// SPDX-License-Identifier: GPL-2.0-only /* * wm_adsp.c -- Wolfson ADSP support * * Copyright 2012 Wolfson Microelectronics plc * * Author: Mark Brown */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "wm_adsp.h" #define adsp_crit(_dsp, fmt, ...) \ dev_crit(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__) #define adsp_err(_dsp, fmt, ...) \ dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__) #define adsp_warn(_dsp, fmt, ...) \ dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__) #define adsp_info(_dsp, fmt, ...) \ dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__) #define adsp_dbg(_dsp, fmt, ...) \ dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__) #define compr_err(_obj, fmt, ...) \ adsp_err(_obj->dsp, "%s: " fmt, _obj->name ? _obj->name : "legacy", \ ##__VA_ARGS__) #define compr_dbg(_obj, fmt, ...) \ adsp_dbg(_obj->dsp, "%s: " fmt, _obj->name ? _obj->name : "legacy", \ ##__VA_ARGS__) #define ADSP1_CONTROL_1 0x00 #define ADSP1_CONTROL_2 0x02 #define ADSP1_CONTROL_3 0x03 #define ADSP1_CONTROL_4 0x04 #define ADSP1_CONTROL_5 0x06 #define ADSP1_CONTROL_6 0x07 #define ADSP1_CONTROL_7 0x08 #define ADSP1_CONTROL_8 0x09 #define ADSP1_CONTROL_9 0x0A #define ADSP1_CONTROL_10 0x0B #define ADSP1_CONTROL_11 0x0C #define ADSP1_CONTROL_12 0x0D #define ADSP1_CONTROL_13 0x0F #define ADSP1_CONTROL_14 0x10 #define ADSP1_CONTROL_15 0x11 #define ADSP1_CONTROL_16 0x12 #define ADSP1_CONTROL_17 0x13 #define ADSP1_CONTROL_18 0x14 #define ADSP1_CONTROL_19 0x16 #define ADSP1_CONTROL_20 0x17 #define ADSP1_CONTROL_21 0x18 #define ADSP1_CONTROL_22 0x1A #define ADSP1_CONTROL_23 0x1B #define ADSP1_CONTROL_24 0x1C #define ADSP1_CONTROL_25 0x1E #define ADSP1_CONTROL_26 0x20 #define ADSP1_CONTROL_27 0x21 #define ADSP1_CONTROL_28 0x22 #define ADSP1_CONTROL_29 0x23 #define ADSP1_CONTROL_30 0x24 #define ADSP1_CONTROL_31 0x26 /* * ADSP1 Control 19 */ #define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */ #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */ #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */ /* * ADSP1 Control 30 */ #define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */ #define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */ #define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */ #define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */ #define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */ #define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */ #define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */ #define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */ #define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */ #define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */ #define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */ #define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */ #define ADSP1_START 0x0001 /* DSP1_START */ #define ADSP1_START_MASK 0x0001 /* DSP1_START */ #define ADSP1_START_SHIFT 0 /* DSP1_START */ #define ADSP1_START_WIDTH 1 /* DSP1_START */ /* * ADSP1 Control 31 */ #define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */ #define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */ #define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */ #define ADSP2_CONTROL 0x0 #define ADSP2_CLOCKING 0x1 #define ADSP2V2_CLOCKING 0x2 #define ADSP2_STATUS1 0x4 #define ADSP2_WDMA_CONFIG_1 0x30 #define ADSP2_WDMA_CONFIG_2 0x31 #define ADSP2V2_WDMA_CONFIG_2 0x32 #define ADSP2_RDMA_CONFIG_1 0x34 #define ADSP2_SCRATCH0 0x40 #define ADSP2_SCRATCH1 0x41 #define ADSP2_SCRATCH2 0x42 #define ADSP2_SCRATCH3 0x43 #define ADSP2V2_SCRATCH0_1 0x40 #define ADSP2V2_SCRATCH2_3 0x42 /* * ADSP2 Control */ #define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */ #define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */ #define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */ #define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */ #define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */ #define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */ #define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */ #define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */ #define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */ #define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */ #define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */ #define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */ #define ADSP2_START 0x0001 /* DSP1_START */ #define ADSP2_START_MASK 0x0001 /* DSP1_START */ #define ADSP2_START_SHIFT 0 /* DSP1_START */ #define ADSP2_START_WIDTH 1 /* DSP1_START */ /* * ADSP2 clocking */ #define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */ #define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */ #define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */ /* * ADSP2V2 clocking */ #define ADSP2V2_CLK_SEL_MASK 0x70000 /* CLK_SEL_ENA */ #define ADSP2V2_CLK_SEL_SHIFT 16 /* CLK_SEL_ENA */ #define ADSP2V2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */ #define ADSP2V2_RATE_MASK 0x7800 /* DSP_RATE */ #define ADSP2V2_RATE_SHIFT 11 /* DSP_RATE */ #define ADSP2V2_RATE_WIDTH 4 /* DSP_RATE */ /* * ADSP2 Status 1 */ #define ADSP2_RAM_RDY 0x0001 #define ADSP2_RAM_RDY_MASK 0x0001 #define ADSP2_RAM_RDY_SHIFT 0 #define ADSP2_RAM_RDY_WIDTH 1 /* * ADSP2 Lock support */ #define ADSP2_LOCK_CODE_0 0x5555 #define ADSP2_LOCK_CODE_1 0xAAAA #define ADSP2_WATCHDOG 0x0A #define ADSP2_BUS_ERR_ADDR 0x52 #define ADSP2_REGION_LOCK_STATUS 0x64 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0 0x66 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2 0x68 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4 0x6A #define ADSP2_LOCK_REGION_7_LOCK_REGION_6 0x6C #define ADSP2_LOCK_REGION_9_LOCK_REGION_8 0x6E #define ADSP2_LOCK_REGION_CTRL 0x7A #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR 0x7C #define ADSP2_REGION_LOCK_ERR_MASK 0x8000 #define ADSP2_SLAVE_ERR_MASK 0x4000 #define ADSP2_WDT_TIMEOUT_STS_MASK 0x2000 #define ADSP2_CTRL_ERR_PAUSE_ENA 0x0002 #define ADSP2_CTRL_ERR_EINT 0x0001 #define ADSP2_BUS_ERR_ADDR_MASK 0x00FFFFFF #define ADSP2_XMEM_ERR_ADDR_MASK 0x0000FFFF #define ADSP2_PMEM_ERR_ADDR_MASK 0x7FFF0000 #define ADSP2_PMEM_ERR_ADDR_SHIFT 16 #define ADSP2_WDT_ENA_MASK 0xFFFFFFFD #define ADSP2_LOCK_REGION_SHIFT 16 #define ADSP_MAX_STD_CTRL_SIZE 512 #define WM_ADSP_ACKED_CTL_TIMEOUT_MS 100 #define WM_ADSP_ACKED_CTL_N_QUICKPOLLS 10 #define WM_ADSP_ACKED_CTL_MIN_VALUE 0 #define WM_ADSP_ACKED_CTL_MAX_VALUE 0xFFFFFF /* * Event control messages */ #define WM_ADSP_FW_EVENT_SHUTDOWN 0x000001 /* * HALO system info */ #define HALO_AHBM_WINDOW_DEBUG_0 0x02040 #define HALO_AHBM_WINDOW_DEBUG_1 0x02044 /* * HALO core */ #define HALO_SCRATCH1 0x005c0 #define HALO_SCRATCH2 0x005c8 #define HALO_SCRATCH3 0x005d0 #define HALO_SCRATCH4 0x005d8 #define HALO_CCM_CORE_CONTROL 0x41000 #define HALO_CORE_SOFT_RESET 0x00010 #define HALO_WDT_CONTROL 0x47000 /* * HALO MPU banks */ #define HALO_MPU_XMEM_ACCESS_0 0x43000 #define HALO_MPU_YMEM_ACCESS_0 0x43004 #define HALO_MPU_WINDOW_ACCESS_0 0x43008 #define HALO_MPU_XREG_ACCESS_0 0x4300C #define HALO_MPU_YREG_ACCESS_0 0x43014 #define HALO_MPU_XMEM_ACCESS_1 0x43018 #define HALO_MPU_YMEM_ACCESS_1 0x4301C #define HALO_MPU_WINDOW_ACCESS_1 0x43020 #define HALO_MPU_XREG_ACCESS_1 0x43024 #define HALO_MPU_YREG_ACCESS_1 0x4302C #define HALO_MPU_XMEM_ACCESS_2 0x43030 #define HALO_MPU_YMEM_ACCESS_2 0x43034 #define HALO_MPU_WINDOW_ACCESS_2 0x43038 #define HALO_MPU_XREG_ACCESS_2 0x4303C #define HALO_MPU_YREG_ACCESS_2 0x43044 #define HALO_MPU_XMEM_ACCESS_3 0x43048 #define HALO_MPU_YMEM_ACCESS_3 0x4304C #define HALO_MPU_WINDOW_ACCESS_3 0x43050 #define HALO_MPU_XREG_ACCESS_3 0x43054 #define HALO_MPU_YREG_ACCESS_3 0x4305C #define HALO_MPU_XM_VIO_ADDR 0x43100 #define HALO_MPU_XM_VIO_STATUS 0x43104 #define HALO_MPU_YM_VIO_ADDR 0x43108 #define HALO_MPU_YM_VIO_STATUS 0x4310C #define HALO_MPU_PM_VIO_ADDR 0x43110 #define HALO_MPU_PM_VIO_STATUS 0x43114 #define HALO_MPU_LOCK_CONFIG 0x43140 /* * HALO_AHBM_WINDOW_DEBUG_1 */ #define HALO_AHBM_CORE_ERR_ADDR_MASK 0x0fffff00 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT 8 #define HALO_AHBM_FLAGS_ERR_MASK 0x000000ff /* * HALO_CCM_CORE_CONTROL */ #define HALO_CORE_EN 0x00000001 /* * HALO_CORE_SOFT_RESET */ #define HALO_CORE_SOFT_RESET_MASK 0x00000001 /* * HALO_WDT_CONTROL */ #define HALO_WDT_EN_MASK 0x00000001 /* * HALO_MPU_?M_VIO_STATUS */ #define HALO_MPU_VIO_STS_MASK 0x007e0000 #define HALO_MPU_VIO_STS_SHIFT 17 #define HALO_MPU_VIO_ERR_WR_MASK 0x00008000 #define HALO_MPU_VIO_ERR_SRC_MASK 0x00007fff #define HALO_MPU_VIO_ERR_SRC_SHIFT 0 static struct wm_adsp_ops wm_adsp1_ops; static struct wm_adsp_ops wm_adsp2_ops[]; static struct wm_adsp_ops wm_halo_ops; struct wm_adsp_buf { struct list_head list; void *buf; }; static struct wm_adsp_buf *wm_adsp_buf_alloc(const void *src, size_t len, struct list_head *list) { struct wm_adsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL); if (buf == NULL) return NULL; buf->buf = vmalloc(len); if (!buf->buf) { kfree(buf); return NULL; } memcpy(buf->buf, src, len); if (list) list_add_tail(&buf->list, list); return buf; } static void wm_adsp_buf_free(struct list_head *list) { while (!list_empty(list)) { struct wm_adsp_buf *buf = list_first_entry(list, struct wm_adsp_buf, list); list_del(&buf->list); vfree(buf->buf); kfree(buf); } } #define WM_ADSP_FW_MBC_VSS 0 #define WM_ADSP_FW_HIFI 1 #define WM_ADSP_FW_TX 2 #define WM_ADSP_FW_TX_SPK 3 #define WM_ADSP_FW_RX 4 #define WM_ADSP_FW_RX_ANC 5 #define WM_ADSP_FW_CTRL 6 #define WM_ADSP_FW_ASR 7 #define WM_ADSP_FW_TRACE 8 #define WM_ADSP_FW_SPK_PROT 9 #define WM_ADSP_FW_MISC 10 #define WM_ADSP_NUM_FW 11 static const char *wm_adsp_fw_text[WM_ADSP_NUM_FW] = { [WM_ADSP_FW_MBC_VSS] = "MBC/VSS", [WM_ADSP_FW_HIFI] = "MasterHiFi", [WM_ADSP_FW_TX] = "Tx", [WM_ADSP_FW_TX_SPK] = "Tx Speaker", [WM_ADSP_FW_RX] = "Rx", [WM_ADSP_FW_RX_ANC] = "Rx ANC", [WM_ADSP_FW_CTRL] = "Voice Ctrl", [WM_ADSP_FW_ASR] = "ASR Assist", [WM_ADSP_FW_TRACE] = "Dbg Trace", [WM_ADSP_FW_SPK_PROT] = "Protection", [WM_ADSP_FW_MISC] = "Misc", }; struct wm_adsp_system_config_xm_hdr { __be32 sys_enable; __be32 fw_id; __be32 fw_rev; __be32 boot_status; __be32 watchdog; __be32 dma_buffer_size; __be32 rdma[6]; __be32 wdma[8]; __be32 build_job_name[3]; __be32 build_job_number; }; struct wm_halo_system_config_xm_hdr { __be32 halo_heartbeat; __be32 build_job_name[3]; __be32 build_job_number; }; struct wm_adsp_alg_xm_struct { __be32 magic; __be32 smoothing; __be32 threshold; __be32 host_buf_ptr; __be32 start_seq; __be32 high_water_mark; __be32 low_water_mark; __be64 smoothed_power; }; struct wm_adsp_host_buf_coeff_v1 { __be32 host_buf_ptr; /* Host buffer pointer */ __be32 versions; /* Version numbers */ __be32 name[4]; /* The buffer name */ }; struct wm_adsp_buffer { __be32 buf1_base; /* Base addr of first buffer area */ __be32 buf1_size; /* Size of buf1 area in DSP words */ __be32 buf2_base; /* Base addr of 2nd buffer area */ __be32 buf1_buf2_size; /* Size of buf1+buf2 in DSP words */ __be32 buf3_base; /* Base addr of buf3 area */ __be32 buf_total_size; /* Size of buf1+buf2+buf3 in DSP words */ __be32 high_water_mark; /* Point at which IRQ is asserted */ __be32 irq_count; /* bits 1-31 count IRQ assertions */ __be32 irq_ack; /* acked IRQ count, bit 0 enables IRQ */ __be32 next_write_index; /* word index of next write */ __be32 next_read_index; /* word index of next read */ __be32 error; /* error if any */ __be32 oldest_block_index; /* word index of oldest surviving */ __be32 requested_rewind; /* how many blocks rewind was done */ __be32 reserved_space; /* internal */ __be32 min_free; /* min free space since stream start */ __be32 blocks_written[2]; /* total blocks written (64 bit) */ __be32 words_written[2]; /* total words written (64 bit) */ }; struct wm_adsp_compr; struct wm_adsp_compr_buf { struct list_head list; struct wm_adsp *dsp; struct wm_adsp_compr *compr; struct wm_adsp_buffer_region *regions; u32 host_buf_ptr; u32 error; u32 irq_count; int read_index; int avail; int host_buf_mem_type; char *name; }; struct wm_adsp_compr { struct list_head list; struct wm_adsp *dsp; struct wm_adsp_compr_buf *buf; struct snd_compr_stream *stream; struct snd_compressed_buffer size; u32 *raw_buf; unsigned int copied_total; unsigned int sample_rate; const char *name; }; #define WM_ADSP_DATA_WORD_SIZE 3 #define WM_ADSP_MIN_FRAGMENTS 1 #define WM_ADSP_MAX_FRAGMENTS 256 #define WM_ADSP_MIN_FRAGMENT_SIZE (64 * WM_ADSP_DATA_WORD_SIZE) #define WM_ADSP_MAX_FRAGMENT_SIZE (4096 * WM_ADSP_DATA_WORD_SIZE) #define WM_ADSP_ALG_XM_STRUCT_MAGIC 0x49aec7 #define HOST_BUFFER_FIELD(field) \ (offsetof(struct wm_adsp_buffer, field) / sizeof(__be32)) #define ALG_XM_FIELD(field) \ (offsetof(struct wm_adsp_alg_xm_struct, field) / sizeof(__be32)) #define HOST_BUF_COEFF_SUPPORTED_COMPAT_VER 1 #define HOST_BUF_COEFF_COMPAT_VER_MASK 0xFF00 #define HOST_BUF_COEFF_COMPAT_VER_SHIFT 8 static int wm_adsp_buffer_init(struct wm_adsp *dsp); static int wm_adsp_buffer_free(struct wm_adsp *dsp); struct wm_adsp_buffer_region { unsigned int offset; unsigned int cumulative_size; unsigned int mem_type; unsigned int base_addr; }; struct wm_adsp_buffer_region_def { unsigned int mem_type; unsigned int base_offset; unsigned int size_offset; }; static const struct wm_adsp_buffer_region_def default_regions[] = { { .mem_type = WMFW_ADSP2_XM, .base_offset = HOST_BUFFER_FIELD(buf1_base), .size_offset = HOST_BUFFER_FIELD(buf1_size), }, { .mem_type = WMFW_ADSP2_XM, .base_offset = HOST_BUFFER_FIELD(buf2_base), .size_offset = HOST_BUFFER_FIELD(buf1_buf2_size), }, { .mem_type = WMFW_ADSP2_YM, .base_offset = HOST_BUFFER_FIELD(buf3_base), .size_offset = HOST_BUFFER_FIELD(buf_total_size), }, }; struct wm_adsp_fw_caps { u32 id; struct snd_codec_desc desc; int num_regions; const struct wm_adsp_buffer_region_def *region_defs; }; static const struct wm_adsp_fw_caps ctrl_caps[] = { { .id = SND_AUDIOCODEC_BESPOKE, .desc = { .max_ch = 8, .sample_rates = { 16000 }, .num_sample_rates = 1, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .num_regions = ARRAY_SIZE(default_regions), .region_defs = default_regions, }, }; static const struct wm_adsp_fw_caps trace_caps[] = { { .id = SND_AUDIOCODEC_BESPOKE, .desc = { .max_ch = 8, .sample_rates = { 4000, 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000, 64000, 88200, 96000, 176400, 192000 }, .num_sample_rates = 15, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .num_regions = ARRAY_SIZE(default_regions), .region_defs = default_regions, }, }; static const struct { const char *file; int compr_direction; int num_caps; const struct wm_adsp_fw_caps *caps; bool voice_trigger; } wm_adsp_fw[WM_ADSP_NUM_FW] = { [WM_ADSP_FW_MBC_VSS] = { .file = "mbc-vss" }, [WM_ADSP_FW_HIFI] = { .file = "hifi" }, [WM_ADSP_FW_TX] = { .file = "tx" }, [WM_ADSP_FW_TX_SPK] = { .file = "tx-spk" }, [WM_ADSP_FW_RX] = { .file = "rx" }, [WM_ADSP_FW_RX_ANC] = { .file = "rx-anc" }, [WM_ADSP_FW_CTRL] = { .file = "ctrl", .compr_direction = SND_COMPRESS_CAPTURE, .num_caps = ARRAY_SIZE(ctrl_caps), .caps = ctrl_caps, .voice_trigger = true, }, [WM_ADSP_FW_ASR] = { .file = "asr" }, [WM_ADSP_FW_TRACE] = { .file = "trace", .compr_direction = SND_COMPRESS_CAPTURE, .num_caps = ARRAY_SIZE(trace_caps), .caps = trace_caps, }, [WM_ADSP_FW_SPK_PROT] = { .file = "spk-prot" }, [WM_ADSP_FW_MISC] = { .file = "misc" }, }; struct wm_coeff_ctl_ops { int (*xget)(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int (*xput)(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); }; struct wm_coeff_ctl { const char *name; const char *fw_name; /* Subname is needed to match with firmware */ const char *subname; unsigned int subname_len; struct wm_adsp_alg_region alg_region; struct wm_coeff_ctl_ops ops; struct wm_adsp *dsp; unsigned int enabled:1; struct list_head list; void *cache; unsigned int offset; size_t len; unsigned int set:1; struct soc_bytes_ext bytes_ext; unsigned int flags; unsigned int type; }; static const char *wm_adsp_mem_region_name(unsigned int type) { switch (type) { case WMFW_ADSP1_PM: return "PM"; case WMFW_HALO_PM_PACKED: return "PM_PACKED"; case WMFW_ADSP1_DM: return "DM"; case WMFW_ADSP2_XM: return "XM"; case WMFW_HALO_XM_PACKED: return "XM_PACKED"; case WMFW_ADSP2_YM: return "YM"; case WMFW_HALO_YM_PACKED: return "YM_PACKED"; case WMFW_ADSP1_ZM: return "ZM"; default: return NULL; } } #ifdef CONFIG_DEBUG_FS static void wm_adsp_debugfs_save_wmfwname(struct wm_adsp *dsp, const char *s) { char *tmp = kasprintf(GFP_KERNEL, "%s\n", s); kfree(dsp->wmfw_file_name); dsp->wmfw_file_name = tmp; } static void wm_adsp_debugfs_save_binname(struct wm_adsp *dsp, const char *s) { char *tmp = kasprintf(GFP_KERNEL, "%s\n", s); kfree(dsp->bin_file_name); dsp->bin_file_name = tmp; } static void wm_adsp_debugfs_clear(struct wm_adsp *dsp) { kfree(dsp->wmfw_file_name); kfree(dsp->bin_file_name); dsp->wmfw_file_name = NULL; dsp->bin_file_name = NULL; } static ssize_t wm_adsp_debugfs_wmfw_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct wm_adsp *dsp = file->private_data; ssize_t ret; mutex_lock(&dsp->pwr_lock); if (!dsp->wmfw_file_name || !dsp->booted) ret = 0; else ret = simple_read_from_buffer(user_buf, count, ppos, dsp->wmfw_file_name, strlen(dsp->wmfw_file_name)); mutex_unlock(&dsp->pwr_lock); return ret; } static ssize_t wm_adsp_debugfs_bin_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct wm_adsp *dsp = file->private_data; ssize_t ret; mutex_lock(&dsp->pwr_lock); if (!dsp->bin_file_name || !dsp->booted) ret = 0; else ret = simple_read_from_buffer(user_buf, count, ppos, dsp->bin_file_name, strlen(dsp->bin_file_name)); mutex_unlock(&dsp->pwr_lock); return ret; } static const struct { const char *name; const struct file_operations fops; } wm_adsp_debugfs_fops[] = { { .name = "wmfw_file_name", .fops = { .open = simple_open, .read = wm_adsp_debugfs_wmfw_read, }, }, { .name = "bin_file_name", .fops = { .open = simple_open, .read = wm_adsp_debugfs_bin_read, }, }, }; static void wm_adsp2_init_debugfs(struct wm_adsp *dsp, struct snd_soc_component *component) { struct dentry *root = NULL; int i; root = debugfs_create_dir(dsp->name, component->debugfs_root); debugfs_create_bool("booted", 0444, root, &dsp->booted); debugfs_create_bool("running", 0444, root, &dsp->running); debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id); debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version); for (i = 0; i < ARRAY_SIZE(wm_adsp_debugfs_fops); ++i) debugfs_create_file(wm_adsp_debugfs_fops[i].name, 0444, root, dsp, &wm_adsp_debugfs_fops[i].fops); dsp->debugfs_root = root; } static void wm_adsp2_cleanup_debugfs(struct wm_adsp *dsp) { wm_adsp_debugfs_clear(dsp); debugfs_remove_recursive(dsp->debugfs_root); } #else static inline void wm_adsp2_init_debugfs(struct wm_adsp *dsp, struct snd_soc_component *component) { } static inline void wm_adsp2_cleanup_debugfs(struct wm_adsp *dsp) { } static inline void wm_adsp_debugfs_save_wmfwname(struct wm_adsp *dsp, const char *s) { } static inline void wm_adsp_debugfs_save_binname(struct wm_adsp *dsp, const char *s) { } static inline void wm_adsp_debugfs_clear(struct wm_adsp *dsp) { } #endif int wm_adsp_fw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; struct wm_adsp *dsp = snd_soc_component_get_drvdata(component); ucontrol->value.enumerated.item[0] = dsp[e->shift_l].fw; return 0; } EXPORT_SYMBOL_GPL(wm_adsp_fw_get); int wm_adsp_fw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; struct wm_adsp *dsp = snd_soc_component_get_drvdata(component); int ret = 0; if (ucontrol->value.enumerated.item[0] == dsp[e->shift_l].fw) return 0; if (ucontrol->value.enumerated.item[0] >= WM_ADSP_NUM_FW) return -EINVAL; mutex_lock(&dsp[e->shift_l].pwr_lock); if (dsp[e->shift_l].booted || !list_empty(&dsp[e->shift_l].compr_list)) ret = -EBUSY; else dsp[e->shift_l].fw = ucontrol->value.enumerated.item[0]; mutex_unlock(&dsp[e->shift_l].pwr_lock); return ret; } EXPORT_SYMBOL_GPL(wm_adsp_fw_put); const struct soc_enum wm_adsp_fw_enum[] = { SOC_ENUM_SINGLE(0, 0, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), SOC_ENUM_SINGLE(0, 1, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), SOC_ENUM_SINGLE(0, 2, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), SOC_ENUM_SINGLE(0, 3, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), SOC_ENUM_SINGLE(0, 4, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), SOC_ENUM_SINGLE(0, 5, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), SOC_ENUM_SINGLE(0, 6, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text), }; EXPORT_SYMBOL_GPL(wm_adsp_fw_enum); static struct wm_adsp_region const *wm_adsp_find_region(struct wm_adsp *dsp, int type) { int i; for (i = 0; i < dsp->num_mems; i++) if (dsp->mem[i].type == type) return &dsp->mem[i]; return NULL; } static unsigned int wm_adsp_region_to_reg(struct wm_adsp_region const *mem, unsigned int offset) { switch (mem->type) { case WMFW_ADSP1_PM: return mem->base + (offset * 3); case WMFW_ADSP1_DM: case WMFW_ADSP2_XM: case WMFW_ADSP2_YM: case WMFW_ADSP1_ZM: return mem->base + (offset * 2); default: WARN(1, "Unknown memory region type"); return offset; } } static unsigned int wm_halo_region_to_reg(struct wm_adsp_region const *mem, unsigned int offset) { switch (mem->type) { case WMFW_ADSP2_XM: case WMFW_ADSP2_YM: return mem->base + (offset * 4); case WMFW_HALO_XM_PACKED: case WMFW_HALO_YM_PACKED: return (mem->base + (offset * 3)) & ~0x3; case WMFW_HALO_PM_PACKED: return mem->base + (offset * 5); default: WARN(1, "Unknown memory region type"); return offset; } } static void wm_adsp_read_fw_status(struct wm_adsp *dsp, int noffs, unsigned int *offs) { unsigned int i; int ret; for (i = 0; i < noffs; ++i) { ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]); if (ret) { adsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret); return; } } } static void wm_adsp2_show_fw_status(struct wm_adsp *dsp) { unsigned int offs[] = { ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3, }; wm_adsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs); adsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n", offs[0], offs[1], offs[2], offs[3]); } static void wm_adsp2v2_show_fw_status(struct wm_adsp *dsp) { unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 }; wm_adsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs); adsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n", offs[0] & 0xFFFF, offs[0] >> 16, offs[1] & 0xFFFF, offs[1] >> 16); } static void wm_halo_show_fw_status(struct wm_adsp *dsp) { unsigned int offs[] = { HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4, }; wm_adsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs); adsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n", offs[0], offs[1], offs[2], offs[3]); } static inline struct wm_coeff_ctl *bytes_ext_to_ctl(struct soc_bytes_ext *ext) { return container_of(ext, struct wm_coeff_ctl, bytes_ext); } static int wm_coeff_base_reg(struct wm_coeff_ctl *ctl, unsigned int *reg) { const struct wm_adsp_alg_region *alg_region = &ctl->alg_region; struct wm_adsp *dsp = ctl->dsp; const struct wm_adsp_region *mem; mem = wm_adsp_find_region(dsp, alg_region->type); if (!mem) { adsp_err(dsp, "No base for region %x\n", alg_region->type); return -EINVAL; } *reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset); return 0; } static int wm_coeff_info(struct snd_kcontrol *kctl, struct snd_ctl_elem_info *uinfo) { struct soc_bytes_ext *bytes_ext = (struct soc_bytes_ext *)kctl->private_value; struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext); switch (ctl->type) { case WMFW_CTL_TYPE_ACKED: uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->value.integer.min = WM_ADSP_ACKED_CTL_MIN_VALUE; uinfo->value.integer.max = WM_ADSP_ACKED_CTL_MAX_VALUE; uinfo->value.integer.step = 1; uinfo->count = 1; break; default: uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = ctl->len; break; } return 0; } static int wm_coeff_write_acked_control(struct wm_coeff_ctl *ctl, unsigned int event_id) { struct wm_adsp *dsp = ctl->dsp; u32 val = cpu_to_be32(event_id); unsigned int reg; int i, ret; ret = wm_coeff_base_reg(ctl, ®); if (ret) return ret; adsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n", event_id, ctl->alg_region.alg, wm_adsp_mem_region_name(ctl->alg_region.type), ctl->offset); ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val)); if (ret) { adsp_err(dsp, "Failed to write %x: %d\n", reg, ret); return ret; } /* * Poll for ack, we initially poll at ~1ms intervals for firmwares * that respond quickly, then go to ~10ms polls. A firmware is unlikely * to ack instantly so we do the first 1ms delay before reading the * control to avoid a pointless bus transaction */ for (i = 0; i < WM_ADSP_ACKED_CTL_TIMEOUT_MS;) { switch (i) { case 0 ... WM_ADSP_ACKED_CTL_N_QUICKPOLLS - 1: usleep_range(1000, 2000); i++; break; default: usleep_range(10000, 20000); i += 10; break; } ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val)); if (ret) { adsp_err(dsp, "Failed to read %x: %d\n", reg, ret); return ret; } if (val == 0) { adsp_dbg(dsp, "Acked control ACKED at poll %u\n", i); return 0; } } adsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n", reg, ctl->alg_region.alg, wm_adsp_mem_region_name(ctl->alg_region.type), ctl->offset); return -ETIMEDOUT; } static int wm_coeff_write_ctrl_raw(struct wm_coeff_ctl *ctl, const void *buf, size_t len) { struct wm_adsp *dsp = ctl->dsp; void *scratch; int ret; unsigned int reg; ret = wm_coeff_base_reg(ctl, ®); if (ret) return ret; scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA); if (!scratch) return -ENOMEM; ret = regmap_raw_write(dsp->regmap, reg, scratch, len); if (ret) { adsp_err(dsp, "Failed to write %zu bytes to %x: %d\n", len, reg, ret); kfree(scratch); return ret; } adsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg); kfree(scratch); return 0; } static int wm_coeff_write_ctrl(struct wm_coeff_ctl *ctl, const void *buf, size_t len) { int ret = 0; if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) ret = -EPERM; else if (buf != ctl->cache) memcpy(ctl->cache, buf, len); ctl->set = 1; if (ctl->enabled && ctl->dsp->running) ret = wm_coeff_write_ctrl_raw(ctl, buf, len); return ret; } static int wm_coeff_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol) { struct soc_bytes_ext *bytes_ext = (struct soc_bytes_ext *)kctl->private_value; struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext); char *p = ucontrol->value.bytes.data; int ret = 0; mutex_lock(&ctl->dsp->pwr_lock); ret = wm_coeff_write_ctrl(ctl, p, ctl->len); mutex_unlock(&ctl->dsp->pwr_lock); return ret; } static int wm_coeff_tlv_put(struct snd_kcontrol *kctl, const unsigned int __user *bytes, unsigned int size) { struct soc_bytes_ext *bytes_ext = (struct soc_bytes_ext *)kctl->private_value; struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext); int ret = 0; mutex_lock(&ctl->dsp->pwr_lock); if (copy_from_user(ctl->cache, bytes, size)) ret = -EFAULT; else ret = wm_coeff_write_ctrl(ctl, ctl->cache, size); mutex_unlock(&ctl->dsp->pwr_lock); return ret; } static int wm_coeff_put_acked(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol) { struct soc_bytes_ext *bytes_ext = (struct soc_bytes_ext *)kctl->private_value; struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext); unsigned int val = ucontrol->value.integer.value[0]; int ret; if (val == 0) return 0; /* 0 means no event */ mutex_lock(&ctl->dsp->pwr_lock); if (ctl->enabled && ctl->dsp->running) ret = wm_coeff_write_acked_control(ctl, val); else ret = -EPERM; mutex_unlock(&ctl->dsp->pwr_lock); return ret; } static int wm_coeff_read_ctrl_raw(struct wm_coeff_ctl *ctl, void *buf, size_t len) { struct wm_adsp *dsp = ctl->dsp; void *scratch; int ret; unsigned int reg; ret = wm_coeff_base_reg(ctl, ®); if (ret) return ret; scratch = kmalloc(len, GFP_KERNEL | GFP_DMA); if (!scratch) return -ENOMEM; ret = regmap_raw_read(dsp->regmap, reg, scratch, len); if (ret) { adsp_err(dsp, "Failed to read %zu bytes from %x: %d\n", len, reg, ret); kfree(scratch); return ret; } adsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg); memcpy(buf, scratch, len); kfree(scratch); return 0; } static int wm_coeff_read_ctrl(struct wm_coeff_ctl *ctl, void *buf, size_t len) { int ret = 0; if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) { if (ctl->enabled && ctl->dsp->running) return wm_coeff_read_ctrl_raw(ctl, buf, len); else return -EPERM; } else { if (!ctl->flags && ctl->enabled && ctl->dsp->running) ret = wm_coeff_read_ctrl_raw(ctl, ctl->cache, ctl->len); if (buf != ctl->cache) memcpy(buf, ctl->cache, len); } return ret; } static int wm_coeff_get(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol) { struct soc_bytes_ext *bytes_ext = (struct soc_bytes_ext *)kctl->private_value; struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext); char *p = ucontrol->value.bytes.data; int ret; mutex_lock(&ctl->dsp->pwr_lock); ret = wm_coeff_read_ctrl(ctl, p, ctl->len); mutex_unlock(&ctl->dsp->pwr_lock); return ret; } static int wm_coeff_tlv_get(struct snd_kcontrol *kctl, unsigned int __user *bytes, unsigned int size) { struct soc_bytes_ext *bytes_ext = (struct soc_bytes_ext *)kctl->private_value; struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext); int ret = 0; mutex_lock(&ctl->dsp->pwr_lock); ret = wm_coeff_read_ctrl_raw(ctl, ctl->cache, size); if (!ret && copy_to_user(bytes, ctl->cache, size)) ret = -EFAULT; mutex_unlock(&ctl->dsp->pwr_lock); return ret; } static int wm_coeff_get_acked(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { /* * Although it's not useful to read an acked control, we must satisfy * user-side assumptions that all controls are readable and that a * write of the same value should be filtered out (it's valid to send * the same event number again to the firmware). We therefore return 0, * meaning "no event" so valid event numbers will always be a change */ ucontrol->value.integer.value[0] = 0; return 0; } struct wmfw_ctl_work { struct wm_adsp *dsp; struct wm_coeff_ctl *ctl; struct work_struct work; }; static unsigned int wmfw_convert_flags(unsigned int in, unsigned int len) { unsigned int out, rd, wr, vol; if (len > ADSP_MAX_STD_CTRL_SIZE) { rd = SNDRV_CTL_ELEM_ACCESS_TLV_READ; wr = SNDRV_CTL_ELEM_ACCESS_TLV_WRITE; vol = SNDRV_CTL_ELEM_ACCESS_VOLATILE; out = SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK; } else { rd = SNDRV_CTL_ELEM_ACCESS_READ; wr = SNDRV_CTL_ELEM_ACCESS_WRITE; vol = SNDRV_CTL_ELEM_ACCESS_VOLATILE; out = 0; } if (in) { out |= rd; if (in & WMFW_CTL_FLAG_WRITEABLE) out |= wr; if (in & WMFW_CTL_FLAG_VOLATILE) out |= vol; } else { out |= rd | wr | vol; } return out; } static int wmfw_add_ctl(struct wm_adsp *dsp, struct wm_coeff_ctl *ctl) { struct snd_kcontrol_new *kcontrol; int ret; if (!ctl || !ctl->name) return -EINVAL; kcontrol = kzalloc(sizeof(*kcontrol), GFP_KERNEL); if (!kcontrol) return -ENOMEM; kcontrol->name = ctl->name; kcontrol->info = wm_coeff_info; kcontrol->iface = SNDRV_CTL_ELEM_IFACE_MIXER; kcontrol->tlv.c = snd_soc_bytes_tlv_callback; kcontrol->private_value = (unsigned long)&ctl->bytes_ext; kcontrol->access = wmfw_convert_flags(ctl->flags, ctl->len); switch (ctl->type) { case WMFW_CTL_TYPE_ACKED: kcontrol->get = wm_coeff_get_acked; kcontrol->put = wm_coeff_put_acked; break; default: if (kcontrol->access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) { ctl->bytes_ext.max = ctl->len; ctl->bytes_ext.get = wm_coeff_tlv_get; ctl->bytes_ext.put = wm_coeff_tlv_put; } else { kcontrol->get = wm_coeff_get; kcontrol->put = wm_coeff_put; } break; } ret = snd_soc_add_component_controls(dsp->component, kcontrol, 1); if (ret < 0) goto err_kcontrol; kfree(kcontrol); return 0; err_kcontrol: kfree(kcontrol); return ret; } static int wm_coeff_init_control_caches(struct wm_adsp *dsp) { struct wm_coeff_ctl *ctl; int ret; list_for_each_entry(ctl, &dsp->ctl_list, list) { if (!ctl->enabled || ctl->set) continue; if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) continue; /* * For readable controls populate the cache from the DSP memory. * For non-readable controls the cache was zero-filled when * created so we don't need to do anything. */ if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) { ret = wm_coeff_read_ctrl_raw(ctl, ctl->cache, ctl->len); if (ret < 0) return ret; } } return 0; } static int wm_coeff_sync_controls(struct wm_adsp *dsp) { struct wm_coeff_ctl *ctl; int ret; list_for_each_entry(ctl, &dsp->ctl_list, list) { if (!ctl->enabled) continue; if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) { ret = wm_coeff_write_ctrl_raw(ctl, ctl->cache, ctl->len); if (ret < 0) return ret; } } return 0; } static void wm_adsp_signal_event_controls(struct wm_adsp *dsp, unsigned int event) { struct wm_coeff_ctl *ctl; int ret; list_for_each_entry(ctl, &dsp->ctl_list, list) { if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT) continue; if (!ctl->enabled) continue; ret = wm_coeff_write_acked_control(ctl, event); if (ret) adsp_warn(dsp, "Failed to send 0x%x event to alg 0x%x (%d)\n", event, ctl->alg_region.alg, ret); } } static void wm_adsp_ctl_work(struct work_struct *work) { struct wmfw_ctl_work *ctl_work = container_of(work, struct wmfw_ctl_work, work); wmfw_add_ctl(ctl_work->dsp, ctl_work->ctl); kfree(ctl_work); } static void wm_adsp_free_ctl_blk(struct wm_coeff_ctl *ctl) { kfree(ctl->cache); kfree(ctl->name); kfree(ctl->subname); kfree(ctl); } static int wm_adsp_create_control(struct wm_adsp *dsp, const struct wm_adsp_alg_region *alg_region, unsigned int offset, unsigned int len, const char *subname, unsigned int subname_len, unsigned int flags, unsigned int type) { struct wm_coeff_ctl *ctl; struct wmfw_ctl_work *ctl_work; char name[SNDRV_CTL_ELEM_ID_NAME_MAXLEN]; const char *region_name; int ret; region_name = wm_adsp_mem_region_name(alg_region->type); if (!region_name) { adsp_err(dsp, "Unknown region type: %d\n", alg_region->type); return -EINVAL; } switch (dsp->fw_ver) { case 0: case 1: snprintf(name, SNDRV_CTL_ELEM_ID_NAME_MAXLEN, "%s %s %x", dsp->name, region_name, alg_region->alg); subname = NULL; /* don't append subname */ break; case 2: ret = scnprintf(name, SNDRV_CTL_ELEM_ID_NAME_MAXLEN, "%s%c %.12s %x", dsp->name, *region_name, wm_adsp_fw_text[dsp->fw], alg_region->alg); break; default: ret = scnprintf(name, SNDRV_CTL_ELEM_ID_NAME_MAXLEN, "%s %.12s %x", dsp->name, wm_adsp_fw_text[dsp->fw], alg_region->alg); break; } if (subname) { int avail = SNDRV_CTL_ELEM_ID_NAME_MAXLEN - ret - 2; int skip = 0; if (dsp->component->name_prefix) avail -= strlen(dsp->component->name_prefix) + 1; /* Truncate the subname from the start if it is too long */ if (subname_len > avail) skip = subname_len - avail; snprintf(name + ret, SNDRV_CTL_ELEM_ID_NAME_MAXLEN - ret, " %.*s", subname_len - skip, subname + skip); } list_for_each_entry(ctl, &dsp->ctl_list, list) { if (!strcmp(ctl->name, name)) { if (!ctl->enabled) ctl->enabled = 1; return 0; } } ctl = kzalloc(sizeof(*ctl), GFP_KERNEL); if (!ctl) return -ENOMEM; ctl->fw_name = wm_adsp_fw_text[dsp->fw]; ctl->alg_region = *alg_region; ctl->name = kmemdup(name, strlen(name) + 1, GFP_KERNEL); if (!ctl->name) { ret = -ENOMEM; goto err_ctl; } if (subname) { ctl->subname_len = subname_len; ctl->subname = kmemdup(subname, strlen(subname) + 1, GFP_KERNEL); if (!ctl->subname) { ret = -ENOMEM; goto err_ctl_name; } } ctl->enabled = 1; ctl->set = 0; ctl->ops.xget = wm_coeff_get; ctl->ops.xput = wm_coeff_put; ctl->dsp = dsp; ctl->flags = flags; ctl->type = type; ctl->offset = offset; ctl->len = len; ctl->cache = kzalloc(ctl->len, GFP_KERNEL); if (!ctl->cache) { ret = -ENOMEM; goto err_ctl_subname; } list_add(&ctl->list, &dsp->ctl_list); if (flags & WMFW_CTL_FLAG_SYS) return 0; ctl_work = kzalloc(sizeof(*ctl_work), GFP_KERNEL); if (!ctl_work) { ret = -ENOMEM; goto err_ctl_cache; } ctl_work->dsp = dsp; ctl_work->ctl = ctl; INIT_WORK(&ctl_work->work, wm_adsp_ctl_work); schedule_work(&ctl_work->work); return 0; err_ctl_cache: kfree(ctl->cache); err_ctl_subname: kfree(ctl->subname); err_ctl_name: kfree(ctl->name); err_ctl: kfree(ctl); return ret; } struct wm_coeff_parsed_alg { int id; const u8 *name; int name_len; int ncoeff; }; struct wm_coeff_parsed_coeff { int offset; int mem_type; const u8 *name; int name_len; int ctl_type; int flags; int len; }; static int wm_coeff_parse_string(int bytes, const u8 **pos, const u8 **str) { int length; switch (bytes) { case 1: length = **pos; break; case 2: length = le16_to_cpu(*((__le16 *)*pos)); break; default: return 0; } if (str) *str = *pos + bytes; *pos += ((length + bytes) + 3) & ~0x03; return length; } static int wm_coeff_parse_int(int bytes, const u8 **pos) { int val = 0; switch (bytes) { case 2: val = le16_to_cpu(*((__le16 *)*pos)); break; case 4: val = le32_to_cpu(*((__le32 *)*pos)); break; default: break; } *pos += bytes; return val; } static inline void wm_coeff_parse_alg(struct wm_adsp *dsp, const u8 **data, struct wm_coeff_parsed_alg *blk) { const struct wmfw_adsp_alg_data *raw; switch (dsp->fw_ver) { case 0: case 1: raw = (const struct wmfw_adsp_alg_data *)*data; *data = raw->data; blk->id = le32_to_cpu(raw->id); blk->name = raw->name; blk->name_len = strlen(raw->name); blk->ncoeff = le32_to_cpu(raw->ncoeff); break; default: blk->id = wm_coeff_parse_int(sizeof(raw->id), data); blk->name_len = wm_coeff_parse_string(sizeof(u8), data, &blk->name); wm_coeff_parse_string(sizeof(u16), data, NULL); blk->ncoeff = wm_coeff_parse_int(sizeof(raw->ncoeff), data); break; } adsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id); adsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name); adsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff); } static inline void wm_coeff_parse_coeff(struct wm_adsp *dsp, const u8 **data, struct wm_coeff_parsed_coeff *blk) { const struct wmfw_adsp_coeff_data *raw; const u8 *tmp; int length; switch (dsp->fw_ver) { case 0: case 1: raw = (const struct wmfw_adsp_coeff_data *)*data; *data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size); blk->offset = le16_to_cpu(raw->hdr.offset); blk->mem_type = le16_to_cpu(raw->hdr.type); blk->name = raw->name; blk->name_len = strlen(raw->name); blk->ctl_type = le16_to_cpu(raw->ctl_type); blk->flags = le16_to_cpu(raw->flags); blk->len = le32_to_cpu(raw->len); break; default: tmp = *data; blk->offset = wm_coeff_parse_int(sizeof(raw->hdr.offset), &tmp); blk->mem_type = wm_coeff_parse_int(sizeof(raw->hdr.type), &tmp); length = wm_coeff_parse_int(sizeof(raw->hdr.size), &tmp); blk->name_len = wm_coeff_parse_string(sizeof(u8), &tmp, &blk->name); wm_coeff_parse_string(sizeof(u8), &tmp, NULL); wm_coeff_parse_string(sizeof(u16), &tmp, NULL); blk->ctl_type = wm_coeff_parse_int(sizeof(raw->ctl_type), &tmp); blk->flags = wm_coeff_parse_int(sizeof(raw->flags), &tmp); blk->len = wm_coeff_parse_int(sizeof(raw->len), &tmp); *data = *data + sizeof(raw->hdr) + length; break; } adsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type); adsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset); adsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name); adsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags); adsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type); adsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len); } static int wm_adsp_check_coeff_flags(struct wm_adsp *dsp, const struct wm_coeff_parsed_coeff *coeff_blk, unsigned int f_required, unsigned int f_illegal) { if ((coeff_blk->flags & f_illegal) || ((coeff_blk->flags & f_required) != f_required)) { adsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n", coeff_blk->flags, coeff_blk->ctl_type); return -EINVAL; } return 0; } static int wm_adsp_parse_coeff(struct wm_adsp *dsp, const struct wmfw_region *region) { struct wm_adsp_alg_region alg_region = {}; struct wm_coeff_parsed_alg alg_blk; struct wm_coeff_parsed_coeff coeff_blk; const u8 *data = region->data; int i, ret; wm_coeff_parse_alg(dsp, &data, &alg_blk); for (i = 0; i < alg_blk.ncoeff; i++) { wm_coeff_parse_coeff(dsp, &data, &coeff_blk); switch (coeff_blk.ctl_type) { case SNDRV_CTL_ELEM_TYPE_BYTES: break; case WMFW_CTL_TYPE_ACKED: if (coeff_blk.flags & WMFW_CTL_FLAG_SYS) continue; /* ignore */ ret = wm_adsp_check_coeff_flags(dsp, &coeff_blk, WMFW_CTL_FLAG_VOLATILE | WMFW_CTL_FLAG_WRITEABLE | WMFW_CTL_FLAG_READABLE, 0); if (ret) return -EINVAL; break; case WMFW_CTL_TYPE_HOSTEVENT: ret = wm_adsp_check_coeff_flags(dsp, &coeff_blk, WMFW_CTL_FLAG_SYS | WMFW_CTL_FLAG_VOLATILE | WMFW_CTL_FLAG_WRITEABLE | WMFW_CTL_FLAG_READABLE, 0); if (ret) return -EINVAL; break; case WMFW_CTL_TYPE_HOST_BUFFER: ret = wm_adsp_check_coeff_flags(dsp, &coeff_blk, WMFW_CTL_FLAG_SYS | WMFW_CTL_FLAG_VOLATILE | WMFW_CTL_FLAG_READABLE, 0); if (ret) return -EINVAL; break; default: adsp_err(dsp, "Unknown control type: %d\n", coeff_blk.ctl_type); return -EINVAL; } alg_region.type = coeff_blk.mem_type; alg_region.alg = alg_blk.id; ret = wm_adsp_create_control(dsp, &alg_region, coeff_blk.offset, coeff_blk.len, coeff_blk.name, coeff_blk.name_len, coeff_blk.flags, coeff_blk.ctl_type); if (ret < 0) adsp_err(dsp, "Failed to create control: %.*s, %d\n", coeff_blk.name_len, coeff_blk.name, ret); } return 0; } static unsigned int wm_adsp1_parse_sizes(struct wm_adsp *dsp, const char * const file, unsigned int pos, const struct firmware *firmware) { const struct wmfw_adsp1_sizes *adsp1_sizes; adsp1_sizes = (void *)&firmware->data[pos]; adsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file, le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm), le32_to_cpu(adsp1_sizes->zm)); return pos + sizeof(*adsp1_sizes); } static unsigned int wm_adsp2_parse_sizes(struct wm_adsp *dsp, const char * const file, unsigned int pos, const struct firmware *firmware) { const struct wmfw_adsp2_sizes *adsp2_sizes; adsp2_sizes = (void *)&firmware->data[pos]; adsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file, le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym), le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm)); return pos + sizeof(*adsp2_sizes); } static bool wm_adsp_validate_version(struct wm_adsp *dsp, unsigned int version) { switch (version) { case 0: adsp_warn(dsp, "Deprecated file format %d\n", version); return true; case 1: case 2: return true; default: return false; } } static bool wm_halo_validate_version(struct wm_adsp *dsp, unsigned int version) { switch (version) { case 3: return true; default: return false; } } static int wm_adsp_load(struct wm_adsp *dsp) { LIST_HEAD(buf_list); const struct firmware *firmware; struct regmap *regmap = dsp->regmap; unsigned int pos = 0; const struct wmfw_header *header; const struct wmfw_adsp1_sizes *adsp1_sizes; const struct wmfw_footer *footer; const struct wmfw_region *region; const struct wm_adsp_region *mem; const char *region_name; char *file, *text = NULL; struct wm_adsp_buf *buf; unsigned int reg; int regions = 0; int ret, offset, type; file = kzalloc(PAGE_SIZE, GFP_KERNEL); if (file == NULL) return -ENOMEM; snprintf(file, PAGE_SIZE, "%s-%s-%s.wmfw", dsp->part, dsp->fwf_name, wm_adsp_fw[dsp->fw].file); file[PAGE_SIZE - 1] = '\0'; ret = request_firmware(&firmware, file, dsp->dev); if (ret != 0) { adsp_err(dsp, "Failed to request '%s'\n", file); goto out; } ret = -EINVAL; pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer); if (pos >= firmware->size) { adsp_err(dsp, "%s: file too short, %zu bytes\n", file, firmware->size); goto out_fw; } header = (void *)&firmware->data[0]; if (memcmp(&header->magic[0], "WMFW", 4) != 0) { adsp_err(dsp, "%s: invalid magic\n", file); goto out_fw; } if (!dsp->ops->validate_version(dsp, header->ver)) { adsp_err(dsp, "%s: unknown file format %d\n", file, header->ver); goto out_fw; } adsp_info(dsp, "Firmware version: %d\n", header->ver); dsp->fw_ver = header->ver; if (header->core != dsp->type) { adsp_err(dsp, "%s: invalid core %d != %d\n", file, header->core, dsp->type); goto out_fw; } pos = sizeof(*header); pos = dsp->ops->parse_sizes(dsp, file, pos, firmware); footer = (void *)&firmware->data[pos]; pos += sizeof(*footer); if (le32_to_cpu(header->len) != pos) { adsp_err(dsp, "%s: unexpected header length %d\n", file, le32_to_cpu(header->len)); goto out_fw; } adsp_dbg(dsp, "%s: timestamp %llu\n", file, le64_to_cpu(footer->timestamp)); while (pos < firmware->size && sizeof(*region) < firmware->size - pos) { region = (void *)&(firmware->data[pos]); region_name = "Unknown"; reg = 0; text = NULL; offset = le32_to_cpu(region->offset) & 0xffffff; type = be32_to_cpu(region->type) & 0xff; switch (type) { case WMFW_NAME_TEXT: region_name = "Firmware name"; text = kzalloc(le32_to_cpu(region->len) + 1, GFP_KERNEL); break; case WMFW_ALGORITHM_DATA: region_name = "Algorithm"; ret = wm_adsp_parse_coeff(dsp, region); if (ret != 0) goto out_fw; break; case WMFW_INFO_TEXT: region_name = "Information"; text = kzalloc(le32_to_cpu(region->len) + 1, GFP_KERNEL); break; case WMFW_ABSOLUTE: region_name = "Absolute"; reg = offset; break; case WMFW_ADSP1_PM: case WMFW_ADSP1_DM: case WMFW_ADSP2_XM: case WMFW_ADSP2_YM: case WMFW_ADSP1_ZM: case WMFW_HALO_PM_PACKED: case WMFW_HALO_XM_PACKED: case WMFW_HALO_YM_PACKED: mem = wm_adsp_find_region(dsp, type); if (!mem) { adsp_err(dsp, "No region of type: %x\n", type); goto out_fw; } region_name = wm_adsp_mem_region_name(type); reg = dsp->ops->region_to_reg(mem, offset); break; default: adsp_warn(dsp, "%s.%d: Unknown region type %x at %d(%x)\n", file, regions, type, pos, pos); break; } adsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file, regions, le32_to_cpu(region->len), offset, region_name); if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) { adsp_err(dsp, "%s.%d: %s region len %d bytes exceeds file length %zu\n", file, regions, region_name, le32_to_cpu(region->len), firmware->size); ret = -EINVAL; goto out_fw; } if (text) { memcpy(text, region->data, le32_to_cpu(region->len)); adsp_info(dsp, "%s: %s\n", file, text); kfree(text); text = NULL; } if (reg) { buf = wm_adsp_buf_alloc(region->data, le32_to_cpu(region->len), &buf_list); if (!buf) { adsp_err(dsp, "Out of memory\n"); ret = -ENOMEM; goto out_fw; } ret = regmap_raw_write_async(regmap, reg, buf->buf, le32_to_cpu(region->len)); if (ret != 0) { adsp_err(dsp, "%s.%d: Failed to write %d bytes at %d in %s: %d\n", file, regions, le32_to_cpu(region->len), offset, region_name, ret); goto out_fw; } } pos += le32_to_cpu(region->len) + sizeof(*region); regions++; } ret = regmap_async_complete(regmap); if (ret != 0) { adsp_err(dsp, "Failed to complete async write: %d\n", ret); goto out_fw; } if (pos > firmware->size) adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n", file, regions, pos - firmware->size); wm_adsp_debugfs_save_wmfwname(dsp, file); out_fw: regmap_async_complete(regmap); wm_adsp_buf_free(&buf_list); release_firmware(firmware); kfree(text); out: kfree(file); return ret; } /* * Find wm_coeff_ctl with input name as its subname * If not found, return NULL */ static struct wm_coeff_ctl *wm_adsp_get_ctl(struct wm_adsp *dsp, const char *name, int type, unsigned int alg) { struct wm_coeff_ctl *pos, *rslt = NULL; list_for_each_entry(pos, &dsp->ctl_list, list) { if (!pos->subname) continue; if (strncmp(pos->subname, name, pos->subname_len) == 0 && pos->alg_region.alg == alg && pos->alg_region.type == type) { rslt = pos; break; } } return rslt; } int wm_adsp_write_ctl(struct wm_adsp *dsp, const char *name, int type, unsigned int alg, void *buf, size_t len) { struct wm_coeff_ctl *ctl; struct snd_kcontrol *kcontrol; int ret; ctl = wm_adsp_get_ctl(dsp, name, type, alg); if (!ctl) return -EINVAL; if (len > ctl->len) return -EINVAL; ret = wm_coeff_write_ctrl(ctl, buf, len); kcontrol = snd_soc_card_get_kcontrol(dsp->component->card, ctl->name); snd_ctl_notify(dsp->component->card->snd_card, SNDRV_CTL_EVENT_MASK_VALUE, &kcontrol->id); return ret; } EXPORT_SYMBOL_GPL(wm_adsp_write_ctl); int wm_adsp_read_ctl(struct wm_adsp *dsp, const char *name, int type, unsigned int alg, void *buf, size_t len) { struct wm_coeff_ctl *ctl; ctl = wm_adsp_get_ctl(dsp, name, type, alg); if (!ctl) return -EINVAL; if (len > ctl->len) return -EINVAL; return wm_coeff_read_ctrl(ctl, buf, len); } EXPORT_SYMBOL_GPL(wm_adsp_read_ctl); static void wm_adsp_ctl_fixup_base(struct wm_adsp *dsp, const struct wm_adsp_alg_region *alg_region) { struct wm_coeff_ctl *ctl; list_for_each_entry(ctl, &dsp->ctl_list, list) { if (ctl->fw_name == wm_adsp_fw_text[dsp->fw] && alg_region->alg == ctl->alg_region.alg && alg_region->type == ctl->alg_region.type) { ctl->alg_region.base = alg_region->base; } } } static void *wm_adsp_read_algs(struct wm_adsp *dsp, size_t n_algs, const struct wm_adsp_region *mem, unsigned int pos, unsigned int len) { void *alg; unsigned int reg; int ret; __be32 val; if (n_algs == 0) { adsp_err(dsp, "No algorithms\n"); return ERR_PTR(-EINVAL); } if (n_algs > 1024) { adsp_err(dsp, "Algorithm count %zx excessive\n", n_algs); return ERR_PTR(-EINVAL); } /* Read the terminator first to validate the length */ reg = dsp->ops->region_to_reg(mem, pos + len); ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val)); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm list end: %d\n", ret); return ERR_PTR(ret); } if (be32_to_cpu(val) != 0xbedead) adsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n", reg, be32_to_cpu(val)); /* Convert length from DSP words to bytes */ len *= sizeof(u32); alg = kzalloc(len, GFP_KERNEL | GFP_DMA); if (!alg) return ERR_PTR(-ENOMEM); reg = dsp->ops->region_to_reg(mem, pos); ret = regmap_raw_read(dsp->regmap, reg, alg, len); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm list: %d\n", ret); kfree(alg); return ERR_PTR(ret); } return alg; } static struct wm_adsp_alg_region * wm_adsp_find_alg_region(struct wm_adsp *dsp, int type, unsigned int id) { struct wm_adsp_alg_region *alg_region; list_for_each_entry(alg_region, &dsp->alg_regions, list) { if (id == alg_region->alg && type == alg_region->type) return alg_region; } return NULL; } static struct wm_adsp_alg_region *wm_adsp_create_region(struct wm_adsp *dsp, int type, __be32 id, __be32 base) { struct wm_adsp_alg_region *alg_region; alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL); if (!alg_region) return ERR_PTR(-ENOMEM); alg_region->type = type; alg_region->alg = be32_to_cpu(id); alg_region->base = be32_to_cpu(base); list_add_tail(&alg_region->list, &dsp->alg_regions); if (dsp->fw_ver > 0) wm_adsp_ctl_fixup_base(dsp, alg_region); return alg_region; } static void wm_adsp_free_alg_regions(struct wm_adsp *dsp) { struct wm_adsp_alg_region *alg_region; while (!list_empty(&dsp->alg_regions)) { alg_region = list_first_entry(&dsp->alg_regions, struct wm_adsp_alg_region, list); list_del(&alg_region->list); kfree(alg_region); } } static void wmfw_parse_id_header(struct wm_adsp *dsp, struct wmfw_id_hdr *fw, int nalgs) { dsp->fw_id = be32_to_cpu(fw->id); dsp->fw_id_version = be32_to_cpu(fw->ver); adsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n", dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16, (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff, nalgs); } static void wmfw_v3_parse_id_header(struct wm_adsp *dsp, struct wmfw_v3_id_hdr *fw, int nalgs) { dsp->fw_id = be32_to_cpu(fw->id); dsp->fw_id_version = be32_to_cpu(fw->ver); dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id); adsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n", dsp->fw_id, dsp->fw_vendor_id, (dsp->fw_id_version & 0xff0000) >> 16, (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff, nalgs); } static int wm_adsp_create_regions(struct wm_adsp *dsp, __be32 id, int nregions, int *type, __be32 *base) { struct wm_adsp_alg_region *alg_region; int i; for (i = 0; i < nregions; i++) { alg_region = wm_adsp_create_region(dsp, type[i], id, base[i]); if (IS_ERR(alg_region)) return PTR_ERR(alg_region); } return 0; } static int wm_adsp1_setup_algs(struct wm_adsp *dsp) { struct wmfw_adsp1_id_hdr adsp1_id; struct wmfw_adsp1_alg_hdr *adsp1_alg; struct wm_adsp_alg_region *alg_region; const struct wm_adsp_region *mem; unsigned int pos, len; size_t n_algs; int i, ret; mem = wm_adsp_find_region(dsp, WMFW_ADSP1_DM); if (WARN_ON(!mem)) return -EINVAL; ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id, sizeof(adsp1_id)); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm info: %d\n", ret); return ret; } n_algs = be32_to_cpu(adsp1_id.n_algs); wmfw_parse_id_header(dsp, &adsp1_id.fw, n_algs); alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_ZM, adsp1_id.fw.id, adsp1_id.zm); if (IS_ERR(alg_region)) return PTR_ERR(alg_region); alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_DM, adsp1_id.fw.id, adsp1_id.dm); if (IS_ERR(alg_region)) return PTR_ERR(alg_region); /* Calculate offset and length in DSP words */ pos = sizeof(adsp1_id) / sizeof(u32); len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32); adsp1_alg = wm_adsp_read_algs(dsp, n_algs, mem, pos, len); if (IS_ERR(adsp1_alg)) return PTR_ERR(adsp1_alg); for (i = 0; i < n_algs; i++) { adsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n", i, be32_to_cpu(adsp1_alg[i].alg.id), (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16, (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8, be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff, be32_to_cpu(adsp1_alg[i].dm), be32_to_cpu(adsp1_alg[i].zm)); alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_DM, adsp1_alg[i].alg.id, adsp1_alg[i].dm); if (IS_ERR(alg_region)) { ret = PTR_ERR(alg_region); goto out; } if (dsp->fw_ver == 0) { if (i + 1 < n_algs) { len = be32_to_cpu(adsp1_alg[i + 1].dm); len -= be32_to_cpu(adsp1_alg[i].dm); len *= 4; wm_adsp_create_control(dsp, alg_region, 0, len, NULL, 0, 0, SNDRV_CTL_ELEM_TYPE_BYTES); } else { adsp_warn(dsp, "Missing length info for region DM with ID %x\n", be32_to_cpu(adsp1_alg[i].alg.id)); } } alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_ZM, adsp1_alg[i].alg.id, adsp1_alg[i].zm); if (IS_ERR(alg_region)) { ret = PTR_ERR(alg_region); goto out; } if (dsp->fw_ver == 0) { if (i + 1 < n_algs) { len = be32_to_cpu(adsp1_alg[i + 1].zm); len -= be32_to_cpu(adsp1_alg[i].zm); len *= 4; wm_adsp_create_control(dsp, alg_region, 0, len, NULL, 0, 0, SNDRV_CTL_ELEM_TYPE_BYTES); } else { adsp_warn(dsp, "Missing length info for region ZM with ID %x\n", be32_to_cpu(adsp1_alg[i].alg.id)); } } } out: kfree(adsp1_alg); return ret; } static int wm_adsp2_setup_algs(struct wm_adsp *dsp) { struct wmfw_adsp2_id_hdr adsp2_id; struct wmfw_adsp2_alg_hdr *adsp2_alg; struct wm_adsp_alg_region *alg_region; const struct wm_adsp_region *mem; unsigned int pos, len; size_t n_algs; int i, ret; mem = wm_adsp_find_region(dsp, WMFW_ADSP2_XM); if (WARN_ON(!mem)) return -EINVAL; ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id, sizeof(adsp2_id)); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm info: %d\n", ret); return ret; } n_algs = be32_to_cpu(adsp2_id.n_algs); wmfw_parse_id_header(dsp, &adsp2_id.fw, n_algs); alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_XM, adsp2_id.fw.id, adsp2_id.xm); if (IS_ERR(alg_region)) return PTR_ERR(alg_region); alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_YM, adsp2_id.fw.id, adsp2_id.ym); if (IS_ERR(alg_region)) return PTR_ERR(alg_region); alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_ZM, adsp2_id.fw.id, adsp2_id.zm); if (IS_ERR(alg_region)) return PTR_ERR(alg_region); /* Calculate offset and length in DSP words */ pos = sizeof(adsp2_id) / sizeof(u32); len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32); adsp2_alg = wm_adsp_read_algs(dsp, n_algs, mem, pos, len); if (IS_ERR(adsp2_alg)) return PTR_ERR(adsp2_alg); for (i = 0; i < n_algs; i++) { adsp_info(dsp, "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n", i, be32_to_cpu(adsp2_alg[i].alg.id), (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16, (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8, be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff, be32_to_cpu(adsp2_alg[i].xm), be32_to_cpu(adsp2_alg[i].ym), be32_to_cpu(adsp2_alg[i].zm)); alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_XM, adsp2_alg[i].alg.id, adsp2_alg[i].xm); if (IS_ERR(alg_region)) { ret = PTR_ERR(alg_region); goto out; } if (dsp->fw_ver == 0) { if (i + 1 < n_algs) { len = be32_to_cpu(adsp2_alg[i + 1].xm); len -= be32_to_cpu(adsp2_alg[i].xm); len *= 4; wm_adsp_create_control(dsp, alg_region, 0, len, NULL, 0, 0, SNDRV_CTL_ELEM_TYPE_BYTES); } else { adsp_warn(dsp, "Missing length info for region XM with ID %x\n", be32_to_cpu(adsp2_alg[i].alg.id)); } } alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_YM, adsp2_alg[i].alg.id, adsp2_alg[i].ym); if (IS_ERR(alg_region)) { ret = PTR_ERR(alg_region); goto out; } if (dsp->fw_ver == 0) { if (i + 1 < n_algs) { len = be32_to_cpu(adsp2_alg[i + 1].ym); len -= be32_to_cpu(adsp2_alg[i].ym); len *= 4; wm_adsp_create_control(dsp, alg_region, 0, len, NULL, 0, 0, SNDRV_CTL_ELEM_TYPE_BYTES); } else { adsp_warn(dsp, "Missing length info for region YM with ID %x\n", be32_to_cpu(adsp2_alg[i].alg.id)); } } alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_ZM, adsp2_alg[i].alg.id, adsp2_alg[i].zm); if (IS_ERR(alg_region)) { ret = PTR_ERR(alg_region); goto out; } if (dsp->fw_ver == 0) { if (i + 1 < n_algs) { len = be32_to_cpu(adsp2_alg[i + 1].zm); len -= be32_to_cpu(adsp2_alg[i].zm); len *= 4; wm_adsp_create_control(dsp, alg_region, 0, len, NULL, 0, 0, SNDRV_CTL_ELEM_TYPE_BYTES); } else { adsp_warn(dsp, "Missing length info for region ZM with ID %x\n", be32_to_cpu(adsp2_alg[i].alg.id)); } } } out: kfree(adsp2_alg); return ret; } static int wm_halo_create_regions(struct wm_adsp *dsp, __be32 id, __be32 xm_base, __be32 ym_base) { int types[] = { WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED, WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED }; __be32 bases[] = { xm_base, xm_base, ym_base, ym_base }; return wm_adsp_create_regions(dsp, id, ARRAY_SIZE(types), types, bases); } static int wm_halo_setup_algs(struct wm_adsp *dsp) { struct wmfw_halo_id_hdr halo_id; struct wmfw_halo_alg_hdr *halo_alg; const struct wm_adsp_region *mem; unsigned int pos, len; size_t n_algs; int i, ret; mem = wm_adsp_find_region(dsp, WMFW_ADSP2_XM); if (WARN_ON(!mem)) return -EINVAL; ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id, sizeof(halo_id)); if (ret != 0) { adsp_err(dsp, "Failed to read algorithm info: %d\n", ret); return ret; } n_algs = be32_to_cpu(halo_id.n_algs); wmfw_v3_parse_id_header(dsp, &halo_id.fw, n_algs); ret = wm_halo_create_regions(dsp, halo_id.fw.id, halo_id.xm_base, halo_id.ym_base); if (ret) return ret; /* Calculate offset and length in DSP words */ pos = sizeof(halo_id) / sizeof(u32); len = (sizeof(*halo_alg) * n_algs) / sizeof(u32); halo_alg = wm_adsp_read_algs(dsp, n_algs, mem, pos, len); if (IS_ERR(halo_alg)) return PTR_ERR(halo_alg); for (i = 0; i < n_algs; i++) { adsp_info(dsp, "%d: ID %x v%d.%d.%d XM@%x YM@%x\n", i, be32_to_cpu(halo_alg[i].alg.id), (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16, (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8, be32_to_cpu(halo_alg[i].alg.ver) & 0xff, be32_to_cpu(halo_alg[i].xm_base), be32_to_cpu(halo_alg[i].ym_base)); ret = wm_halo_create_regions(dsp, halo_alg[i].alg.id, halo_alg[i].xm_base, halo_alg[i].ym_base); if (ret) goto out; } out: kfree(halo_alg); return ret; } static int wm_adsp_load_coeff(struct wm_adsp *dsp) { LIST_HEAD(buf_list); struct regmap *regmap = dsp->regmap; struct wmfw_coeff_hdr *hdr; struct wmfw_coeff_item *blk; const struct firmware *firmware; const struct wm_adsp_region *mem; struct wm_adsp_alg_region *alg_region; const char *region_name; int ret, pos, blocks, type, offset, reg; char *file; struct wm_adsp_buf *buf; file = kzalloc(PAGE_SIZE, GFP_KERNEL); if (file == NULL) return -ENOMEM; snprintf(file, PAGE_SIZE, "%s-%s-%s.bin", dsp->part, dsp->fwf_name, wm_adsp_fw[dsp->fw].file); file[PAGE_SIZE - 1] = '\0'; ret = request_firmware(&firmware, file, dsp->dev); if (ret != 0) { adsp_warn(dsp, "Failed to request '%s'\n", file); ret = 0; goto out; } ret = -EINVAL; if (sizeof(*hdr) >= firmware->size) { adsp_err(dsp, "%s: file too short, %zu bytes\n", file, firmware->size); goto out_fw; } hdr = (void *)&firmware->data[0]; if (memcmp(hdr->magic, "WMDR", 4) != 0) { adsp_err(dsp, "%s: invalid magic\n", file); goto out_fw; } switch (be32_to_cpu(hdr->rev) & 0xff) { case 1: break; default: adsp_err(dsp, "%s: Unsupported coefficient file format %d\n", file, be32_to_cpu(hdr->rev) & 0xff); ret = -EINVAL; goto out_fw; } adsp_dbg(dsp, "%s: v%d.%d.%d\n", file, (le32_to_cpu(hdr->ver) >> 16) & 0xff, (le32_to_cpu(hdr->ver) >> 8) & 0xff, le32_to_cpu(hdr->ver) & 0xff); pos = le32_to_cpu(hdr->len); blocks = 0; while (pos < firmware->size && sizeof(*blk) < firmware->size - pos) { blk = (void *)(&firmware->data[pos]); type = le16_to_cpu(blk->type); offset = le16_to_cpu(blk->offset); adsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n", file, blocks, le32_to_cpu(blk->id), (le32_to_cpu(blk->ver) >> 16) & 0xff, (le32_to_cpu(blk->ver) >> 8) & 0xff, le32_to_cpu(blk->ver) & 0xff); adsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n", file, blocks, le32_to_cpu(blk->len), offset, type); reg = 0; region_name = "Unknown"; switch (type) { case (WMFW_NAME_TEXT << 8): case (WMFW_INFO_TEXT << 8): break; case (WMFW_ABSOLUTE << 8): /* * Old files may use this for global * coefficients. */ if (le32_to_cpu(blk->id) == dsp->fw_id && offset == 0) { region_name = "global coefficients"; mem = wm_adsp_find_region(dsp, type); if (!mem) { adsp_err(dsp, "No ZM\n"); break; } reg = dsp->ops->region_to_reg(mem, 0); } else { region_name = "register"; reg = offset; } break; case WMFW_ADSP1_DM: case WMFW_ADSP1_ZM: case WMFW_ADSP2_XM: case WMFW_ADSP2_YM: case WMFW_HALO_XM_PACKED: case WMFW_HALO_YM_PACKED: case WMFW_HALO_PM_PACKED: adsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n", file, blocks, le32_to_cpu(blk->len), type, le32_to_cpu(blk->id)); mem = wm_adsp_find_region(dsp, type); if (!mem) { adsp_err(dsp, "No base for region %x\n", type); break; } alg_region = wm_adsp_find_alg_region(dsp, type, le32_to_cpu(blk->id)); if (alg_region) { reg = alg_region->base; reg = dsp->ops->region_to_reg(mem, reg); reg += offset; } else { adsp_err(dsp, "No %x for algorithm %x\n", type, le32_to_cpu(blk->id)); } break; default: adsp_err(dsp, "%s.%d: Unknown region type %x at %d\n", file, blocks, type, pos); break; } if (reg) { if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) { adsp_err(dsp, "%s.%d: %s region len %d bytes exceeds file length %zu\n", file, blocks, region_name, le32_to_cpu(blk->len), firmware->size); ret = -EINVAL; goto out_fw; } buf = wm_adsp_buf_alloc(blk->data, le32_to_cpu(blk->len), &buf_list); if (!buf) { adsp_err(dsp, "Out of memory\n"); ret = -ENOMEM; goto out_fw; } adsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n", file, blocks, le32_to_cpu(blk->len), reg); ret = regmap_raw_write_async(regmap, reg, buf->buf, le32_to_cpu(blk->len)); if (ret != 0) { adsp_err(dsp, "%s.%d: Failed to write to %x in %s: %d\n", file, blocks, reg, region_name, ret); } } pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03; blocks++; } ret = regmap_async_complete(regmap); if (ret != 0) adsp_err(dsp, "Failed to complete async write: %d\n", ret); if (pos > firmware->size) adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n", file, blocks, pos - firmware->size); wm_adsp_debugfs_save_binname(dsp, file); out_fw: regmap_async_complete(regmap); release_firmware(firmware); wm_adsp_buf_free(&buf_list); out: kfree(file); return ret; } static int wm_adsp_create_name(struct wm_adsp *dsp) { char *p; if (!dsp->name) { dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d", dsp->num); if (!dsp->name) return -ENOMEM; } if (!dsp->fwf_name) { p = devm_kstrdup(dsp->dev, dsp->name, GFP_KERNEL); if (!p) return -ENOMEM; dsp->fwf_name = p; for (; *p != 0; ++p) *p = tolower(*p); } return 0; } static int wm_adsp_common_init(struct wm_adsp *dsp) { int ret; ret = wm_adsp_create_name(dsp); if (ret) return ret; INIT_LIST_HEAD(&dsp->alg_regions); INIT_LIST_HEAD(&dsp->ctl_list); INIT_LIST_HEAD(&dsp->compr_list); INIT_LIST_HEAD(&dsp->buffer_list); mutex_init(&dsp->pwr_lock); return 0; } int wm_adsp1_init(struct wm_adsp *dsp) { dsp->ops = &wm_adsp1_ops; return wm_adsp_common_init(dsp); } EXPORT_SYMBOL_GPL(wm_adsp1_init); int wm_adsp1_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct wm_adsp *dsps = snd_soc_component_get_drvdata(component); struct wm_adsp *dsp = &dsps[w->shift]; struct wm_coeff_ctl *ctl; int ret; unsigned int val; dsp->component = component; mutex_lock(&dsp->pwr_lock); switch (event) { case SND_SOC_DAPM_POST_PMU: regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_SYS_ENA, ADSP1_SYS_ENA); /* * For simplicity set the DSP clock rate to be the * SYSCLK rate rather than making it configurable. */ if (dsp->sysclk_reg) { ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val); if (ret != 0) { adsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret); goto err_mutex; } val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift; ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_31, ADSP1_CLK_SEL_MASK, val); if (ret != 0) { adsp_err(dsp, "Failed to set clock rate: %d\n", ret); goto err_mutex; } } ret = wm_adsp_load(dsp); if (ret != 0) goto err_ena; ret = wm_adsp1_setup_algs(dsp); if (ret != 0) goto err_ena; ret = wm_adsp_load_coeff(dsp); if (ret != 0) goto err_ena; /* Initialize caches for enabled and unset controls */ ret = wm_coeff_init_control_caches(dsp); if (ret != 0) goto err_ena; /* Sync set controls */ ret = wm_coeff_sync_controls(dsp); if (ret != 0) goto err_ena; dsp->booted = true; /* Start the core running */ regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_CORE_ENA | ADSP1_START, ADSP1_CORE_ENA | ADSP1_START); dsp->running = true; break; case SND_SOC_DAPM_PRE_PMD: dsp->running = false; dsp->booted = false; /* Halt the core */ regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_CORE_ENA | ADSP1_START, 0); regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19, ADSP1_WDMA_BUFFER_LENGTH_MASK, 0); regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_SYS_ENA, 0); list_for_each_entry(ctl, &dsp->ctl_list, list) ctl->enabled = 0; wm_adsp_free_alg_regions(dsp); break; default: break; } mutex_unlock(&dsp->pwr_lock); return 0; err_ena: regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_SYS_ENA, 0); err_mutex: mutex_unlock(&dsp->pwr_lock); return ret; } EXPORT_SYMBOL_GPL(wm_adsp1_event); static int wm_adsp2v2_enable_core(struct wm_adsp *dsp) { unsigned int val; int ret, count; /* Wait for the RAM to start, should be near instantaneous */ for (count = 0; count < 10; ++count) { ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val); if (ret != 0) return ret; if (val & ADSP2_RAM_RDY) break; usleep_range(250, 500); } if (!(val & ADSP2_RAM_RDY)) { adsp_err(dsp, "Failed to start DSP RAM\n"); return -EBUSY; } adsp_dbg(dsp, "RAM ready after %d polls\n", count); return 0; } static int wm_adsp2_enable_core(struct wm_adsp *dsp) { int ret; ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_SYS_ENA, ADSP2_SYS_ENA); if (ret != 0) return ret; return wm_adsp2v2_enable_core(dsp); } static int wm_adsp2_lock(struct wm_adsp *dsp, unsigned int lock_regions) { struct regmap *regmap = dsp->regmap; unsigned int code0, code1, lock_reg; if (!(lock_regions & WM_ADSP2_REGION_ALL)) return 0; lock_regions &= WM_ADSP2_REGION_ALL; lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0; while (lock_regions) { code0 = code1 = 0; if (lock_regions & BIT(0)) { code0 = ADSP2_LOCK_CODE_0; code1 = ADSP2_LOCK_CODE_1; } if (lock_regions & BIT(1)) { code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT; code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT; } regmap_write(regmap, lock_reg, code0); regmap_write(regmap, lock_reg, code1); lock_regions >>= 2; lock_reg += 2; } return 0; } static int wm_adsp2_enable_memory(struct wm_adsp *dsp) { return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_MEM_ENA, ADSP2_MEM_ENA); } static void wm_adsp2_disable_memory(struct wm_adsp *dsp) { regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_MEM_ENA, 0); } static void wm_adsp2_disable_core(struct wm_adsp *dsp) { regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0); regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0); regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0); regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_SYS_ENA, 0); } static void wm_adsp2v2_disable_core(struct wm_adsp *dsp) { regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0); regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0); regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0); } static void wm_adsp_boot_work(struct work_struct *work) { struct wm_adsp *dsp = container_of(work, struct wm_adsp, boot_work); int ret; mutex_lock(&dsp->pwr_lock); if (dsp->ops->enable_memory) { ret = dsp->ops->enable_memory(dsp); if (ret != 0) goto err_mutex; } if (dsp->ops->enable_core) { ret = dsp->ops->enable_core(dsp); if (ret != 0) goto err_mem; } ret = wm_adsp_load(dsp); if (ret != 0) goto err_ena; ret = dsp->ops->setup_algs(dsp); if (ret != 0) goto err_ena; ret = wm_adsp_load_coeff(dsp); if (ret != 0) goto err_ena; /* Initialize caches for enabled and unset controls */ ret = wm_coeff_init_control_caches(dsp); if (ret != 0) goto err_ena; if (dsp->ops->disable_core) dsp->ops->disable_core(dsp); dsp->booted = true; mutex_unlock(&dsp->pwr_lock); return; err_ena: if (dsp->ops->disable_core) dsp->ops->disable_core(dsp); err_mem: if (dsp->ops->disable_memory) dsp->ops->disable_memory(dsp); err_mutex: mutex_unlock(&dsp->pwr_lock); } static int wm_halo_configure_mpu(struct wm_adsp *dsp, unsigned int lock_regions) { struct reg_sequence config[] = { { dsp->base + HALO_MPU_LOCK_CONFIG, 0x5555 }, { dsp->base + HALO_MPU_LOCK_CONFIG, 0xAAAA }, { dsp->base + HALO_MPU_XMEM_ACCESS_0, 0xFFFFFFFF }, { dsp->base + HALO_MPU_YMEM_ACCESS_0, 0xFFFFFFFF }, { dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions }, { dsp->base + HALO_MPU_XREG_ACCESS_0, lock_regions }, { dsp->base + HALO_MPU_YREG_ACCESS_0, lock_regions }, { dsp->base + HALO_MPU_XMEM_ACCESS_1, 0xFFFFFFFF }, { dsp->base + HALO_MPU_YMEM_ACCESS_1, 0xFFFFFFFF }, { dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions }, { dsp->base + HALO_MPU_XREG_ACCESS_1, lock_regions }, { dsp->base + HALO_MPU_YREG_ACCESS_1, lock_regions }, { dsp->base + HALO_MPU_XMEM_ACCESS_2, 0xFFFFFFFF }, { dsp->base + HALO_MPU_YMEM_ACCESS_2, 0xFFFFFFFF }, { dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions }, { dsp->base + HALO_MPU_XREG_ACCESS_2, lock_regions }, { dsp->base + HALO_MPU_YREG_ACCESS_2, lock_regions }, { dsp->base + HALO_MPU_XMEM_ACCESS_3, 0xFFFFFFFF }, { dsp->base + HALO_MPU_YMEM_ACCESS_3, 0xFFFFFFFF }, { dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions }, { dsp->base + HALO_MPU_XREG_ACCESS_3, lock_regions }, { dsp->base + HALO_MPU_YREG_ACCESS_3, lock_regions }, { dsp->base + HALO_MPU_LOCK_CONFIG, 0 }, }; return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config)); } int wm_adsp2_set_dspclk(struct snd_soc_dapm_widget *w, unsigned int freq) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct wm_adsp *dsps = snd_soc_component_get_drvdata(component); struct wm_adsp *dsp = &dsps[w->shift]; int ret; ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING, ADSP2_CLK_SEL_MASK, freq << ADSP2_CLK_SEL_SHIFT); if (ret) adsp_err(dsp, "Failed to set clock rate: %d\n", ret); return ret; } EXPORT_SYMBOL_GPL(wm_adsp2_set_dspclk); int wm_adsp2_preloader_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct wm_adsp *dsps = snd_soc_component_get_drvdata(component); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; struct wm_adsp *dsp = &dsps[mc->shift - 1]; ucontrol->value.integer.value[0] = dsp->preloaded; return 0; } EXPORT_SYMBOL_GPL(wm_adsp2_preloader_get); int wm_adsp2_preloader_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct wm_adsp *dsps = snd_soc_component_get_drvdata(component); struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; struct wm_adsp *dsp = &dsps[mc->shift - 1]; char preload[32]; snprintf(preload, ARRAY_SIZE(preload), "%s Preload", dsp->name); dsp->preloaded = ucontrol->value.integer.value[0]; if (ucontrol->value.integer.value[0]) snd_soc_component_force_enable_pin(component, preload); else snd_soc_component_disable_pin(component, preload); snd_soc_dapm_sync(dapm); flush_work(&dsp->boot_work); return 0; } EXPORT_SYMBOL_GPL(wm_adsp2_preloader_put); static void wm_adsp_stop_watchdog(struct wm_adsp *dsp) { regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG, ADSP2_WDT_ENA_MASK, 0); } static void wm_halo_stop_watchdog(struct wm_adsp *dsp) { regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL, HALO_WDT_EN_MASK, 0); } int wm_adsp_early_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct wm_adsp *dsps = snd_soc_component_get_drvdata(component); struct wm_adsp *dsp = &dsps[w->shift]; struct wm_coeff_ctl *ctl; switch (event) { case SND_SOC_DAPM_PRE_PMU: queue_work(system_unbound_wq, &dsp->boot_work); break; case SND_SOC_DAPM_PRE_PMD: mutex_lock(&dsp->pwr_lock); wm_adsp_debugfs_clear(dsp); dsp->fw_id = 0; dsp->fw_id_version = 0; dsp->booted = false; if (dsp->ops->disable_memory) dsp->ops->disable_memory(dsp); list_for_each_entry(ctl, &dsp->ctl_list, list) ctl->enabled = 0; wm_adsp_free_alg_regions(dsp); mutex_unlock(&dsp->pwr_lock); adsp_dbg(dsp, "Shutdown complete\n"); break; default: break; } return 0; } EXPORT_SYMBOL_GPL(wm_adsp_early_event); static int wm_adsp2_start_core(struct wm_adsp *dsp) { return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_CORE_ENA | ADSP2_START, ADSP2_CORE_ENA | ADSP2_START); } static void wm_adsp2_stop_core(struct wm_adsp *dsp) { regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_CORE_ENA | ADSP2_START, 0); } int wm_adsp_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct wm_adsp *dsps = snd_soc_component_get_drvdata(component); struct wm_adsp *dsp = &dsps[w->shift]; int ret; switch (event) { case SND_SOC_DAPM_POST_PMU: flush_work(&dsp->boot_work); mutex_lock(&dsp->pwr_lock); if (!dsp->booted) { ret = -EIO; goto err; } if (dsp->ops->enable_core) { ret = dsp->ops->enable_core(dsp); if (ret != 0) goto err; } /* Sync set controls */ ret = wm_coeff_sync_controls(dsp); if (ret != 0) goto err; if (dsp->ops->lock_memory) { ret = dsp->ops->lock_memory(dsp, dsp->lock_regions); if (ret != 0) { adsp_err(dsp, "Error configuring MPU: %d\n", ret); goto err; } } if (dsp->ops->start_core) { ret = dsp->ops->start_core(dsp); if (ret != 0) goto err; } if (wm_adsp_fw[dsp->fw].num_caps != 0) { ret = wm_adsp_buffer_init(dsp); if (ret < 0) goto err; } dsp->running = true; mutex_unlock(&dsp->pwr_lock); break; case SND_SOC_DAPM_PRE_PMD: /* Tell the firmware to cleanup */ wm_adsp_signal_event_controls(dsp, WM_ADSP_FW_EVENT_SHUTDOWN); if (dsp->ops->stop_watchdog) dsp->ops->stop_watchdog(dsp); /* Log firmware state, it can be useful for analysis */ if (dsp->ops->show_fw_status) dsp->ops->show_fw_status(dsp); mutex_lock(&dsp->pwr_lock); dsp->running = false; if (dsp->ops->stop_core) dsp->ops->stop_core(dsp); if (dsp->ops->disable_core) dsp->ops->disable_core(dsp); if (wm_adsp_fw[dsp->fw].num_caps != 0) wm_adsp_buffer_free(dsp); dsp->fatal_error = false; mutex_unlock(&dsp->pwr_lock); adsp_dbg(dsp, "Execution stopped\n"); break; default: break; } return 0; err: if (dsp->ops->stop_core) dsp->ops->stop_core(dsp); if (dsp->ops->disable_core) dsp->ops->disable_core(dsp); mutex_unlock(&dsp->pwr_lock); return ret; } EXPORT_SYMBOL_GPL(wm_adsp_event); static int wm_halo_start_core(struct wm_adsp *dsp) { return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL, HALO_CORE_EN, HALO_CORE_EN); } static void wm_halo_stop_core(struct wm_adsp *dsp) { regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL, HALO_CORE_EN, 0); /* reset halo core with CORE_SOFT_RESET */ regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET, HALO_CORE_SOFT_RESET_MASK, 1); } int wm_adsp2_component_probe(struct wm_adsp *dsp, struct snd_soc_component *component) { char preload[32]; snprintf(preload, ARRAY_SIZE(preload), "%s Preload", dsp->name); snd_soc_component_disable_pin(component, preload); wm_adsp2_init_debugfs(dsp, component); dsp->component = component; return 0; } EXPORT_SYMBOL_GPL(wm_adsp2_component_probe); int wm_adsp2_component_remove(struct wm_adsp *dsp, struct snd_soc_component *component) { wm_adsp2_cleanup_debugfs(dsp); return 0; } EXPORT_SYMBOL_GPL(wm_adsp2_component_remove); int wm_adsp2_init(struct wm_adsp *dsp) { int ret; ret = wm_adsp_common_init(dsp); if (ret) return ret; switch (dsp->rev) { case 0: /* * Disable the DSP memory by default when in reset for a small * power saving. */ ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_MEM_ENA, 0); if (ret) { adsp_err(dsp, "Failed to clear memory retention: %d\n", ret); return ret; } dsp->ops = &wm_adsp2_ops[0]; break; case 1: dsp->ops = &wm_adsp2_ops[1]; break; default: dsp->ops = &wm_adsp2_ops[2]; break; } INIT_WORK(&dsp->boot_work, wm_adsp_boot_work); return 0; } EXPORT_SYMBOL_GPL(wm_adsp2_init); int wm_halo_init(struct wm_adsp *dsp) { int ret; ret = wm_adsp_common_init(dsp); if (ret) return ret; dsp->ops = &wm_halo_ops; INIT_WORK(&dsp->boot_work, wm_adsp_boot_work); return 0; } EXPORT_SYMBOL_GPL(wm_halo_init); void wm_adsp2_remove(struct wm_adsp *dsp) { struct wm_coeff_ctl *ctl; while (!list_empty(&dsp->ctl_list)) { ctl = list_first_entry(&dsp->ctl_list, struct wm_coeff_ctl, list); list_del(&ctl->list); wm_adsp_free_ctl_blk(ctl); } } EXPORT_SYMBOL_GPL(wm_adsp2_remove); static inline int wm_adsp_compr_attached(struct wm_adsp_compr *compr) { return compr->buf != NULL; } static int wm_adsp_compr_attach(struct wm_adsp_compr *compr) { struct wm_adsp_compr_buf *buf = NULL, *tmp; if (compr->dsp->fatal_error) return -EINVAL; list_for_each_entry(tmp, &compr->dsp->buffer_list, list) { if (!tmp->name || !strcmp(compr->name, tmp->name)) { buf = tmp; break; } } if (!buf) return -EINVAL; compr->buf = buf; buf->compr = compr; return 0; } static void wm_adsp_compr_detach(struct wm_adsp_compr *compr) { if (!compr) return; /* Wake the poll so it can see buffer is no longer attached */ if (compr->stream) snd_compr_fragment_elapsed(compr->stream); if (wm_adsp_compr_attached(compr)) { compr->buf->compr = NULL; compr->buf = NULL; } } int wm_adsp_compr_open(struct wm_adsp *dsp, struct snd_compr_stream *stream) { struct wm_adsp_compr *compr, *tmp; struct snd_soc_pcm_runtime *rtd = stream->private_data; int ret = 0; mutex_lock(&dsp->pwr_lock); if (wm_adsp_fw[dsp->fw].num_caps == 0) { adsp_err(dsp, "%s: Firmware does not support compressed API\n", asoc_rtd_to_codec(rtd, 0)->name); ret = -ENXIO; goto out; } if (wm_adsp_fw[dsp->fw].compr_direction != stream->direction) { adsp_err(dsp, "%s: Firmware does not support stream direction\n", asoc_rtd_to_codec(rtd, 0)->name); ret = -EINVAL; goto out; } list_for_each_entry(tmp, &dsp->compr_list, list) { if (!strcmp(tmp->name, asoc_rtd_to_codec(rtd, 0)->name)) { adsp_err(dsp, "%s: Only a single stream supported per dai\n", asoc_rtd_to_codec(rtd, 0)->name); ret = -EBUSY; goto out; } } compr = kzalloc(sizeof(*compr), GFP_KERNEL); if (!compr) { ret = -ENOMEM; goto out; } compr->dsp = dsp; compr->stream = stream; compr->name = asoc_rtd_to_codec(rtd, 0)->name; list_add_tail(&compr->list, &dsp->compr_list); stream->runtime->private_data = compr; out: mutex_unlock(&dsp->pwr_lock); return ret; } EXPORT_SYMBOL_GPL(wm_adsp_compr_open); int wm_adsp_compr_free(struct snd_soc_component *component, struct snd_compr_stream *stream) { struct wm_adsp_compr *compr = stream->runtime->private_data; struct wm_adsp *dsp = compr->dsp; mutex_lock(&dsp->pwr_lock); wm_adsp_compr_detach(compr); list_del(&compr->list); kfree(compr->raw_buf); kfree(compr); mutex_unlock(&dsp->pwr_lock); return 0; } EXPORT_SYMBOL_GPL(wm_adsp_compr_free); static int wm_adsp_compr_check_params(struct snd_compr_stream *stream, struct snd_compr_params *params) { struct wm_adsp_compr *compr = stream->runtime->private_data; struct wm_adsp *dsp = compr->dsp; const struct wm_adsp_fw_caps *caps; const struct snd_codec_desc *desc; int i, j; if (params->buffer.fragment_size < WM_ADSP_MIN_FRAGMENT_SIZE || params->buffer.fragment_size > WM_ADSP_MAX_FRAGMENT_SIZE || params->buffer.fragments < WM_ADSP_MIN_FRAGMENTS || params->buffer.fragments > WM_ADSP_MAX_FRAGMENTS || params->buffer.fragment_size % WM_ADSP_DATA_WORD_SIZE) { compr_err(compr, "Invalid buffer fragsize=%d fragments=%d\n", params->buffer.fragment_size, params->buffer.fragments); return -EINVAL; } for (i = 0; i < wm_adsp_fw[dsp->fw].num_caps; i++) { caps = &wm_adsp_fw[dsp->fw].caps[i]; desc = &caps->desc; if (caps->id != params->codec.id) continue; if (stream->direction == SND_COMPRESS_PLAYBACK) { if (desc->max_ch < params->codec.ch_out) continue; } else { if (desc->max_ch < params->codec.ch_in) continue; } if (!(desc->formats & (1 << params->codec.format))) continue; for (j = 0; j < desc->num_sample_rates; ++j) if (desc->sample_rates[j] == params->codec.sample_rate) return 0; } compr_err(compr, "Invalid params id=%u ch=%u,%u rate=%u fmt=%u\n", params->codec.id, params->codec.ch_in, params->codec.ch_out, params->codec.sample_rate, params->codec.format); return -EINVAL; } static inline unsigned int wm_adsp_compr_frag_words(struct wm_adsp_compr *compr) { return compr->size.fragment_size / WM_ADSP_DATA_WORD_SIZE; } int wm_adsp_compr_set_params(struct snd_soc_component *component, struct snd_compr_stream *stream, struct snd_compr_params *params) { struct wm_adsp_compr *compr = stream->runtime->private_data; unsigned int size; int ret; ret = wm_adsp_compr_check_params(stream, params); if (ret) return ret; compr->size = params->buffer; compr_dbg(compr, "fragment_size=%d fragments=%d\n", compr->size.fragment_size, compr->size.fragments); size = wm_adsp_compr_frag_words(compr) * sizeof(*compr->raw_buf); compr->raw_buf = kmalloc(size, GFP_DMA | GFP_KERNEL); if (!compr->raw_buf) return -ENOMEM; compr->sample_rate = params->codec.sample_rate; return 0; } EXPORT_SYMBOL_GPL(wm_adsp_compr_set_params); int wm_adsp_compr_get_caps(struct snd_soc_component *component, struct snd_compr_stream *stream, struct snd_compr_caps *caps) { struct wm_adsp_compr *compr = stream->runtime->private_data; int fw = compr->dsp->fw; int i; if (wm_adsp_fw[fw].caps) { for (i = 0; i < wm_adsp_fw[fw].num_caps; i++) caps->codecs[i] = wm_adsp_fw[fw].caps[i].id; caps->num_codecs = i; caps->direction = wm_adsp_fw[fw].compr_direction; caps->min_fragment_size = WM_ADSP_MIN_FRAGMENT_SIZE; caps->max_fragment_size = WM_ADSP_MAX_FRAGMENT_SIZE; caps->min_fragments = WM_ADSP_MIN_FRAGMENTS; caps->max_fragments = WM_ADSP_MAX_FRAGMENTS; } return 0; } EXPORT_SYMBOL_GPL(wm_adsp_compr_get_caps); static int wm_adsp_read_data_block(struct wm_adsp *dsp, int mem_type, unsigned int mem_addr, unsigned int num_words, u32 *data) { struct wm_adsp_region const *mem = wm_adsp_find_region(dsp, mem_type); unsigned int i, reg; int ret; if (!mem) return -EINVAL; reg = dsp->ops->region_to_reg(mem, mem_addr); ret = regmap_raw_read(dsp->regmap, reg, data, sizeof(*data) * num_words); if (ret < 0) return ret; for (i = 0; i < num_words; ++i) data[i] = be32_to_cpu(data[i]) & 0x00ffffffu; return 0; } static inline int wm_adsp_read_data_word(struct wm_adsp *dsp, int mem_type, unsigned int mem_addr, u32 *data) { return wm_adsp_read_data_block(dsp, mem_type, mem_addr, 1, data); } static int wm_adsp_write_data_word(struct wm_adsp *dsp, int mem_type, unsigned int mem_addr, u32 data) { struct wm_adsp_region const *mem = wm_adsp_find_region(dsp, mem_type); unsigned int reg; if (!mem) return -EINVAL; reg = dsp->ops->region_to_reg(mem, mem_addr); data = cpu_to_be32(data & 0x00ffffffu); return regmap_raw_write(dsp->regmap, reg, &data, sizeof(data)); } static inline int wm_adsp_buffer_read(struct wm_adsp_compr_buf *buf, unsigned int field_offset, u32 *data) { return wm_adsp_read_data_word(buf->dsp, buf->host_buf_mem_type, buf->host_buf_ptr + field_offset, data); } static inline int wm_adsp_buffer_write(struct wm_adsp_compr_buf *buf, unsigned int field_offset, u32 data) { return wm_adsp_write_data_word(buf->dsp, buf->host_buf_mem_type, buf->host_buf_ptr + field_offset, data); } static void wm_adsp_remove_padding(u32 *buf, int nwords, int data_word_size) { u8 *pack_in = (u8 *)buf; u8 *pack_out = (u8 *)buf; int i, j; /* Remove the padding bytes from the data read from the DSP */ for (i = 0; i < nwords; i++) { for (j = 0; j < data_word_size; j++) *pack_out++ = *pack_in++; pack_in += sizeof(*buf) - data_word_size; } } static int wm_adsp_buffer_populate(struct wm_adsp_compr_buf *buf) { const struct wm_adsp_fw_caps *caps = wm_adsp_fw[buf->dsp->fw].caps; struct wm_adsp_buffer_region *region; u32 offset = 0; int i, ret; buf->regions = kcalloc(caps->num_regions, sizeof(*buf->regions), GFP_KERNEL); if (!buf->regions) return -ENOMEM; for (i = 0; i < caps->num_regions; ++i) { region = &buf->regions[i]; region->offset = offset; region->mem_type = caps->region_defs[i].mem_type; ret = wm_adsp_buffer_read(buf, caps->region_defs[i].base_offset, ®ion->base_addr); if (ret < 0) return ret; ret = wm_adsp_buffer_read(buf, caps->region_defs[i].size_offset, &offset); if (ret < 0) return ret; region->cumulative_size = offset; compr_dbg(buf, "region=%d type=%d base=%08x off=%08x size=%08x\n", i, region->mem_type, region->base_addr, region->offset, region->cumulative_size); } return 0; } static void wm_adsp_buffer_clear(struct wm_adsp_compr_buf *buf) { buf->irq_count = 0xFFFFFFFF; buf->read_index = -1; buf->avail = 0; } static struct wm_adsp_compr_buf *wm_adsp_buffer_alloc(struct wm_adsp *dsp) { struct wm_adsp_compr_buf *buf; buf = kzalloc(sizeof(*buf), GFP_KERNEL); if (!buf) return NULL; buf->dsp = dsp; wm_adsp_buffer_clear(buf); list_add_tail(&buf->list, &dsp->buffer_list); return buf; } static int wm_adsp_buffer_parse_legacy(struct wm_adsp *dsp) { struct wm_adsp_alg_region *alg_region; struct wm_adsp_compr_buf *buf; u32 xmalg, addr, magic; int i, ret; alg_region = wm_adsp_find_alg_region(dsp, WMFW_ADSP2_XM, dsp->fw_id); if (!alg_region) { adsp_err(dsp, "No algorithm region found\n"); return -EINVAL; } buf = wm_adsp_buffer_alloc(dsp); if (!buf) return -ENOMEM; xmalg = dsp->ops->sys_config_size / sizeof(__be32); addr = alg_region->base + xmalg + ALG_XM_FIELD(magic); ret = wm_adsp_read_data_word(dsp, WMFW_ADSP2_XM, addr, &magic); if (ret < 0) return ret; if (magic != WM_ADSP_ALG_XM_STRUCT_MAGIC) return -ENODEV; addr = alg_region->base + xmalg + ALG_XM_FIELD(host_buf_ptr); for (i = 0; i < 5; ++i) { ret = wm_adsp_read_data_word(dsp, WMFW_ADSP2_XM, addr, &buf->host_buf_ptr); if (ret < 0) return ret; if (buf->host_buf_ptr) break; usleep_range(1000, 2000); } if (!buf->host_buf_ptr) return -EIO; buf->host_buf_mem_type = WMFW_ADSP2_XM; ret = wm_adsp_buffer_populate(buf); if (ret < 0) return ret; compr_dbg(buf, "legacy host_buf_ptr=%x\n", buf->host_buf_ptr); return 0; } static int wm_adsp_buffer_parse_coeff(struct wm_coeff_ctl *ctl) { struct wm_adsp_host_buf_coeff_v1 coeff_v1; struct wm_adsp_compr_buf *buf; unsigned int val, reg; int ret, i; ret = wm_coeff_base_reg(ctl, ®); if (ret) return ret; for (i = 0; i < 5; ++i) { ret = regmap_raw_read(ctl->dsp->regmap, reg, &val, sizeof(val)); if (ret < 0) return ret; if (val) break; usleep_range(1000, 2000); } if (!val) { adsp_err(ctl->dsp, "Failed to acquire host buffer\n"); return -EIO; } buf = wm_adsp_buffer_alloc(ctl->dsp); if (!buf) return -ENOMEM; buf->host_buf_mem_type = ctl->alg_region.type; buf->host_buf_ptr = be32_to_cpu(val); ret = wm_adsp_buffer_populate(buf); if (ret < 0) return ret; /* * v0 host_buffer coefficients didn't have versioning, so if the * control is one word, assume version 0. */ if (ctl->len == 4) { compr_dbg(buf, "host_buf_ptr=%x\n", buf->host_buf_ptr); return 0; } ret = regmap_raw_read(ctl->dsp->regmap, reg, &coeff_v1, sizeof(coeff_v1)); if (ret < 0) return ret; coeff_v1.versions = be32_to_cpu(coeff_v1.versions); val = coeff_v1.versions & HOST_BUF_COEFF_COMPAT_VER_MASK; val >>= HOST_BUF_COEFF_COMPAT_VER_SHIFT; if (val > HOST_BUF_COEFF_SUPPORTED_COMPAT_VER) { adsp_err(ctl->dsp, "Host buffer coeff ver %u > supported version %u\n", val, HOST_BUF_COEFF_SUPPORTED_COMPAT_VER); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(coeff_v1.name); i++) coeff_v1.name[i] = be32_to_cpu(coeff_v1.name[i]); wm_adsp_remove_padding((u32 *)&coeff_v1.name, ARRAY_SIZE(coeff_v1.name), WM_ADSP_DATA_WORD_SIZE); buf->name = kasprintf(GFP_KERNEL, "%s-dsp-%s", ctl->dsp->part, (char *)&coeff_v1.name); compr_dbg(buf, "host_buf_ptr=%x coeff version %u\n", buf->host_buf_ptr, val); return val; } static int wm_adsp_buffer_init(struct wm_adsp *dsp) { struct wm_coeff_ctl *ctl; int ret; list_for_each_entry(ctl, &dsp->ctl_list, list) { if (ctl->type != WMFW_CTL_TYPE_HOST_BUFFER) continue; if (!ctl->enabled) continue; ret = wm_adsp_buffer_parse_coeff(ctl); if (ret < 0) { adsp_err(dsp, "Failed to parse coeff: %d\n", ret); goto error; } else if (ret == 0) { /* Only one buffer supported for version 0 */ return 0; } } if (list_empty(&dsp->buffer_list)) { /* Fall back to legacy support */ ret = wm_adsp_buffer_parse_legacy(dsp); if (ret) { adsp_err(dsp, "Failed to parse legacy: %d\n", ret); goto error; } } return 0; error: wm_adsp_buffer_free(dsp); return ret; } static int wm_adsp_buffer_free(struct wm_adsp *dsp) { struct wm_adsp_compr_buf *buf, *tmp; list_for_each_entry_safe(buf, tmp, &dsp->buffer_list, list) { wm_adsp_compr_detach(buf->compr); kfree(buf->name); kfree(buf->regions); list_del(&buf->list); kfree(buf); } return 0; } static int wm_adsp_buffer_get_error(struct wm_adsp_compr_buf *buf) { int ret; ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(error), &buf->error); if (ret < 0) { compr_err(buf, "Failed to check buffer error: %d\n", ret); return ret; } if (buf->error != 0) { compr_err(buf, "Buffer error occurred: %d\n", buf->error); return -EIO; } return 0; } int wm_adsp_compr_trigger(struct snd_soc_component *component, struct snd_compr_stream *stream, int cmd) { struct wm_adsp_compr *compr = stream->runtime->private_data; struct wm_adsp *dsp = compr->dsp; int ret = 0; compr_dbg(compr, "Trigger: %d\n", cmd); mutex_lock(&dsp->pwr_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: if (!wm_adsp_compr_attached(compr)) { ret = wm_adsp_compr_attach(compr); if (ret < 0) { compr_err(compr, "Failed to link buffer and stream: %d\n", ret); break; } } ret = wm_adsp_buffer_get_error(compr->buf); if (ret < 0) break; /* Trigger the IRQ at one fragment of data */ ret = wm_adsp_buffer_write(compr->buf, HOST_BUFFER_FIELD(high_water_mark), wm_adsp_compr_frag_words(compr)); if (ret < 0) { compr_err(compr, "Failed to set high water mark: %d\n", ret); break; } break; case SNDRV_PCM_TRIGGER_STOP: if (wm_adsp_compr_attached(compr)) wm_adsp_buffer_clear(compr->buf); break; default: ret = -EINVAL; break; } mutex_unlock(&dsp->pwr_lock); return ret; } EXPORT_SYMBOL_GPL(wm_adsp_compr_trigger); static inline int wm_adsp_buffer_size(struct wm_adsp_compr_buf *buf) { int last_region = wm_adsp_fw[buf->dsp->fw].caps->num_regions - 1; return buf->regions[last_region].cumulative_size; } static int wm_adsp_buffer_update_avail(struct wm_adsp_compr_buf *buf) { u32 next_read_index, next_write_index; int write_index, read_index, avail; int ret; /* Only sync read index if we haven't already read a valid index */ if (buf->read_index < 0) { ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(next_read_index), &next_read_index); if (ret < 0) return ret; read_index = sign_extend32(next_read_index, 23); if (read_index < 0) { compr_dbg(buf, "Avail check on unstarted stream\n"); return 0; } buf->read_index = read_index; } ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(next_write_index), &next_write_index); if (ret < 0) return ret; write_index = sign_extend32(next_write_index, 23); avail = write_index - buf->read_index; if (avail < 0) avail += wm_adsp_buffer_size(buf); compr_dbg(buf, "readindex=0x%x, writeindex=0x%x, avail=%d\n", buf->read_index, write_index, avail * WM_ADSP_DATA_WORD_SIZE); buf->avail = avail; return 0; } int wm_adsp_compr_handle_irq(struct wm_adsp *dsp) { struct wm_adsp_compr_buf *buf; struct wm_adsp_compr *compr; int ret = 0; mutex_lock(&dsp->pwr_lock); if (list_empty(&dsp->buffer_list)) { ret = -ENODEV; goto out; } adsp_dbg(dsp, "Handling buffer IRQ\n"); list_for_each_entry(buf, &dsp->buffer_list, list) { compr = buf->compr; ret = wm_adsp_buffer_get_error(buf); if (ret < 0) goto out_notify; /* Wake poll to report error */ ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(irq_count), &buf->irq_count); if (ret < 0) { compr_err(buf, "Failed to get irq_count: %d\n", ret); goto out; } ret = wm_adsp_buffer_update_avail(buf); if (ret < 0) { compr_err(buf, "Error reading avail: %d\n", ret); goto out; } if (wm_adsp_fw[dsp->fw].voice_trigger && buf->irq_count == 2) ret = WM_ADSP_COMPR_VOICE_TRIGGER; out_notify: if (compr && compr->stream) snd_compr_fragment_elapsed(compr->stream); } out: mutex_unlock(&dsp->pwr_lock); return ret; } EXPORT_SYMBOL_GPL(wm_adsp_compr_handle_irq); static int wm_adsp_buffer_reenable_irq(struct wm_adsp_compr_buf *buf) { if (buf->irq_count & 0x01) return 0; compr_dbg(buf, "Enable IRQ(0x%x) for next fragment\n", buf->irq_count); buf->irq_count |= 0x01; return wm_adsp_buffer_write(buf, HOST_BUFFER_FIELD(irq_ack), buf->irq_count); } int wm_adsp_compr_pointer(struct snd_soc_component *component, struct snd_compr_stream *stream, struct snd_compr_tstamp *tstamp) { struct wm_adsp_compr *compr = stream->runtime->private_data; struct wm_adsp *dsp = compr->dsp; struct wm_adsp_compr_buf *buf; int ret = 0; compr_dbg(compr, "Pointer request\n"); mutex_lock(&dsp->pwr_lock); buf = compr->buf; if (dsp->fatal_error || !buf || buf->error) { snd_compr_stop_error(stream, SNDRV_PCM_STATE_XRUN); ret = -EIO; goto out; } if (buf->avail < wm_adsp_compr_frag_words(compr)) { ret = wm_adsp_buffer_update_avail(buf); if (ret < 0) { compr_err(compr, "Error reading avail: %d\n", ret); goto out; } /* * If we really have less than 1 fragment available tell the * DSP to inform us once a whole fragment is available. */ if (buf->avail < wm_adsp_compr_frag_words(compr)) { ret = wm_adsp_buffer_get_error(buf); if (ret < 0) { if (buf->error) snd_compr_stop_error(stream, SNDRV_PCM_STATE_XRUN); goto out; } ret = wm_adsp_buffer_reenable_irq(buf); if (ret < 0) { compr_err(compr, "Failed to re-enable buffer IRQ: %d\n", ret); goto out; } } } tstamp->copied_total = compr->copied_total; tstamp->copied_total += buf->avail * WM_ADSP_DATA_WORD_SIZE; tstamp->sampling_rate = compr->sample_rate; out: mutex_unlock(&dsp->pwr_lock); return ret; } EXPORT_SYMBOL_GPL(wm_adsp_compr_pointer); static int wm_adsp_buffer_capture_block(struct wm_adsp_compr *compr, int target) { struct wm_adsp_compr_buf *buf = compr->buf; unsigned int adsp_addr; int mem_type, nwords, max_read; int i, ret; /* Calculate read parameters */ for (i = 0; i < wm_adsp_fw[buf->dsp->fw].caps->num_regions; ++i) if (buf->read_index < buf->regions[i].cumulative_size) break; if (i == wm_adsp_fw[buf->dsp->fw].caps->num_regions) return -EINVAL; mem_type = buf->regions[i].mem_type; adsp_addr = buf->regions[i].base_addr + (buf->read_index - buf->regions[i].offset); max_read = wm_adsp_compr_frag_words(compr); nwords = buf->regions[i].cumulative_size - buf->read_index; if (nwords > target) nwords = target; if (nwords > buf->avail) nwords = buf->avail; if (nwords > max_read) nwords = max_read; if (!nwords) return 0; /* Read data from DSP */ ret = wm_adsp_read_data_block(buf->dsp, mem_type, adsp_addr, nwords, compr->raw_buf); if (ret < 0) return ret; wm_adsp_remove_padding(compr->raw_buf, nwords, WM_ADSP_DATA_WORD_SIZE); /* update read index to account for words read */ buf->read_index += nwords; if (buf->read_index == wm_adsp_buffer_size(buf)) buf->read_index = 0; ret = wm_adsp_buffer_write(buf, HOST_BUFFER_FIELD(next_read_index), buf->read_index); if (ret < 0) return ret; /* update avail to account for words read */ buf->avail -= nwords; return nwords; } static int wm_adsp_compr_read(struct wm_adsp_compr *compr, char __user *buf, size_t count) { struct wm_adsp *dsp = compr->dsp; int ntotal = 0; int nwords, nbytes; compr_dbg(compr, "Requested read of %zu bytes\n", count); if (dsp->fatal_error || !compr->buf || compr->buf->error) { snd_compr_stop_error(compr->stream, SNDRV_PCM_STATE_XRUN); return -EIO; } count /= WM_ADSP_DATA_WORD_SIZE; do { nwords = wm_adsp_buffer_capture_block(compr, count); if (nwords < 0) { compr_err(compr, "Failed to capture block: %d\n", nwords); return nwords; } nbytes = nwords * WM_ADSP_DATA_WORD_SIZE; compr_dbg(compr, "Read %d bytes\n", nbytes); if (copy_to_user(buf + ntotal, compr->raw_buf, nbytes)) { compr_err(compr, "Failed to copy data to user: %d, %d\n", ntotal, nbytes); return -EFAULT; } count -= nwords; ntotal += nbytes; } while (nwords > 0 && count > 0); compr->copied_total += ntotal; return ntotal; } int wm_adsp_compr_copy(struct snd_soc_component *component, struct snd_compr_stream *stream, char __user *buf, size_t count) { struct wm_adsp_compr *compr = stream->runtime->private_data; struct wm_adsp *dsp = compr->dsp; int ret; mutex_lock(&dsp->pwr_lock); if (stream->direction == SND_COMPRESS_CAPTURE) ret = wm_adsp_compr_read(compr, buf, count); else ret = -ENOTSUPP; mutex_unlock(&dsp->pwr_lock); return ret; } EXPORT_SYMBOL_GPL(wm_adsp_compr_copy); static void wm_adsp_fatal_error(struct wm_adsp *dsp) { struct wm_adsp_compr *compr; dsp->fatal_error = true; list_for_each_entry(compr, &dsp->compr_list, list) { if (compr->stream) snd_compr_fragment_elapsed(compr->stream); } } irqreturn_t wm_adsp2_bus_error(int irq, void *data) { struct wm_adsp *dsp = (struct wm_adsp *)data; unsigned int val; struct regmap *regmap = dsp->regmap; int ret = 0; mutex_lock(&dsp->pwr_lock); ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val); if (ret) { adsp_err(dsp, "Failed to read Region Lock Ctrl register: %d\n", ret); goto error; } if (val & ADSP2_WDT_TIMEOUT_STS_MASK) { adsp_err(dsp, "watchdog timeout error\n"); dsp->ops->stop_watchdog(dsp); wm_adsp_fatal_error(dsp); } if (val & (ADSP2_SLAVE_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) { if (val & ADSP2_SLAVE_ERR_MASK) adsp_err(dsp, "bus error: slave error\n"); else adsp_err(dsp, "bus error: region lock error\n"); ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val); if (ret) { adsp_err(dsp, "Failed to read Bus Err Addr register: %d\n", ret); goto error; } adsp_err(dsp, "bus error address = 0x%x\n", val & ADSP2_BUS_ERR_ADDR_MASK); ret = regmap_read(regmap, dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR, &val); if (ret) { adsp_err(dsp, "Failed to read Pmem Xmem Err Addr register: %d\n", ret); goto error; } adsp_err(dsp, "xmem error address = 0x%x\n", val & ADSP2_XMEM_ERR_ADDR_MASK); adsp_err(dsp, "pmem error address = 0x%x\n", (val & ADSP2_PMEM_ERR_ADDR_MASK) >> ADSP2_PMEM_ERR_ADDR_SHIFT); } regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT); error: mutex_unlock(&dsp->pwr_lock); return IRQ_HANDLED; } EXPORT_SYMBOL_GPL(wm_adsp2_bus_error); irqreturn_t wm_halo_bus_error(int irq, void *data) { struct wm_adsp *dsp = (struct wm_adsp *)data; struct regmap *regmap = dsp->regmap; unsigned int fault[6]; struct reg_sequence clear[] = { { dsp->base + HALO_MPU_XM_VIO_STATUS, 0x0 }, { dsp->base + HALO_MPU_YM_VIO_STATUS, 0x0 }, { dsp->base + HALO_MPU_PM_VIO_STATUS, 0x0 }, }; int ret; mutex_lock(&dsp->pwr_lock); ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1, fault); if (ret) { adsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret); goto exit_unlock; } adsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n", *fault & HALO_AHBM_FLAGS_ERR_MASK, (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >> HALO_AHBM_CORE_ERR_ADDR_SHIFT); ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0, fault); if (ret) { adsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret); goto exit_unlock; } adsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault); ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR, fault, ARRAY_SIZE(fault)); if (ret) { adsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret); goto exit_unlock; } adsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]); adsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]); adsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]); ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear)); if (ret) adsp_warn(dsp, "Failed to clear MPU status: %d\n", ret); exit_unlock: mutex_unlock(&dsp->pwr_lock); return IRQ_HANDLED; } EXPORT_SYMBOL_GPL(wm_halo_bus_error); irqreturn_t wm_halo_wdt_expire(int irq, void *data) { struct wm_adsp *dsp = data; mutex_lock(&dsp->pwr_lock); adsp_warn(dsp, "WDT Expiry Fault\n"); dsp->ops->stop_watchdog(dsp); wm_adsp_fatal_error(dsp); mutex_unlock(&dsp->pwr_lock); return IRQ_HANDLED; } EXPORT_SYMBOL_GPL(wm_halo_wdt_expire); static struct wm_adsp_ops wm_adsp1_ops = { .validate_version = wm_adsp_validate_version, .parse_sizes = wm_adsp1_parse_sizes, .region_to_reg = wm_adsp_region_to_reg, }; static struct wm_adsp_ops wm_adsp2_ops[] = { { .sys_config_size = sizeof(struct wm_adsp_system_config_xm_hdr), .parse_sizes = wm_adsp2_parse_sizes, .validate_version = wm_adsp_validate_version, .setup_algs = wm_adsp2_setup_algs, .region_to_reg = wm_adsp_region_to_reg, .show_fw_status = wm_adsp2_show_fw_status, .enable_memory = wm_adsp2_enable_memory, .disable_memory = wm_adsp2_disable_memory, .enable_core = wm_adsp2_enable_core, .disable_core = wm_adsp2_disable_core, .start_core = wm_adsp2_start_core, .stop_core = wm_adsp2_stop_core, }, { .sys_config_size = sizeof(struct wm_adsp_system_config_xm_hdr), .parse_sizes = wm_adsp2_parse_sizes, .validate_version = wm_adsp_validate_version, .setup_algs = wm_adsp2_setup_algs, .region_to_reg = wm_adsp_region_to_reg, .show_fw_status = wm_adsp2v2_show_fw_status, .enable_memory = wm_adsp2_enable_memory, .disable_memory = wm_adsp2_disable_memory, .lock_memory = wm_adsp2_lock, .enable_core = wm_adsp2v2_enable_core, .disable_core = wm_adsp2v2_disable_core, .start_core = wm_adsp2_start_core, .stop_core = wm_adsp2_stop_core, }, { .sys_config_size = sizeof(struct wm_adsp_system_config_xm_hdr), .parse_sizes = wm_adsp2_parse_sizes, .validate_version = wm_adsp_validate_version, .setup_algs = wm_adsp2_setup_algs, .region_to_reg = wm_adsp_region_to_reg, .show_fw_status = wm_adsp2v2_show_fw_status, .stop_watchdog = wm_adsp_stop_watchdog, .enable_memory = wm_adsp2_enable_memory, .disable_memory = wm_adsp2_disable_memory, .lock_memory = wm_adsp2_lock, .enable_core = wm_adsp2v2_enable_core, .disable_core = wm_adsp2v2_disable_core, .start_core = wm_adsp2_start_core, .stop_core = wm_adsp2_stop_core, }, }; static struct wm_adsp_ops wm_halo_ops = { .sys_config_size = sizeof(struct wm_halo_system_config_xm_hdr), .parse_sizes = wm_adsp2_parse_sizes, .validate_version = wm_halo_validate_version, .setup_algs = wm_halo_setup_algs, .region_to_reg = wm_halo_region_to_reg, .show_fw_status = wm_halo_show_fw_status, .stop_watchdog = wm_halo_stop_watchdog, .lock_memory = wm_halo_configure_mpu, .start_core = wm_halo_start_core, .stop_core = wm_halo_stop_core, }; MODULE_LICENSE("GPL v2");