// SPDX-License-Identifier: GPL-2.0 // tscs42xx.c -- TSCS42xx ALSA SoC Audio driver // Copyright 2017 Tempo Semiconductor, Inc. // Author: Steven Eckhoff #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tscs42xx.h" #define COEFF_SIZE 3 #define BIQUAD_COEFF_COUNT 5 #define BIQUAD_SIZE (COEFF_SIZE * BIQUAD_COEFF_COUNT) #define COEFF_RAM_MAX_ADDR 0xcd #define COEFF_RAM_COEFF_COUNT (COEFF_RAM_MAX_ADDR + 1) #define COEFF_RAM_SIZE (COEFF_SIZE * COEFF_RAM_COEFF_COUNT) struct tscs42xx { int bclk_ratio; int samplerate; struct mutex audio_params_lock; u8 coeff_ram[COEFF_RAM_SIZE]; bool coeff_ram_synced; struct mutex coeff_ram_lock; struct mutex pll_lock; struct regmap *regmap; struct clk *sysclk; int sysclk_src_id; }; struct coeff_ram_ctl { unsigned int addr; struct soc_bytes_ext bytes_ext; }; static bool tscs42xx_volatile(struct device *dev, unsigned int reg) { switch (reg) { case R_DACCRWRL: case R_DACCRWRM: case R_DACCRWRH: case R_DACCRRDL: case R_DACCRRDM: case R_DACCRRDH: case R_DACCRSTAT: case R_DACCRADDR: case R_PLLCTL0: return true; default: return false; }; } static bool tscs42xx_precious(struct device *dev, unsigned int reg) { switch (reg) { case R_DACCRWRL: case R_DACCRWRM: case R_DACCRWRH: case R_DACCRRDL: case R_DACCRRDM: case R_DACCRRDH: return true; default: return false; }; } static const struct regmap_config tscs42xx_regmap = { .reg_bits = 8, .val_bits = 8, .volatile_reg = tscs42xx_volatile, .precious_reg = tscs42xx_precious, .max_register = R_DACMBCREL3H, .cache_type = REGCACHE_RBTREE, .can_multi_write = true, }; #define MAX_PLL_LOCK_20MS_WAITS 1 static bool plls_locked(struct snd_soc_component *component) { int ret; int count = MAX_PLL_LOCK_20MS_WAITS; do { ret = snd_soc_component_read(component, R_PLLCTL0); if (ret < 0) { dev_err(component->dev, "Failed to read PLL lock status (%d)\n", ret); return false; } else if (ret > 0) { return true; } msleep(20); } while (count--); return false; } static int sample_rate_to_pll_freq_out(int sample_rate) { switch (sample_rate) { case 11025: case 22050: case 44100: case 88200: return 112896000; case 8000: case 16000: case 32000: case 48000: case 96000: return 122880000; default: return -EINVAL; } } #define DACCRSTAT_MAX_TRYS 10 static int write_coeff_ram(struct snd_soc_component *component, u8 *coeff_ram, unsigned int addr, unsigned int coeff_cnt) { struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component); int cnt; int trys; int ret; for (cnt = 0; cnt < coeff_cnt; cnt++, addr++) { for (trys = 0; trys < DACCRSTAT_MAX_TRYS; trys++) { ret = snd_soc_component_read(component, R_DACCRSTAT); if (ret < 0) { dev_err(component->dev, "Failed to read stat (%d)\n", ret); return ret; } if (!ret) break; } if (trys == DACCRSTAT_MAX_TRYS) { ret = -EIO; dev_err(component->dev, "dac coefficient write error (%d)\n", ret); return ret; } ret = regmap_write(tscs42xx->regmap, R_DACCRADDR, addr); if (ret < 0) { dev_err(component->dev, "Failed to write dac ram address (%d)\n", ret); return ret; } ret = regmap_bulk_write(tscs42xx->regmap, R_DACCRWRL, &coeff_ram[addr * COEFF_SIZE], COEFF_SIZE); if (ret < 0) { dev_err(component->dev, "Failed to write dac ram (%d)\n", ret); return ret; } } return 0; } static int power_up_audio_plls(struct snd_soc_component *component) { struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component); int freq_out; int ret; unsigned int mask; unsigned int val; freq_out = sample_rate_to_pll_freq_out(tscs42xx->samplerate); switch (freq_out) { case 122880000: /* 48k */ mask = RM_PLLCTL1C_PDB_PLL1; val = RV_PLLCTL1C_PDB_PLL1_ENABLE; break; case 112896000: /* 44.1k */ mask = RM_PLLCTL1C_PDB_PLL2; val = RV_PLLCTL1C_PDB_PLL2_ENABLE; break; default: ret = -EINVAL; dev_err(component->dev, "Unrecognized PLL output freq (%d)\n", ret); return ret; } mutex_lock(&tscs42xx->pll_lock); ret = snd_soc_component_update_bits(component, R_PLLCTL1C, mask, val); if (ret < 0) { dev_err(component->dev, "Failed to turn PLL on (%d)\n", ret); goto exit; } if (!plls_locked(component)) { dev_err(component->dev, "Failed to lock plls\n"); ret = -ENOMSG; goto exit; } ret = 0; exit: mutex_unlock(&tscs42xx->pll_lock); return ret; } static int power_down_audio_plls(struct snd_soc_component *component) { struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component); int ret; mutex_lock(&tscs42xx->pll_lock); ret = snd_soc_component_update_bits(component, R_PLLCTL1C, RM_PLLCTL1C_PDB_PLL1, RV_PLLCTL1C_PDB_PLL1_DISABLE); if (ret < 0) { dev_err(component->dev, "Failed to turn PLL off (%d)\n", ret); goto exit; } ret = snd_soc_component_update_bits(component, R_PLLCTL1C, RM_PLLCTL1C_PDB_PLL2, RV_PLLCTL1C_PDB_PLL2_DISABLE); if (ret < 0) { dev_err(component->dev, "Failed to turn PLL off (%d)\n", ret); goto exit; } ret = 0; exit: mutex_unlock(&tscs42xx->pll_lock); return ret; } static int coeff_ram_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component); struct coeff_ram_ctl *ctl = (struct coeff_ram_ctl *)kcontrol->private_value; struct soc_bytes_ext *params = &ctl->bytes_ext; mutex_lock(&tscs42xx->coeff_ram_lock); memcpy(ucontrol->value.bytes.data, &tscs42xx->coeff_ram[ctl->addr * COEFF_SIZE], params->max); mutex_unlock(&tscs42xx->coeff_ram_lock); return 0; } static int coeff_ram_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component); struct coeff_ram_ctl *ctl = (struct coeff_ram_ctl *)kcontrol->private_value; struct soc_bytes_ext *params = &ctl->bytes_ext; unsigned int coeff_cnt = params->max / COEFF_SIZE; int ret; mutex_lock(&tscs42xx->coeff_ram_lock); tscs42xx->coeff_ram_synced = false; memcpy(&tscs42xx->coeff_ram[ctl->addr * COEFF_SIZE], ucontrol->value.bytes.data, params->max); mutex_lock(&tscs42xx->pll_lock); if (plls_locked(component)) { ret = write_coeff_ram(component, tscs42xx->coeff_ram, ctl->addr, coeff_cnt); if (ret < 0) { dev_err(component->dev, "Failed to flush coeff ram cache (%d)\n", ret); goto exit; } tscs42xx->coeff_ram_synced = true; } ret = 0; exit: mutex_unlock(&tscs42xx->pll_lock); mutex_unlock(&tscs42xx->coeff_ram_lock); return ret; } /* Input L Capture Route */ static char const * const input_select_text[] = { "Line 1", "Line 2", "Line 3", "D2S" }; static const struct soc_enum left_input_select_enum = SOC_ENUM_SINGLE(R_INSELL, FB_INSELL, ARRAY_SIZE(input_select_text), input_select_text); static const struct snd_kcontrol_new left_input_select = SOC_DAPM_ENUM("LEFT_INPUT_SELECT_ENUM", left_input_select_enum); /* Input R Capture Route */ static const struct soc_enum right_input_select_enum = SOC_ENUM_SINGLE(R_INSELR, FB_INSELR, ARRAY_SIZE(input_select_text), input_select_text); static const struct snd_kcontrol_new right_input_select = SOC_DAPM_ENUM("RIGHT_INPUT_SELECT_ENUM", right_input_select_enum); /* Input Channel Mapping */ static char const * const ch_map_select_text[] = { "Normal", "Left to Right", "Right to Left", "Swap" }; static const struct soc_enum ch_map_select_enum = SOC_ENUM_SINGLE(R_AIC2, FB_AIC2_ADCDSEL, ARRAY_SIZE(ch_map_select_text), ch_map_select_text); static int dapm_vref_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { msleep(20); return 0; } static int dapm_micb_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { msleep(20); return 0; } static int pll_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); int ret; if (SND_SOC_DAPM_EVENT_ON(event)) ret = power_up_audio_plls(component); else ret = power_down_audio_plls(component); return ret; } static int dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component); int ret; mutex_lock(&tscs42xx->coeff_ram_lock); if (!tscs42xx->coeff_ram_synced) { ret = write_coeff_ram(component, tscs42xx->coeff_ram, 0x00, COEFF_RAM_COEFF_COUNT); if (ret < 0) goto exit; tscs42xx->coeff_ram_synced = true; } ret = 0; exit: mutex_unlock(&tscs42xx->coeff_ram_lock); return ret; } static const struct snd_soc_dapm_widget tscs42xx_dapm_widgets[] = { /* Vref */ SND_SOC_DAPM_SUPPLY_S("Vref", 1, R_PWRM2, FB_PWRM2_VREF, 0, dapm_vref_event, SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD), /* PLL */ SND_SOC_DAPM_SUPPLY("PLL", SND_SOC_NOPM, 0, 0, pll_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* Headphone */ SND_SOC_DAPM_DAC_E("DAC L", "HiFi Playback", R_PWRM2, FB_PWRM2_HPL, 0, dac_event, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_DAC_E("DAC R", "HiFi Playback", R_PWRM2, FB_PWRM2_HPR, 0, dac_event, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_OUTPUT("Headphone L"), SND_SOC_DAPM_OUTPUT("Headphone R"), /* Speaker */ SND_SOC_DAPM_DAC_E("ClassD L", "HiFi Playback", R_PWRM2, FB_PWRM2_SPKL, 0, dac_event, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_DAC_E("ClassD R", "HiFi Playback", R_PWRM2, FB_PWRM2_SPKR, 0, dac_event, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_OUTPUT("Speaker L"), SND_SOC_DAPM_OUTPUT("Speaker R"), /* Capture */ SND_SOC_DAPM_PGA("Analog In PGA L", R_PWRM1, FB_PWRM1_PGAL, 0, NULL, 0), SND_SOC_DAPM_PGA("Analog In PGA R", R_PWRM1, FB_PWRM1_PGAR, 0, NULL, 0), SND_SOC_DAPM_PGA("Analog Boost L", R_PWRM1, FB_PWRM1_BSTL, 0, NULL, 0), SND_SOC_DAPM_PGA("Analog Boost R", R_PWRM1, FB_PWRM1_BSTR, 0, NULL, 0), SND_SOC_DAPM_PGA("ADC Mute", R_CNVRTR0, FB_CNVRTR0_HPOR, true, NULL, 0), SND_SOC_DAPM_ADC("ADC L", "HiFi Capture", R_PWRM1, FB_PWRM1_ADCL, 0), SND_SOC_DAPM_ADC("ADC R", "HiFi Capture", R_PWRM1, FB_PWRM1_ADCR, 0), /* Capture Input */ SND_SOC_DAPM_MUX("Input L Capture Route", R_PWRM2, FB_PWRM2_INSELL, 0, &left_input_select), SND_SOC_DAPM_MUX("Input R Capture Route", R_PWRM2, FB_PWRM2_INSELR, 0, &right_input_select), /* Digital Mic */ SND_SOC_DAPM_SUPPLY_S("Digital Mic Enable", 2, R_DMICCTL, FB_DMICCTL_DMICEN, 0, NULL, SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD), /* Analog Mic */ SND_SOC_DAPM_SUPPLY_S("Mic Bias", 2, R_PWRM1, FB_PWRM1_MICB, 0, dapm_micb_event, SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD), /* Line In */ SND_SOC_DAPM_INPUT("Line In 1 L"), SND_SOC_DAPM_INPUT("Line In 1 R"), SND_SOC_DAPM_INPUT("Line In 2 L"), SND_SOC_DAPM_INPUT("Line In 2 R"), SND_SOC_DAPM_INPUT("Line In 3 L"), SND_SOC_DAPM_INPUT("Line In 3 R"), }; static const struct snd_soc_dapm_route tscs42xx_intercon[] = { {"DAC L", NULL, "PLL"}, {"DAC R", NULL, "PLL"}, {"DAC L", NULL, "Vref"}, {"DAC R", NULL, "Vref"}, {"Headphone L", NULL, "DAC L"}, {"Headphone R", NULL, "DAC R"}, {"ClassD L", NULL, "PLL"}, {"ClassD R", NULL, "PLL"}, {"ClassD L", NULL, "Vref"}, {"ClassD R", NULL, "Vref"}, {"Speaker L", NULL, "ClassD L"}, {"Speaker R", NULL, "ClassD R"}, {"Input L Capture Route", NULL, "Vref"}, {"Input R Capture Route", NULL, "Vref"}, {"Mic Bias", NULL, "Vref"}, {"Input L Capture Route", "Line 1", "Line In 1 L"}, {"Input R Capture Route", "Line 1", "Line In 1 R"}, {"Input L Capture Route", "Line 2", "Line In 2 L"}, {"Input R Capture Route", "Line 2", "Line In 2 R"}, {"Input L Capture Route", "Line 3", "Line In 3 L"}, {"Input R Capture Route", "Line 3", "Line In 3 R"}, {"Analog In PGA L", NULL, "Input L Capture Route"}, {"Analog In PGA R", NULL, "Input R Capture Route"}, {"Analog Boost L", NULL, "Analog In PGA L"}, {"Analog Boost R", NULL, "Analog In PGA R"}, {"ADC Mute", NULL, "Analog Boost L"}, {"ADC Mute", NULL, "Analog Boost R"}, {"ADC L", NULL, "PLL"}, {"ADC R", NULL, "PLL"}, {"ADC L", NULL, "ADC Mute"}, {"ADC R", NULL, "ADC Mute"}, }; /************ * CONTROLS * ************/ static char const * const eq_band_enable_text[] = { "Prescale only", "Band1", "Band1:2", "Band1:3", "Band1:4", "Band1:5", "Band1:6", }; static char const * const level_detection_text[] = { "Average", "Peak", }; static char const * const level_detection_window_text[] = { "512 Samples", "64 Samples", }; static char const * const compressor_ratio_text[] = { "Reserved", "1.5:1", "2:1", "3:1", "4:1", "5:1", "6:1", "7:1", "8:1", "9:1", "10:1", "11:1", "12:1", "13:1", "14:1", "15:1", "16:1", "17:1", "18:1", "19:1", "20:1", }; static DECLARE_TLV_DB_SCALE(hpvol_scale, -8850, 75, 0); static DECLARE_TLV_DB_SCALE(spkvol_scale, -7725, 75, 0); static DECLARE_TLV_DB_SCALE(dacvol_scale, -9563, 38, 0); static DECLARE_TLV_DB_SCALE(adcvol_scale, -7125, 38, 0); static DECLARE_TLV_DB_SCALE(invol_scale, -1725, 75, 0); static DECLARE_TLV_DB_SCALE(mic_boost_scale, 0, 1000, 0); static DECLARE_TLV_DB_MINMAX(mugain_scale, 0, 4650); static DECLARE_TLV_DB_MINMAX(compth_scale, -9562, 0); static const struct soc_enum eq1_band_enable_enum = SOC_ENUM_SINGLE(R_CONFIG1, FB_CONFIG1_EQ1_BE, ARRAY_SIZE(eq_band_enable_text), eq_band_enable_text); static const struct soc_enum eq2_band_enable_enum = SOC_ENUM_SINGLE(R_CONFIG1, FB_CONFIG1_EQ2_BE, ARRAY_SIZE(eq_band_enable_text), eq_band_enable_text); static const struct soc_enum cle_level_detection_enum = SOC_ENUM_SINGLE(R_CLECTL, FB_CLECTL_LVL_MODE, ARRAY_SIZE(level_detection_text), level_detection_text); static const struct soc_enum cle_level_detection_window_enum = SOC_ENUM_SINGLE(R_CLECTL, FB_CLECTL_WINDOWSEL, ARRAY_SIZE(level_detection_window_text), level_detection_window_text); static const struct soc_enum mbc_level_detection_enums[] = { SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE1, ARRAY_SIZE(level_detection_text), level_detection_text), SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE2, ARRAY_SIZE(level_detection_text), level_detection_text), SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE3, ARRAY_SIZE(level_detection_text), level_detection_text), }; static const struct soc_enum mbc_level_detection_window_enums[] = { SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL1, ARRAY_SIZE(level_detection_window_text), level_detection_window_text), SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL2, ARRAY_SIZE(level_detection_window_text), level_detection_window_text), SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL3, ARRAY_SIZE(level_detection_window_text), level_detection_window_text), }; static const struct soc_enum compressor_ratio_enum = SOC_ENUM_SINGLE(R_CMPRAT, FB_CMPRAT, ARRAY_SIZE(compressor_ratio_text), compressor_ratio_text); static const struct soc_enum dac_mbc1_compressor_ratio_enum = SOC_ENUM_SINGLE(R_DACMBCRAT1, FB_DACMBCRAT1_RATIO, ARRAY_SIZE(compressor_ratio_text), compressor_ratio_text); static const struct soc_enum dac_mbc2_compressor_ratio_enum = SOC_ENUM_SINGLE(R_DACMBCRAT2, FB_DACMBCRAT2_RATIO, ARRAY_SIZE(compressor_ratio_text), compressor_ratio_text); static const struct soc_enum dac_mbc3_compressor_ratio_enum = SOC_ENUM_SINGLE(R_DACMBCRAT3, FB_DACMBCRAT3_RATIO, ARRAY_SIZE(compressor_ratio_text), compressor_ratio_text); static int bytes_info_ext(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *ucontrol) { struct coeff_ram_ctl *ctl = (struct coeff_ram_ctl *)kcontrol->private_value; struct soc_bytes_ext *params = &ctl->bytes_ext; ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES; ucontrol->count = params->max; return 0; } #define COEFF_RAM_CTL(xname, xcount, xaddr) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = bytes_info_ext, \ .get = coeff_ram_get, .put = coeff_ram_put, \ .private_value = (unsigned long)&(struct coeff_ram_ctl) { \ .addr = xaddr, \ .bytes_ext = {.max = xcount, }, \ } \ } static const struct snd_kcontrol_new tscs42xx_snd_controls[] = { /* Volumes */ SOC_DOUBLE_R_TLV("Headphone Volume", R_HPVOLL, R_HPVOLR, FB_HPVOLL, 0x7F, 0, hpvol_scale), SOC_DOUBLE_R_TLV("Speaker Volume", R_SPKVOLL, R_SPKVOLR, FB_SPKVOLL, 0x7F, 0, spkvol_scale), SOC_DOUBLE_R_TLV("Master Volume", R_DACVOLL, R_DACVOLR, FB_DACVOLL, 0xFF, 0, dacvol_scale), SOC_DOUBLE_R_TLV("PCM Volume", R_ADCVOLL, R_ADCVOLR, FB_ADCVOLL, 0xFF, 0, adcvol_scale), SOC_DOUBLE_R_TLV("Input Volume", R_INVOLL, R_INVOLR, FB_INVOLL, 0x3F, 0, invol_scale), /* INSEL */ SOC_DOUBLE_R_TLV("Mic Boost Volume", R_INSELL, R_INSELR, FB_INSELL_MICBSTL, FV_INSELL_MICBSTL_30DB, 0, mic_boost_scale), /* Input Channel Map */ SOC_ENUM("Input Channel Map", ch_map_select_enum), /* Mic Bias */ SOC_SINGLE("Mic Bias Boost Switch", 0x71, 0x07, 1, 0), /* Headphone Auto Switching */ SOC_SINGLE("Headphone Auto Switching Switch", R_CTL, FB_CTL_HPSWEN, 1, 0), SOC_SINGLE("Headphone Detect Polarity Toggle Switch", R_CTL, FB_CTL_HPSWPOL, 1, 0), /* Coefficient Ram */ COEFF_RAM_CTL("Cascade1L BiQuad1", BIQUAD_SIZE, 0x00), COEFF_RAM_CTL("Cascade1L BiQuad2", BIQUAD_SIZE, 0x05), COEFF_RAM_CTL("Cascade1L BiQuad3", BIQUAD_SIZE, 0x0a), COEFF_RAM_CTL("Cascade1L BiQuad4", BIQUAD_SIZE, 0x0f), COEFF_RAM_CTL("Cascade1L BiQuad5", BIQUAD_SIZE, 0x14), COEFF_RAM_CTL("Cascade1L BiQuad6", BIQUAD_SIZE, 0x19), COEFF_RAM_CTL("Cascade1R BiQuad1", BIQUAD_SIZE, 0x20), COEFF_RAM_CTL("Cascade1R BiQuad2", BIQUAD_SIZE, 0x25), COEFF_RAM_CTL("Cascade1R BiQuad3", BIQUAD_SIZE, 0x2a), COEFF_RAM_CTL("Cascade1R BiQuad4", BIQUAD_SIZE, 0x2f), COEFF_RAM_CTL("Cascade1R BiQuad5", BIQUAD_SIZE, 0x34), COEFF_RAM_CTL("Cascade1R BiQuad6", BIQUAD_SIZE, 0x39), COEFF_RAM_CTL("Cascade1L Prescale", COEFF_SIZE, 0x1f), COEFF_RAM_CTL("Cascade1R Prescale", COEFF_SIZE, 0x3f), COEFF_RAM_CTL("Cascade2L BiQuad1", BIQUAD_SIZE, 0x40), COEFF_RAM_CTL("Cascade2L BiQuad2", BIQUAD_SIZE, 0x45), COEFF_RAM_CTL("Cascade2L BiQuad3", BIQUAD_SIZE, 0x4a), COEFF_RAM_CTL("Cascade2L BiQuad4", BIQUAD_SIZE, 0x4f), COEFF_RAM_CTL("Cascade2L BiQuad5", BIQUAD_SIZE, 0x54), COEFF_RAM_CTL("Cascade2L BiQuad6", BIQUAD_SIZE, 0x59), COEFF_RAM_CTL("Cascade2R BiQuad1", BIQUAD_SIZE, 0x60), COEFF_RAM_CTL("Cascade2R BiQuad2", BIQUAD_SIZE, 0x65), COEFF_RAM_CTL("Cascade2R BiQuad3", BIQUAD_SIZE, 0x6a), COEFF_RAM_CTL("Cascade2R BiQuad4", BIQUAD_SIZE, 0x6f), COEFF_RAM_CTL("Cascade2R BiQuad5", BIQUAD_SIZE, 0x74), COEFF_RAM_CTL("Cascade2R BiQuad6", BIQUAD_SIZE, 0x79), COEFF_RAM_CTL("Cascade2L Prescale", COEFF_SIZE, 0x5f), COEFF_RAM_CTL("Cascade2R Prescale", COEFF_SIZE, 0x7f), COEFF_RAM_CTL("Bass Extraction BiQuad1", BIQUAD_SIZE, 0x80), COEFF_RAM_CTL("Bass Extraction BiQuad2", BIQUAD_SIZE, 0x85), COEFF_RAM_CTL("Bass Non Linear Function 1", COEFF_SIZE, 0x8a), COEFF_RAM_CTL("Bass Non Linear Function 2", COEFF_SIZE, 0x8b), COEFF_RAM_CTL("Bass Limiter BiQuad", BIQUAD_SIZE, 0x8c), COEFF_RAM_CTL("Bass Cut Off BiQuad", BIQUAD_SIZE, 0x91), COEFF_RAM_CTL("Bass Mix", COEFF_SIZE, 0x96), COEFF_RAM_CTL("Treb Extraction BiQuad1", BIQUAD_SIZE, 0x97), COEFF_RAM_CTL("Treb Extraction BiQuad2", BIQUAD_SIZE, 0x9c), COEFF_RAM_CTL("Treb Non Linear Function 1", COEFF_SIZE, 0xa1), COEFF_RAM_CTL("Treb Non Linear Function 2", COEFF_SIZE, 0xa2), COEFF_RAM_CTL("Treb Limiter BiQuad", BIQUAD_SIZE, 0xa3), COEFF_RAM_CTL("Treb Cut Off BiQuad", BIQUAD_SIZE, 0xa8), COEFF_RAM_CTL("Treb Mix", COEFF_SIZE, 0xad), COEFF_RAM_CTL("3D", COEFF_SIZE, 0xae), COEFF_RAM_CTL("3D Mix", COEFF_SIZE, 0xaf), COEFF_RAM_CTL("MBC1 BiQuad1", BIQUAD_SIZE, 0xb0), COEFF_RAM_CTL("MBC1 BiQuad2", BIQUAD_SIZE, 0xb5), COEFF_RAM_CTL("MBC2 BiQuad1", BIQUAD_SIZE, 0xba), COEFF_RAM_CTL("MBC2 BiQuad2", BIQUAD_SIZE, 0xbf), COEFF_RAM_CTL("MBC3 BiQuad1", BIQUAD_SIZE, 0xc4), COEFF_RAM_CTL("MBC3 BiQuad2", BIQUAD_SIZE, 0xc9), /* EQ */ SOC_SINGLE("EQ1 Switch", R_CONFIG1, FB_CONFIG1_EQ1_EN, 1, 0), SOC_SINGLE("EQ2 Switch", R_CONFIG1, FB_CONFIG1_EQ2_EN, 1, 0), SOC_ENUM("EQ1 Band Enable", eq1_band_enable_enum), SOC_ENUM("EQ2 Band Enable", eq2_band_enable_enum), /* CLE */ SOC_ENUM("CLE Level Detect", cle_level_detection_enum), SOC_ENUM("CLE Level Detect Win", cle_level_detection_window_enum), SOC_SINGLE("Expander Switch", R_CLECTL, FB_CLECTL_EXP_EN, 1, 0), SOC_SINGLE("Limiter Switch", R_CLECTL, FB_CLECTL_LIMIT_EN, 1, 0), SOC_SINGLE("Comp Switch", R_CLECTL, FB_CLECTL_COMP_EN, 1, 0), SOC_SINGLE_TLV("CLE Make-Up Gain Volume", R_MUGAIN, FB_MUGAIN_CLEMUG, 0x1f, 0, mugain_scale), SOC_SINGLE_TLV("Comp Thresh Volume", R_COMPTH, FB_COMPTH, 0xff, 0, compth_scale), SOC_ENUM("Comp Ratio", compressor_ratio_enum), SND_SOC_BYTES("Comp Atk Time", R_CATKTCL, 2), /* Effects */ SOC_SINGLE("3D Switch", R_FXCTL, FB_FXCTL_3DEN, 1, 0), SOC_SINGLE("Treble Switch", R_FXCTL, FB_FXCTL_TEEN, 1, 0), SOC_SINGLE("Treble Bypass Switch", R_FXCTL, FB_FXCTL_TNLFBYPASS, 1, 0), SOC_SINGLE("Bass Switch", R_FXCTL, FB_FXCTL_BEEN, 1, 0), SOC_SINGLE("Bass Bypass Switch", R_FXCTL, FB_FXCTL_BNLFBYPASS, 1, 0), /* MBC */ SOC_SINGLE("MBC Band1 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN1, 1, 0), SOC_SINGLE("MBC Band2 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN2, 1, 0), SOC_SINGLE("MBC Band3 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN3, 1, 0), SOC_ENUM("MBC Band1 Level Detect", mbc_level_detection_enums[0]), SOC_ENUM("MBC Band2 Level Detect", mbc_level_detection_enums[1]), SOC_ENUM("MBC Band3 Level Detect", mbc_level_detection_enums[2]), SOC_ENUM("MBC Band1 Level Detect Win", mbc_level_detection_window_enums[0]), SOC_ENUM("MBC Band2 Level Detect Win", mbc_level_detection_window_enums[1]), SOC_ENUM("MBC Band3 Level Detect Win", mbc_level_detection_window_enums[2]), SOC_SINGLE("MBC1 Phase Invert Switch", R_DACMBCMUG1, FB_DACMBCMUG1_PHASE, 1, 0), SOC_SINGLE_TLV("DAC MBC1 Make-Up Gain Volume", R_DACMBCMUG1, FB_DACMBCMUG1_MUGAIN, 0x1f, 0, mugain_scale), SOC_SINGLE_TLV("DAC MBC1 Comp Thresh Volume", R_DACMBCTHR1, FB_DACMBCTHR1_THRESH, 0xff, 0, compth_scale), SOC_ENUM("DAC MBC1 Comp Ratio", dac_mbc1_compressor_ratio_enum), SND_SOC_BYTES("DAC MBC1 Comp Atk Time", R_DACMBCATK1L, 2), SND_SOC_BYTES("DAC MBC1 Comp Rel Time Const", R_DACMBCREL1L, 2), SOC_SINGLE("MBC2 Phase Invert Switch", R_DACMBCMUG2, FB_DACMBCMUG2_PHASE, 1, 0), SOC_SINGLE_TLV("DAC MBC2 Make-Up Gain Volume", R_DACMBCMUG2, FB_DACMBCMUG2_MUGAIN, 0x1f, 0, mugain_scale), SOC_SINGLE_TLV("DAC MBC2 Comp Thresh Volume", R_DACMBCTHR2, FB_DACMBCTHR2_THRESH, 0xff, 0, compth_scale), SOC_ENUM("DAC MBC2 Comp Ratio", dac_mbc2_compressor_ratio_enum), SND_SOC_BYTES("DAC MBC2 Comp Atk Time", R_DACMBCATK2L, 2), SND_SOC_BYTES("DAC MBC2 Comp Rel Time Const", R_DACMBCREL2L, 2), SOC_SINGLE("MBC3 Phase Invert Switch", R_DACMBCMUG3, FB_DACMBCMUG3_PHASE, 1, 0), SOC_SINGLE_TLV("DAC MBC3 Make-Up Gain Volume", R_DACMBCMUG3, FB_DACMBCMUG3_MUGAIN, 0x1f, 0, mugain_scale), SOC_SINGLE_TLV("DAC MBC3 Comp Thresh Volume", R_DACMBCTHR3, FB_DACMBCTHR3_THRESH, 0xff, 0, compth_scale), SOC_ENUM("DAC MBC3 Comp Ratio", dac_mbc3_compressor_ratio_enum), SND_SOC_BYTES("DAC MBC3 Comp Atk Time", R_DACMBCATK3L, 2), SND_SOC_BYTES("DAC MBC3 Comp Rel Time Const", R_DACMBCREL3L, 2), }; static int setup_sample_format(struct snd_soc_component *component, snd_pcm_format_t format) { unsigned int width; int ret; switch (format) { case SNDRV_PCM_FORMAT_S16_LE: width = RV_AIC1_WL_16; break; case SNDRV_PCM_FORMAT_S20_3LE: width = RV_AIC1_WL_20; break; case SNDRV_PCM_FORMAT_S24_LE: width = RV_AIC1_WL_24; break; case SNDRV_PCM_FORMAT_S32_LE: width = RV_AIC1_WL_32; break; default: ret = -EINVAL; dev_err(component->dev, "Unsupported format width (%d)\n", ret); return ret; } ret = snd_soc_component_update_bits(component, R_AIC1, RM_AIC1_WL, width); if (ret < 0) { dev_err(component->dev, "Failed to set sample width (%d)\n", ret); return ret; } return 0; } static int setup_sample_rate(struct snd_soc_component *component, unsigned int rate) { struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component); unsigned int br, bm; int ret; switch (rate) { case 8000: br = RV_DACSR_DBR_32; bm = RV_DACSR_DBM_PT25; break; case 16000: br = RV_DACSR_DBR_32; bm = RV_DACSR_DBM_PT5; break; case 24000: br = RV_DACSR_DBR_48; bm = RV_DACSR_DBM_PT5; break; case 32000: br = RV_DACSR_DBR_32; bm = RV_DACSR_DBM_1; break; case 48000: br = RV_DACSR_DBR_48; bm = RV_DACSR_DBM_1; break; case 96000: br = RV_DACSR_DBR_48; bm = RV_DACSR_DBM_2; break; case 11025: br = RV_DACSR_DBR_44_1; bm = RV_DACSR_DBM_PT25; break; case 22050: br = RV_DACSR_DBR_44_1; bm = RV_DACSR_DBM_PT5; break; case 44100: br = RV_DACSR_DBR_44_1; bm = RV_DACSR_DBM_1; break; case 88200: br = RV_DACSR_DBR_44_1; bm = RV_DACSR_DBM_2; break; default: dev_err(component->dev, "Unsupported sample rate %d\n", rate); return -EINVAL; } /* DAC and ADC share bit and frame clock */ ret = snd_soc_component_update_bits(component, R_DACSR, RM_DACSR_DBR, br); if (ret < 0) { dev_err(component->dev, "Failed to update register (%d)\n", ret); return ret; } ret = snd_soc_component_update_bits(component, R_DACSR, RM_DACSR_DBM, bm); if (ret < 0) { dev_err(component->dev, "Failed to update register (%d)\n", ret); return ret; } ret = snd_soc_component_update_bits(component, R_ADCSR, RM_DACSR_DBR, br); if (ret < 0) { dev_err(component->dev, "Failed to update register (%d)\n", ret); return ret; } ret = snd_soc_component_update_bits(component, R_ADCSR, RM_DACSR_DBM, bm); if (ret < 0) { dev_err(component->dev, "Failed to update register (%d)\n", ret); return ret; } mutex_lock(&tscs42xx->audio_params_lock); tscs42xx->samplerate = rate; mutex_unlock(&tscs42xx->audio_params_lock); return 0; } struct reg_setting { unsigned int addr; unsigned int val; unsigned int mask; }; #define PLL_REG_SETTINGS_COUNT 13 struct pll_ctl { int input_freq; struct reg_setting settings[PLL_REG_SETTINGS_COUNT]; }; #define PLL_CTL(f, rt, rd, r1b_l, r9, ra, rb, \ rc, r12, r1b_h, re, rf, r10, r11) \ { \ .input_freq = f, \ .settings = { \ {R_TIMEBASE, rt, 0xFF}, \ {R_PLLCTLD, rd, 0xFF}, \ {R_PLLCTL1B, r1b_l, 0x0F}, \ {R_PLLCTL9, r9, 0xFF}, \ {R_PLLCTLA, ra, 0xFF}, \ {R_PLLCTLB, rb, 0xFF}, \ {R_PLLCTLC, rc, 0xFF}, \ {R_PLLCTL12, r12, 0xFF}, \ {R_PLLCTL1B, r1b_h, 0xF0}, \ {R_PLLCTLE, re, 0xFF}, \ {R_PLLCTLF, rf, 0xFF}, \ {R_PLLCTL10, r10, 0xFF}, \ {R_PLLCTL11, r11, 0xFF}, \ }, \ } static const struct pll_ctl pll_ctls[] = { PLL_CTL(1411200, 0x05, 0x39, 0x04, 0x07, 0x02, 0xC3, 0x04, 0x1B, 0x10, 0x03, 0x03, 0xD0, 0x02), PLL_CTL(1536000, 0x05, 0x1A, 0x04, 0x02, 0x03, 0xE0, 0x01, 0x1A, 0x10, 0x02, 0x03, 0xB9, 0x01), PLL_CTL(2822400, 0x0A, 0x23, 0x04, 0x07, 0x04, 0xC3, 0x04, 0x22, 0x10, 0x05, 0x03, 0x58, 0x02), PLL_CTL(3072000, 0x0B, 0x22, 0x04, 0x07, 0x03, 0x48, 0x03, 0x1A, 0x10, 0x04, 0x03, 0xB9, 0x01), PLL_CTL(5644800, 0x15, 0x23, 0x04, 0x0E, 0x04, 0xC3, 0x04, 0x1A, 0x10, 0x08, 0x03, 0xE0, 0x01), PLL_CTL(6144000, 0x17, 0x1A, 0x04, 0x08, 0x03, 0xE0, 0x01, 0x1A, 0x10, 0x08, 0x03, 0xB9, 0x01), PLL_CTL(12000000, 0x2E, 0x1B, 0x04, 0x19, 0x03, 0x00, 0x03, 0x2A, 0x10, 0x19, 0x05, 0x98, 0x04), PLL_CTL(19200000, 0x4A, 0x13, 0x04, 0x14, 0x03, 0x80, 0x01, 0x1A, 0x10, 0x19, 0x03, 0xB9, 0x01), PLL_CTL(22000000, 0x55, 0x2A, 0x04, 0x37, 0x05, 0x00, 0x06, 0x22, 0x10, 0x26, 0x03, 0x49, 0x02), PLL_CTL(22579200, 0x57, 0x22, 0x04, 0x31, 0x03, 0x20, 0x03, 0x1A, 0x10, 0x1D, 0x03, 0xB3, 0x01), PLL_CTL(24000000, 0x5D, 0x13, 0x04, 0x19, 0x03, 0x80, 0x01, 0x1B, 0x10, 0x19, 0x05, 0x4C, 0x02), PLL_CTL(24576000, 0x5F, 0x13, 0x04, 0x1D, 0x03, 0xB3, 0x01, 0x22, 0x10, 0x40, 0x03, 0x72, 0x03), PLL_CTL(27000000, 0x68, 0x22, 0x04, 0x4B, 0x03, 0x00, 0x04, 0x2A, 0x10, 0x7D, 0x03, 0x20, 0x06), PLL_CTL(36000000, 0x8C, 0x1B, 0x04, 0x4B, 0x03, 0x00, 0x03, 0x2A, 0x10, 0x7D, 0x03, 0x98, 0x04), PLL_CTL(25000000, 0x61, 0x1B, 0x04, 0x37, 0x03, 0x2B, 0x03, 0x1A, 0x10, 0x2A, 0x03, 0x39, 0x02), PLL_CTL(26000000, 0x65, 0x23, 0x04, 0x41, 0x05, 0x00, 0x06, 0x1A, 0x10, 0x26, 0x03, 0xEF, 0x01), PLL_CTL(12288000, 0x2F, 0x1A, 0x04, 0x12, 0x03, 0x1C, 0x02, 0x22, 0x10, 0x20, 0x03, 0x72, 0x03), PLL_CTL(40000000, 0x9B, 0x22, 0x08, 0x7D, 0x03, 0x80, 0x04, 0x23, 0x10, 0x7D, 0x05, 0xE4, 0x06), PLL_CTL(512000, 0x01, 0x22, 0x04, 0x01, 0x03, 0xD0, 0x02, 0x1B, 0x10, 0x01, 0x04, 0x72, 0x03), PLL_CTL(705600, 0x02, 0x22, 0x04, 0x02, 0x03, 0x15, 0x04, 0x22, 0x10, 0x01, 0x04, 0x80, 0x02), PLL_CTL(1024000, 0x03, 0x22, 0x04, 0x02, 0x03, 0xD0, 0x02, 0x1B, 0x10, 0x02, 0x04, 0x72, 0x03), PLL_CTL(2048000, 0x07, 0x22, 0x04, 0x04, 0x03, 0xD0, 0x02, 0x1B, 0x10, 0x04, 0x04, 0x72, 0x03), PLL_CTL(2400000, 0x08, 0x22, 0x04, 0x05, 0x03, 0x00, 0x03, 0x23, 0x10, 0x05, 0x05, 0x98, 0x04), }; static const struct pll_ctl *get_pll_ctl(int input_freq) { int i; const struct pll_ctl *pll_ctl = NULL; for (i = 0; i < ARRAY_SIZE(pll_ctls); ++i) if (input_freq == pll_ctls[i].input_freq) { pll_ctl = &pll_ctls[i]; break; } return pll_ctl; } static int set_pll_ctl_from_input_freq(struct snd_soc_component *component, const int input_freq) { int ret; int i; const struct pll_ctl *pll_ctl; pll_ctl = get_pll_ctl(input_freq); if (!pll_ctl) { ret = -EINVAL; dev_err(component->dev, "No PLL input entry for %d (%d)\n", input_freq, ret); return ret; } for (i = 0; i < PLL_REG_SETTINGS_COUNT; ++i) { ret = snd_soc_component_update_bits(component, pll_ctl->settings[i].addr, pll_ctl->settings[i].mask, pll_ctl->settings[i].val); if (ret < 0) { dev_err(component->dev, "Failed to set pll ctl (%d)\n", ret); return ret; } } return 0; } static int tscs42xx_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *codec_dai) { struct snd_soc_component *component = codec_dai->component; int ret; ret = setup_sample_format(component, params_format(params)); if (ret < 0) { dev_err(component->dev, "Failed to setup sample format (%d)\n", ret); return ret; } ret = setup_sample_rate(component, params_rate(params)); if (ret < 0) { dev_err(component->dev, "Failed to setup sample rate (%d)\n", ret); return ret; } return 0; } static inline int dac_mute(struct snd_soc_component *component) { int ret; ret = snd_soc_component_update_bits(component, R_CNVRTR1, RM_CNVRTR1_DACMU, RV_CNVRTR1_DACMU_ENABLE); if (ret < 0) { dev_err(component->dev, "Failed to mute DAC (%d)\n", ret); return ret; } return 0; } static inline int dac_unmute(struct snd_soc_component *component) { int ret; ret = snd_soc_component_update_bits(component, R_CNVRTR1, RM_CNVRTR1_DACMU, RV_CNVRTR1_DACMU_DISABLE); if (ret < 0) { dev_err(component->dev, "Failed to unmute DAC (%d)\n", ret); return ret; } return 0; } static inline int adc_mute(struct snd_soc_component *component) { int ret; ret = snd_soc_component_update_bits(component, R_CNVRTR0, RM_CNVRTR0_ADCMU, RV_CNVRTR0_ADCMU_ENABLE); if (ret < 0) { dev_err(component->dev, "Failed to mute ADC (%d)\n", ret); return ret; } return 0; } static inline int adc_unmute(struct snd_soc_component *component) { int ret; ret = snd_soc_component_update_bits(component, R_CNVRTR0, RM_CNVRTR0_ADCMU, RV_CNVRTR0_ADCMU_DISABLE); if (ret < 0) { dev_err(component->dev, "Failed to unmute ADC (%d)\n", ret); return ret; } return 0; } static int tscs42xx_mute_stream(struct snd_soc_dai *dai, int mute, int stream) { struct snd_soc_component *component = dai->component; int ret; if (mute) if (stream == SNDRV_PCM_STREAM_PLAYBACK) ret = dac_mute(component); else ret = adc_mute(component); else if (stream == SNDRV_PCM_STREAM_PLAYBACK) ret = dac_unmute(component); else ret = adc_unmute(component); return ret; } static int tscs42xx_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; int ret; /* Slave mode not supported since it needs always-on frame clock */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: ret = snd_soc_component_update_bits(component, R_AIC1, RM_AIC1_MS, RV_AIC1_MS_MASTER); if (ret < 0) { dev_err(component->dev, "Failed to set codec DAI master (%d)\n", ret); return ret; } break; default: ret = -EINVAL; dev_err(component->dev, "Unsupported format (%d)\n", ret); return ret; } return 0; } static int tscs42xx_set_dai_bclk_ratio(struct snd_soc_dai *codec_dai, unsigned int ratio) { struct snd_soc_component *component = codec_dai->component; struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component); unsigned int value; int ret = 0; switch (ratio) { case 32: value = RV_DACSR_DBCM_32; break; case 40: value = RV_DACSR_DBCM_40; break; case 64: value = RV_DACSR_DBCM_64; break; default: dev_err(component->dev, "Unsupported bclk ratio (%d)\n", ret); return -EINVAL; } ret = snd_soc_component_update_bits(component, R_DACSR, RM_DACSR_DBCM, value); if (ret < 0) { dev_err(component->dev, "Failed to set DAC BCLK ratio (%d)\n", ret); return ret; } ret = snd_soc_component_update_bits(component, R_ADCSR, RM_ADCSR_ABCM, value); if (ret < 0) { dev_err(component->dev, "Failed to set ADC BCLK ratio (%d)\n", ret); return ret; } mutex_lock(&tscs42xx->audio_params_lock); tscs42xx->bclk_ratio = ratio; mutex_unlock(&tscs42xx->audio_params_lock); return 0; } static const struct snd_soc_dai_ops tscs42xx_dai_ops = { .hw_params = tscs42xx_hw_params, .mute_stream = tscs42xx_mute_stream, .set_fmt = tscs42xx_set_dai_fmt, .set_bclk_ratio = tscs42xx_set_dai_bclk_ratio, }; static int part_is_valid(struct tscs42xx *tscs42xx) { int val; int ret; unsigned int reg; ret = regmap_read(tscs42xx->regmap, R_DEVIDH, ®); if (ret < 0) return ret; val = reg << 8; ret = regmap_read(tscs42xx->regmap, R_DEVIDL, ®); if (ret < 0) return ret; val |= reg; switch (val) { case 0x4A74: case 0x4A73: return true; default: return false; }; } static int set_sysclk(struct snd_soc_component *component) { struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component); unsigned long freq; int ret; switch (tscs42xx->sysclk_src_id) { case TSCS42XX_PLL_SRC_XTAL: case TSCS42XX_PLL_SRC_MCLK1: ret = snd_soc_component_write(component, R_PLLREFSEL, RV_PLLREFSEL_PLL1_REF_SEL_XTAL_MCLK1 | RV_PLLREFSEL_PLL2_REF_SEL_XTAL_MCLK1); if (ret < 0) { dev_err(component->dev, "Failed to set pll reference input (%d)\n", ret); return ret; } break; case TSCS42XX_PLL_SRC_MCLK2: ret = snd_soc_component_write(component, R_PLLREFSEL, RV_PLLREFSEL_PLL1_REF_SEL_MCLK2 | RV_PLLREFSEL_PLL2_REF_SEL_MCLK2); if (ret < 0) { dev_err(component->dev, "Failed to set PLL reference (%d)\n", ret); return ret; } break; default: dev_err(component->dev, "pll src is unsupported\n"); return -EINVAL; } freq = clk_get_rate(tscs42xx->sysclk); ret = set_pll_ctl_from_input_freq(component, freq); if (ret < 0) { dev_err(component->dev, "Failed to setup PLL input freq (%d)\n", ret); return ret; } return 0; } static int tscs42xx_probe(struct snd_soc_component *component) { return set_sysclk(component); } static const struct snd_soc_component_driver soc_codec_dev_tscs42xx = { .probe = tscs42xx_probe, .dapm_widgets = tscs42xx_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(tscs42xx_dapm_widgets), .dapm_routes = tscs42xx_intercon, .num_dapm_routes = ARRAY_SIZE(tscs42xx_intercon), .controls = tscs42xx_snd_controls, .num_controls = ARRAY_SIZE(tscs42xx_snd_controls), .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, .non_legacy_dai_naming = 1, }; static inline void init_coeff_ram_cache(struct tscs42xx *tscs42xx) { static const u8 norm_addrs[] = { 0x00, 0x05, 0x0a, 0x0f, 0x14, 0x19, 0x1f, 0x20, 0x25, 0x2a, 0x2f, 0x34, 0x39, 0x3f, 0x40, 0x45, 0x4a, 0x4f, 0x54, 0x59, 0x5f, 0x60, 0x65, 0x6a, 0x6f, 0x74, 0x79, 0x7f, 0x80, 0x85, 0x8c, 0x91, 0x96, 0x97, 0x9c, 0xa3, 0xa8, 0xad, 0xaf, 0xb0, 0xb5, 0xba, 0xbf, 0xc4, 0xc9, }; u8 *coeff_ram = tscs42xx->coeff_ram; int i; for (i = 0; i < ARRAY_SIZE(norm_addrs); i++) coeff_ram[((norm_addrs[i] + 1) * COEFF_SIZE) - 1] = 0x40; } #define TSCS42XX_RATES SNDRV_PCM_RATE_8000_96000 #define TSCS42XX_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) static struct snd_soc_dai_driver tscs42xx_dai = { .name = "tscs42xx-HiFi", .playback = { .stream_name = "HiFi Playback", .channels_min = 2, .channels_max = 2, .rates = TSCS42XX_RATES, .formats = TSCS42XX_FORMATS,}, .capture = { .stream_name = "HiFi Capture", .channels_min = 2, .channels_max = 2, .rates = TSCS42XX_RATES, .formats = TSCS42XX_FORMATS,}, .ops = &tscs42xx_dai_ops, .symmetric_rates = 1, .symmetric_channels = 1, .symmetric_samplebits = 1, }; static const struct reg_sequence tscs42xx_patch[] = { { R_AIC2, RV_AIC2_BLRCM_DAC_BCLK_LRCLK_SHARED }, }; static char const * const src_names[TSCS42XX_PLL_SRC_CNT] = { "xtal", "mclk1", "mclk2"}; static int tscs42xx_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct tscs42xx *tscs42xx; int src; int ret; tscs42xx = devm_kzalloc(&i2c->dev, sizeof(*tscs42xx), GFP_KERNEL); if (!tscs42xx) { ret = -ENOMEM; dev_err(&i2c->dev, "Failed to allocate memory for data (%d)\n", ret); return ret; } i2c_set_clientdata(i2c, tscs42xx); for (src = TSCS42XX_PLL_SRC_XTAL; src < TSCS42XX_PLL_SRC_CNT; src++) { tscs42xx->sysclk = devm_clk_get(&i2c->dev, src_names[src]); if (!IS_ERR(tscs42xx->sysclk)) { break; } else if (PTR_ERR(tscs42xx->sysclk) != -ENOENT) { ret = PTR_ERR(tscs42xx->sysclk); dev_err(&i2c->dev, "Failed to get sysclk (%d)\n", ret); return ret; } } if (src == TSCS42XX_PLL_SRC_CNT) { ret = -EINVAL; dev_err(&i2c->dev, "Failed to get a valid clock name (%d)\n", ret); return ret; } tscs42xx->sysclk_src_id = src; tscs42xx->regmap = devm_regmap_init_i2c(i2c, &tscs42xx_regmap); if (IS_ERR(tscs42xx->regmap)) { ret = PTR_ERR(tscs42xx->regmap); dev_err(&i2c->dev, "Failed to allocate regmap (%d)\n", ret); return ret; } init_coeff_ram_cache(tscs42xx); ret = part_is_valid(tscs42xx); if (ret <= 0) { dev_err(&i2c->dev, "No valid part (%d)\n", ret); ret = -ENODEV; return ret; } ret = regmap_write(tscs42xx->regmap, R_RESET, RV_RESET_ENABLE); if (ret < 0) { dev_err(&i2c->dev, "Failed to reset device (%d)\n", ret); return ret; } ret = regmap_register_patch(tscs42xx->regmap, tscs42xx_patch, ARRAY_SIZE(tscs42xx_patch)); if (ret < 0) { dev_err(&i2c->dev, "Failed to apply patch (%d)\n", ret); return ret; } mutex_init(&tscs42xx->audio_params_lock); mutex_init(&tscs42xx->coeff_ram_lock); mutex_init(&tscs42xx->pll_lock); ret = devm_snd_soc_register_component(&i2c->dev, &soc_codec_dev_tscs42xx, &tscs42xx_dai, 1); if (ret) { dev_err(&i2c->dev, "Failed to register codec (%d)\n", ret); return ret; } return 0; } static const struct i2c_device_id tscs42xx_i2c_id[] = { { "tscs42A1", 0 }, { "tscs42A2", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, tscs42xx_i2c_id); static const struct of_device_id tscs42xx_of_match[] = { { .compatible = "tempo,tscs42A1", }, { .compatible = "tempo,tscs42A2", }, { } }; MODULE_DEVICE_TABLE(of, tscs42xx_of_match); static struct i2c_driver tscs42xx_i2c_driver = { .driver = { .name = "tscs42xx", .of_match_table = tscs42xx_of_match, }, .probe = tscs42xx_i2c_probe, .id_table = tscs42xx_i2c_id, }; module_i2c_driver(tscs42xx_i2c_driver); MODULE_AUTHOR("Tempo Semiconductor