/* * Copyright (C) 2009, Frederic Weisbecker * * Handle the callchains from the stream in an ad-hoc radix tree and then * sort them in an rbtree. * * Using a radix for code path provides a fast retrieval and factorizes * memory use. Also that lets us use the paths in a hierarchical graph view. * */ #include #include #include #include #include "callchain.h" #define chain_for_each_child(child, parent) \ list_for_each_entry(child, &parent->children, brothers) static void rb_insert_callchain(struct rb_root *root, struct callchain_node *chain, enum chain_mode mode) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct callchain_node *rnode; while (*p) { parent = *p; rnode = rb_entry(parent, struct callchain_node, rb_node); switch (mode) { case FLAT: if (rnode->hit < chain->hit) p = &(*p)->rb_left; else p = &(*p)->rb_right; break; case GRAPH: if (rnode->cumul_hit < chain->cumul_hit) p = &(*p)->rb_left; else p = &(*p)->rb_right; break; default: break; } } rb_link_node(&chain->rb_node, parent, p); rb_insert_color(&chain->rb_node, root); } /* * Once we get every callchains from the stream, we can now * sort them by hit */ void sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node, u64 min_hit) { struct callchain_node *child; chain_for_each_child(child, node) sort_chain_flat(rb_root, child, min_hit); if (node->hit && node->hit >= min_hit) rb_insert_callchain(rb_root, node, FLAT); } static void __sort_chain_graph(struct callchain_node *node, u64 min_hit) { struct callchain_node *child; node->rb_root = RB_ROOT; node->cumul_hit = node->hit; chain_for_each_child(child, node) { __sort_chain_graph(child, min_hit); if (child->cumul_hit >= min_hit) rb_insert_callchain(&node->rb_root, child, GRAPH); node->cumul_hit += child->cumul_hit; } } void sort_chain_graph(struct rb_root *rb_root, struct callchain_node *chain_root, u64 min_hit) { __sort_chain_graph(chain_root, min_hit); rb_root->rb_node = chain_root->rb_root.rb_node; } /* * Create a child for a parent. If inherit_children, then the new child * will become the new parent of it's parent children */ static struct callchain_node * create_child(struct callchain_node *parent, bool inherit_children) { struct callchain_node *new; new = malloc(sizeof(*new)); if (!new) { perror("not enough memory to create child for code path tree"); return NULL; } new->parent = parent; INIT_LIST_HEAD(&new->children); INIT_LIST_HEAD(&new->val); if (inherit_children) { struct callchain_node *next; list_splice(&parent->children, &new->children); INIT_LIST_HEAD(&parent->children); chain_for_each_child(next, new) next->parent = new; } list_add_tail(&new->brothers, &parent->children); return new; } /* * Fill the node with callchain values */ static void fill_node(struct callchain_node *node, struct ip_callchain *chain, int start, struct symbol **syms) { unsigned int i; for (i = start; i < chain->nr; i++) { struct callchain_list *call; call = malloc(sizeof(*call)); if (!call) { perror("not enough memory for the code path tree"); return; } call->ip = chain->ips[i]; call->sym = syms[i]; list_add_tail(&call->list, &node->val); } node->val_nr = chain->nr - start; if (!node->val_nr) printf("Warning: empty node in callchain tree\n"); } static void add_child(struct callchain_node *parent, struct ip_callchain *chain, int start, struct symbol **syms) { struct callchain_node *new; new = create_child(parent, false); fill_node(new, chain, start, syms); new->hit = 1; } /* * Split the parent in two parts (a new child is created) and * give a part of its callchain to the created child. * Then create another child to host the given callchain of new branch */ static void split_add_child(struct callchain_node *parent, struct ip_callchain *chain, struct callchain_list *to_split, int idx_parents, int idx_local, struct symbol **syms) { struct callchain_node *new; struct list_head *old_tail; unsigned int idx_total = idx_parents + idx_local; /* split */ new = create_child(parent, true); /* split the callchain and move a part to the new child */ old_tail = parent->val.prev; list_del_range(&to_split->list, old_tail); new->val.next = &to_split->list; new->val.prev = old_tail; to_split->list.prev = &new->val; old_tail->next = &new->val; /* split the hits */ new->hit = parent->hit; new->val_nr = parent->val_nr - idx_local; parent->val_nr = idx_local; /* create a new child for the new branch if any */ if (idx_total < chain->nr) { parent->hit = 0; add_child(parent, chain, idx_total, syms); } else { parent->hit = 1; } } static int __append_chain(struct callchain_node *root, struct ip_callchain *chain, unsigned int start, struct symbol **syms); static void __append_chain_children(struct callchain_node *root, struct ip_callchain *chain, struct symbol **syms, unsigned int start) { struct callchain_node *rnode; /* lookup in childrens */ chain_for_each_child(rnode, root) { unsigned int ret = __append_chain(rnode, chain, start, syms); if (!ret) return; } /* nothing in children, add to the current node */ add_child(root, chain, start, syms); } static int __append_chain(struct callchain_node *root, struct ip_callchain *chain, unsigned int start, struct symbol **syms) { struct callchain_list *cnode; unsigned int i = start; bool found = false; /* * Lookup in the current node * If we have a symbol, then compare the start to match * anywhere inside a function. */ list_for_each_entry(cnode, &root->val, list) { if (i == chain->nr) break; if (cnode->sym && syms[i]) { if (cnode->sym->start != syms[i]->start) break; } else if (cnode->ip != chain->ips[i]) break; if (!found) found = true; i++; } /* matches not, relay on the parent */ if (!found) return -1; /* we match only a part of the node. Split it and add the new chain */ if (i - start < root->val_nr) { split_add_child(root, chain, cnode, start, i - start, syms); return 0; } /* we match 100% of the path, increment the hit */ if (i - start == root->val_nr && i == chain->nr) { root->hit++; return 0; } /* We match the node and still have a part remaining */ __append_chain_children(root, chain, syms, i); return 0; } void append_chain(struct callchain_node *root, struct ip_callchain *chain, struct symbol **syms) { __append_chain_children(root, chain, syms, 0); }