// SPDX-License-Identifier: GPL-2.0 /* * KVM page table test * * Copyright (C) 2021, Huawei, Inc. * * Make sure that THP has been enabled or enough HUGETLB pages with specific * page size have been pre-allocated on your system, if you are planning to * use hugepages to back the guest memory for testing. */ #define _GNU_SOURCE /* for program_invocation_name */ #include #include #include #include #include #include "test_util.h" #include "kvm_util.h" #include "processor.h" #include "guest_modes.h" #define TEST_MEM_SLOT_INDEX 1 /* Default size(1GB) of the memory for testing */ #define DEFAULT_TEST_MEM_SIZE (1 << 30) /* Default guest test virtual memory offset */ #define DEFAULT_GUEST_TEST_MEM 0xc0000000 /* Different guest memory accessing stages */ enum test_stage { KVM_BEFORE_MAPPINGS, KVM_CREATE_MAPPINGS, KVM_UPDATE_MAPPINGS, KVM_ADJUST_MAPPINGS, NUM_TEST_STAGES, }; static const char * const test_stage_string[] = { "KVM_BEFORE_MAPPINGS", "KVM_CREATE_MAPPINGS", "KVM_UPDATE_MAPPINGS", "KVM_ADJUST_MAPPINGS", }; struct vcpu_args { int vcpu_id; bool vcpu_write; }; struct test_args { struct kvm_vm *vm; uint64_t guest_test_virt_mem; uint64_t host_page_size; uint64_t host_num_pages; uint64_t large_page_size; uint64_t large_num_pages; uint64_t host_pages_per_lpage; enum vm_mem_backing_src_type src_type; struct vcpu_args vcpu_args[KVM_MAX_VCPUS]; }; /* * Guest variables. Use addr_gva2hva() if these variables need * to be changed in host. */ static enum test_stage guest_test_stage; /* Host variables */ static uint32_t nr_vcpus = 1; static struct test_args test_args; static enum test_stage *current_stage; static bool host_quit; /* Whether the test stage is updated, or completed */ static sem_t test_stage_updated; static sem_t test_stage_completed; /* * Guest physical memory offset of the testing memory slot. * This will be set to the topmost valid physical address minus * the test memory size. */ static uint64_t guest_test_phys_mem; /* * Guest virtual memory offset of the testing memory slot. * Must not conflict with identity mapped test code. */ static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM; static void guest_code(int vcpu_id) { struct test_args *p = &test_args; struct vcpu_args *vcpu_args = &p->vcpu_args[vcpu_id]; enum test_stage *current_stage = &guest_test_stage; uint64_t addr; int i, j; /* Make sure vCPU args data structure is not corrupt */ GUEST_ASSERT(vcpu_args->vcpu_id == vcpu_id); while (true) { addr = p->guest_test_virt_mem; switch (READ_ONCE(*current_stage)) { /* * All vCPU threads will be started in this stage, * where guest code of each vCPU will do nothing. */ case KVM_BEFORE_MAPPINGS: break; /* * Before dirty logging, vCPUs concurrently access the first * 8 bytes of each page (host page/large page) within the same * memory region with different accessing types (read/write). * Then KVM will create normal page mappings or huge block * mappings for them. */ case KVM_CREATE_MAPPINGS: for (i = 0; i < p->large_num_pages; i++) { if (vcpu_args->vcpu_write) *(uint64_t *)addr = 0x0123456789ABCDEF; else READ_ONCE(*(uint64_t *)addr); addr += p->large_page_size; } break; /* * During dirty logging, KVM will only update attributes of the * normal page mappings from RO to RW if memory backing src type * is anonymous. In other cases, KVM will split the huge block * mappings into normal page mappings if memory backing src type * is THP or HUGETLB. */ case KVM_UPDATE_MAPPINGS: if (p->src_type == VM_MEM_SRC_ANONYMOUS) { for (i = 0; i < p->host_num_pages; i++) { *(uint64_t *)addr = 0x0123456789ABCDEF; addr += p->host_page_size; } break; } for (i = 0; i < p->large_num_pages; i++) { /* * Write to the first host page in each large * page region, and triger break of large pages. */ *(uint64_t *)addr = 0x0123456789ABCDEF; /* * Access the middle host pages in each large * page region. Since dirty logging is enabled, * this will create new mappings at the smallest * granularity. */ addr += p->large_page_size / 2; for (j = 0; j < p->host_pages_per_lpage / 2; j++) { READ_ONCE(*(uint64_t *)addr); addr += p->host_page_size; } } break; /* * After dirty logging is stopped, vCPUs concurrently read * from every single host page. Then KVM will coalesce the * split page mappings back to block mappings. And a TLB * conflict abort could occur here if TLB entries of the * page mappings are not fully invalidated. */ case KVM_ADJUST_MAPPINGS: for (i = 0; i < p->host_num_pages; i++) { READ_ONCE(*(uint64_t *)addr); addr += p->host_page_size; } break; default: GUEST_ASSERT(0); } GUEST_SYNC(1); } } static void *vcpu_worker(void *data) { int ret; struct vcpu_args *vcpu_args = data; struct kvm_vm *vm = test_args.vm; int vcpu_id = vcpu_args->vcpu_id; struct kvm_run *run; struct timespec start; struct timespec ts_diff; enum test_stage stage; vcpu_args_set(vm, vcpu_id, 1, vcpu_id); run = vcpu_state(vm, vcpu_id); while (!READ_ONCE(host_quit)) { ret = sem_wait(&test_stage_updated); TEST_ASSERT(ret == 0, "Error in sem_wait"); if (READ_ONCE(host_quit)) return NULL; clock_gettime(CLOCK_MONOTONIC_RAW, &start); ret = _vcpu_run(vm, vcpu_id); ts_diff = timespec_elapsed(start); TEST_ASSERT(ret == 0, "vcpu_run failed: %d\n", ret); TEST_ASSERT(get_ucall(vm, vcpu_id, NULL) == UCALL_SYNC, "Invalid guest sync status: exit_reason=%s\n", exit_reason_str(run->exit_reason)); pr_debug("Got sync event from vCPU %d\n", vcpu_id); stage = READ_ONCE(*current_stage); /* * Here we can know the execution time of every * single vcpu running in different test stages. */ pr_debug("vCPU %d has completed stage %s\n" "execution time is: %ld.%.9lds\n\n", vcpu_id, test_stage_string[stage], ts_diff.tv_sec, ts_diff.tv_nsec); ret = sem_post(&test_stage_completed); TEST_ASSERT(ret == 0, "Error in sem_post"); } return NULL; } struct test_params { uint64_t phys_offset; uint64_t test_mem_size; enum vm_mem_backing_src_type src_type; }; static struct kvm_vm *pre_init_before_test(enum vm_guest_mode mode, void *arg) { int ret; struct test_params *p = arg; struct vcpu_args *vcpu_args; enum vm_mem_backing_src_type src_type = p->src_type; uint64_t large_page_size = get_backing_src_pagesz(src_type); uint64_t guest_page_size = vm_guest_mode_params[mode].page_size; uint64_t host_page_size = getpagesize(); uint64_t test_mem_size = p->test_mem_size; uint64_t guest_num_pages; uint64_t alignment; void *host_test_mem; struct kvm_vm *vm; int vcpu_id; /* Align up the test memory size */ alignment = max(large_page_size, guest_page_size); test_mem_size = (test_mem_size + alignment - 1) & ~(alignment - 1); /* Create a VM with enough guest pages */ guest_num_pages = test_mem_size / guest_page_size; vm = vm_create_with_vcpus(mode, nr_vcpus, DEFAULT_GUEST_PHY_PAGES, guest_num_pages, 0, guest_code, NULL); /* Align down GPA of the testing memslot */ if (!p->phys_offset) guest_test_phys_mem = (vm_get_max_gfn(vm) - guest_num_pages) * guest_page_size; else guest_test_phys_mem = p->phys_offset; #ifdef __s390x__ alignment = max(0x100000, alignment); #endif guest_test_phys_mem &= ~(alignment - 1); /* Set up the shared data structure test_args */ test_args.vm = vm; test_args.guest_test_virt_mem = guest_test_virt_mem; test_args.host_page_size = host_page_size; test_args.host_num_pages = test_mem_size / host_page_size; test_args.large_page_size = large_page_size; test_args.large_num_pages = test_mem_size / large_page_size; test_args.host_pages_per_lpage = large_page_size / host_page_size; test_args.src_type = src_type; for (vcpu_id = 0; vcpu_id < KVM_MAX_VCPUS; vcpu_id++) { vcpu_args = &test_args.vcpu_args[vcpu_id]; vcpu_args->vcpu_id = vcpu_id; vcpu_args->vcpu_write = !(vcpu_id % 2); } /* Add an extra memory slot with specified backing src type */ vm_userspace_mem_region_add(vm, src_type, guest_test_phys_mem, TEST_MEM_SLOT_INDEX, guest_num_pages, 0); /* Do mapping(GVA->GPA) for the testing memory slot */ virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages); /* Cache the HVA pointer of the region */ host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem); /* Export shared structure test_args to guest */ ucall_init(vm, NULL); sync_global_to_guest(vm, test_args); ret = sem_init(&test_stage_updated, 0, 0); TEST_ASSERT(ret == 0, "Error in sem_init"); ret = sem_init(&test_stage_completed, 0, 0); TEST_ASSERT(ret == 0, "Error in sem_init"); current_stage = addr_gva2hva(vm, (vm_vaddr_t)(&guest_test_stage)); *current_stage = NUM_TEST_STAGES; pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode)); pr_info("Testing memory backing src type: %s\n", vm_mem_backing_src_alias(src_type)->name); pr_info("Testing memory backing src granularity: 0x%lx\n", large_page_size); pr_info("Testing memory size(aligned): 0x%lx\n", test_mem_size); pr_info("Guest physical test memory offset: 0x%lx\n", guest_test_phys_mem); pr_info("Host virtual test memory offset: 0x%lx\n", (uint64_t)host_test_mem); pr_info("Number of testing vCPUs: %d\n", nr_vcpus); return vm; } static void vcpus_complete_new_stage(enum test_stage stage) { int ret; int vcpus; /* Wake up all the vcpus to run new test stage */ for (vcpus = 0; vcpus < nr_vcpus; vcpus++) { ret = sem_post(&test_stage_updated); TEST_ASSERT(ret == 0, "Error in sem_post"); } pr_debug("All vcpus have been notified to continue\n"); /* Wait for all the vcpus to complete new test stage */ for (vcpus = 0; vcpus < nr_vcpus; vcpus++) { ret = sem_wait(&test_stage_completed); TEST_ASSERT(ret == 0, "Error in sem_wait"); pr_debug("%d vcpus have completed stage %s\n", vcpus + 1, test_stage_string[stage]); } pr_debug("All vcpus have completed stage %s\n", test_stage_string[stage]); } static void run_test(enum vm_guest_mode mode, void *arg) { int ret; pthread_t *vcpu_threads; struct kvm_vm *vm; int vcpu_id; struct timespec start; struct timespec ts_diff; /* Create VM with vCPUs and make some pre-initialization */ vm = pre_init_before_test(mode, arg); vcpu_threads = malloc(nr_vcpus * sizeof(*vcpu_threads)); TEST_ASSERT(vcpu_threads, "Memory allocation failed"); host_quit = false; *current_stage = KVM_BEFORE_MAPPINGS; for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) { pthread_create(&vcpu_threads[vcpu_id], NULL, vcpu_worker, &test_args.vcpu_args[vcpu_id]); } vcpus_complete_new_stage(*current_stage); pr_info("Started all vCPUs successfully\n"); /* Test the stage of KVM creating mappings */ *current_stage = KVM_CREATE_MAPPINGS; clock_gettime(CLOCK_MONOTONIC_RAW, &start); vcpus_complete_new_stage(*current_stage); ts_diff = timespec_elapsed(start); pr_info("KVM_CREATE_MAPPINGS: total execution time: %ld.%.9lds\n\n", ts_diff.tv_sec, ts_diff.tv_nsec); /* Test the stage of KVM updating mappings */ vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX, KVM_MEM_LOG_DIRTY_PAGES); *current_stage = KVM_UPDATE_MAPPINGS; clock_gettime(CLOCK_MONOTONIC_RAW, &start); vcpus_complete_new_stage(*current_stage); ts_diff = timespec_elapsed(start); pr_info("KVM_UPDATE_MAPPINGS: total execution time: %ld.%.9lds\n\n", ts_diff.tv_sec, ts_diff.tv_nsec); /* Test the stage of KVM adjusting mappings */ vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX, 0); *current_stage = KVM_ADJUST_MAPPINGS; clock_gettime(CLOCK_MONOTONIC_RAW, &start); vcpus_complete_new_stage(*current_stage); ts_diff = timespec_elapsed(start); pr_info("KVM_ADJUST_MAPPINGS: total execution time: %ld.%.9lds\n\n", ts_diff.tv_sec, ts_diff.tv_nsec); /* Tell the vcpu thread to quit */ host_quit = true; for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) { ret = sem_post(&test_stage_updated); TEST_ASSERT(ret == 0, "Error in sem_post"); } for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) pthread_join(vcpu_threads[vcpu_id], NULL); ret = sem_destroy(&test_stage_updated); TEST_ASSERT(ret == 0, "Error in sem_destroy"); ret = sem_destroy(&test_stage_completed); TEST_ASSERT(ret == 0, "Error in sem_destroy"); free(vcpu_threads); ucall_uninit(vm); kvm_vm_free(vm); } static void help(char *name) { puts(""); printf("usage: %s [-h] [-p offset] [-m mode] " "[-b mem-size] [-v vcpus] [-s mem-type]\n", name); puts(""); printf(" -p: specify guest physical test memory offset\n" " Warning: a low offset can conflict with the loaded test code.\n"); guest_modes_help(); printf(" -b: specify size of the memory region for testing. e.g. 10M or 3G.\n" " (default: 1G)\n"); printf(" -v: specify the number of vCPUs to run\n" " (default: 1)\n"); printf(" -s: specify the type of memory that should be used to\n" " back the guest data region.\n" " (default: anonymous)\n\n"); backing_src_help(); puts(""); } int main(int argc, char *argv[]) { int max_vcpus = kvm_check_cap(KVM_CAP_MAX_VCPUS); struct test_params p = { .test_mem_size = DEFAULT_TEST_MEM_SIZE, .src_type = VM_MEM_SRC_ANONYMOUS, }; int opt; guest_modes_append_default(); while ((opt = getopt(argc, argv, "hp:m:b:v:s:")) != -1) { switch (opt) { case 'p': p.phys_offset = strtoull(optarg, NULL, 0); break; case 'm': guest_modes_cmdline(optarg); break; case 'b': p.test_mem_size = parse_size(optarg); break; case 'v': nr_vcpus = atoi(optarg); TEST_ASSERT(nr_vcpus > 0 && nr_vcpus <= max_vcpus, "Invalid number of vcpus, must be between 1 and %d", max_vcpus); break; case 's': p.src_type = parse_backing_src_type(optarg); break; case 'h': default: help(argv[0]); exit(0); } } for_each_guest_mode(run_test, &p); return 0; }