_LOW:
case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
cec_pin_tx_states(pin, ts);
break;
/* Receive states */
case CEC_ST_RX_START_BIT_LOW:
case CEC_ST_RX_START_BIT_HIGH:
case CEC_ST_RX_DATA_SAMPLE:
case CEC_ST_RX_DATA_POST_SAMPLE:
case CEC_ST_RX_DATA_HIGH:
case CEC_ST_RX_ACK_LOW:
case CEC_ST_RX_ACK_LOW_POST:
case CEC_ST_RX_ACK_HIGH_POST:
case CEC_ST_RX_ACK_FINISH:
cec_pin_rx_states(pin, ts);
break;
case CEC_ST_IDLE:
case CEC_ST_TX_WAIT:
if (!cec_pin_high(pin)) {
/* Start bit, switch to receive state */
pin->ts = ts;
pin->state = CEC_ST_RX_START_BIT_LOW;
break;
}
if (ktime_to_ns(pin->ts) == 0)
pin->ts = ts;
if (pin->tx_msg.len) {
/*
* Check if the bus has been free for long enough
* so we can kick off the pending transmit.
*/
delta = ktime_us_delta(ts, pin->ts);
if (delta / CEC_TIM_DATA_BIT_TOTAL >
pin->tx_signal_free_time) {
pin->tx_nacked = false;
pin->state = CEC_ST_TX_START_BIT_LOW;
/* Generate start bit */
cec_pin_low(pin);
break;
}
if (delta / CEC_TIM_DATA_BIT_TOTAL >
pin->tx_signal_free_time - 1)
pin->state = CEC_ST_TX_WAIT;
break;
}
if (pin->state != CEC_ST_IDLE || pin->ops->enable_irq == NULL ||
pin->enable_irq_failed || adap->is_configuring ||
adap->is_configured || adap->monitor_all_cnt)
break;
/* Switch to interrupt mode */
atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_ENABLE);
pin->state = CEC_ST_RX_IRQ;
wake_up_interruptible(&pin->kthread_waitq);
return HRTIMER_NORESTART;
case CEC_ST_LOW_DRIVE:
cec_pin_to_idle(pin);
break;
default:
break;
}
if (!adap->monitor_pin_cnt || states[pin->state].usecs <= 150) {
pin->wait_usecs = 0;
pin->timer_ts = ktime_add_us(ts, states[pin->state].usecs);
hrtimer_forward_now(timer,
ns_to_ktime(states[pin->state].usecs * 1000));
return HRTIMER_RESTART;
}
pin->wait_usecs = states[pin->state].usecs - 100;
pin->timer_ts = ktime_add_us(ts, 100);
hrtimer_forward_now(timer, ns_to_ktime(100000));
return HRTIMER_RESTART;
}
static int cec_pin_thread_func(void *_adap)
{
struct cec_adapter *adap = _adap;
struct cec_pin *pin = adap->pin;
for (;;) {
wait_event_interruptible(pin->kthread_waitq,
kthread_should_stop() ||
pin->work_rx_msg.len ||
pin->work_tx_status ||
atomic_read(&pin->work_irq_change) ||
atomic_read(&pin->work_pin_events));
if (pin->work_rx_msg.len) {
cec_received_msg_ts(adap, &pin->work_rx_msg,
ns_to_ktime(pin->work_rx_msg.rx_ts));
pin->work_rx_msg.len = 0;
}
if (pin->work_tx_status) {
unsigned int tx_status = pin->work_tx_status;
pin->work_tx_status = 0;
cec_transmit_attempt_done_ts(adap, tx_status,
pin->work_tx_ts);
}
while (atomic_read(&pin->work_pin_events)) {
unsigned int idx = pin->work_pin_events_rd;
cec_queue_pin_cec_event(adap,
pin->work_pin_is_high[idx],
pin->work_pin_ts[idx]);
pin->work_pin_events_rd = (idx + 1) % CEC_NUM_PIN_EVENTS;
atomic_dec(&pin->work_pin_events);
}
switch (atomic_xchg(&pin->work_irq_change,
CEC_PIN_IRQ_UNCHANGED)) {
case CEC_PIN_IRQ_DISABLE:
pin->ops->disable_irq(adap);
cec_pin_high(pin);
cec_pin_to_idle(pin);
hrtimer_start(&pin->timer, ns_to_ktime(0),
HRTIMER_MODE_REL);
break;
case CEC_PIN_IRQ_ENABLE:
pin->enable_irq_failed = !pin->ops->enable_irq(adap);
if (pin->enable_irq_failed) {
cec_pin_to_idle(pin);
hrtimer_start(&pin->timer, ns_to_ktime(0),
HRTIMER_MODE_REL);
}
break;
default:
break;
}
if (kthread_should_stop())
break;
}
return 0;
}
static int cec_pin_adap_enable(struct cec_adapter *adap, bool enable)
{
struct cec_pin *pin = adap->pin;
pin->enabled = enable;
if (enable) {
atomic_set(&pin->work_pin_events, 0);
pin->work_pin_events_rd = pin->work_pin_events_wr = 0;
cec_pin_read(pin);
cec_pin_to_idle(pin);
pin->tx_msg.len = 0;
pin->timer_ts = ns_to_ktime(0);
atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED);
pin->kthread = kthread_run(cec_pin_thread_func, adap,
"cec-pin");
if (IS_ERR(pin->kthread)) {
pr_err("cec-pin: kernel_thread() failed\n");
return PTR_ERR(pin->kthread);
}
hrtimer_start(&pin->timer, ns_to_ktime(0),
HRTIMER_MODE_REL);
} else {
if (pin->ops->disable_irq)
pin->ops->disable_irq(adap);
hrtimer_cancel(&pin->timer);
kthread_stop(pin->kthread);
cec_pin_read(pin);
cec_pin_to_idle(pin);
pin->state = CEC_ST_OFF;
}
return 0;
}
static int cec_pin_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
{
struct cec_pin *pin = adap->pin;
if (log_addr == CEC_LOG_ADDR_INVALID)
pin->la_mask = 0;
else
pin->la_mask |= (1 << log_addr);
return 0;
}
static int cec_pin_adap_transmit(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg)
{
struct cec_pin *pin = adap->pin;
pin->tx_signal_free_time = signal_free_time;
pin->tx_msg = *msg;
pin->work_tx_status = 0;
pin->tx_bit = 0;
if (pin->state == CEC_ST_RX_IRQ) {
atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED);
pin->ops->disable_irq(adap);
cec_pin_high(pin);
cec_pin_to_idle(pin);
hrtimer_start(&pin->timer, ns_to_ktime(0),
HRTIMER_MODE_REL);
}
return 0;
}
static void cec_pin_adap_status(struct cec_adapter *adap,
struct seq_file *file)
{
struct cec_pin *pin = adap->pin;
seq_printf(file, "state: %s\n", states[pin->state].name);
seq_printf(file, "tx_bit: %d\n", pin->tx_bit);
seq_printf(file, "rx_bit: %d\n", pin->rx_bit);
seq_printf(file, "cec pin: %d\n", pin->ops->read(adap));
seq_printf(file, "irq failed: %d\n", pin->enable_irq_failed);
if (pin->timer_100ms_overruns) {
seq_printf(file, "timer overruns > 100ms: %u of %u\n",
pin->timer_100ms_overruns, pin->timer_cnt);
seq_printf(file, "timer overruns > 300ms: %u of %u\n",
pin->timer_300ms_overruns, pin->timer_cnt);
seq_printf(file, "max timer overrun: %u usecs\n",
pin->timer_max_overrun);
seq_printf(file, "avg timer overrun: %u usecs\n",
pin->timer_sum_overrun / pin->timer_100ms_overruns);
}
pin->timer_cnt = 0;
pin->timer_100ms_overruns = 0;
pin->timer_300ms_overruns = 0;
pin->timer_max_overrun = 0;
pin->timer_sum_overrun = 0;
if (pin->ops->status)
pin->ops->status(adap, file);
}
static int cec_pin_adap_monitor_all_enable(struct cec_adapter *adap,
bool enable)
{
struct cec_pin *pin = adap->pin;
pin->monitor_all = enable;
return 0;
}
static void cec_pin_adap_free(struct cec_adapter *adap)
{
struct cec_pin *pin = adap->pin;
if (pin->ops->free)
pin->ops->free(adap);
adap->pin = NULL;
kfree(pin);
}
void cec_pin_changed(struct cec_adapter *adap, bool value)
{
struct cec_pin *pin = adap->pin;
cec_pin_update(pin, value, false);
if (!value && (adap->is_configuring || adap->is_configured ||
adap->monitor_all_cnt))
atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE);
}
EXPORT_SYMBOL_GPL(cec_pin_changed);
static const struct cec_adap_ops cec_pin_adap_ops = {
.adap_enable = cec_pin_adap_enable,
.adap_monitor_all_enable = cec_pin_adap_monitor_all_enable,
.adap_log_addr = cec_pin_adap_log_addr,
.adap_transmit = cec_pin_adap_transmit,
.adap_status = cec_pin_adap_status,
.adap_free = cec_pin_adap_free,
};
struct cec_adapter *cec_pin_allocate_adapter(const struct cec_pin_ops *pin_ops,
void *priv, const char *name, u32 caps)
{
struct cec_adapter *adap;
struct cec_pin *pin = kzalloc(sizeof(*pin), GFP_KERNEL);
if (pin == NULL)
return ERR_PTR(-ENOMEM);
pin->ops = pin_ops;
hrtimer_init(&pin->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
pin->timer.function = cec_pin_timer;
init_waitqueue_head(&pin->kthread_waitq);
adap = cec_allocate_adapter(&cec_pin_adap_ops, priv, name,
caps | CEC_CAP_MONITOR_ALL | CEC_CAP_MONITOR_PIN,
CEC_MAX_LOG_ADDRS);
if (PTR_ERR_OR_ZERO(adap)) {
kfree(pin);
return adap;
}
adap->pin = pin;
pin->adap = adap;
cec_pin_update(pin, cec_pin_high(pin), true);
return adap;
}
EXPORT_SYMBOL_GPL(cec_pin_allocate_adapter);
|