// SPDX-License-Identifier: GPL-2.0 // // rt1015.c -- RT1015 ALSA SoC audio amplifier driver // // Copyright 2019 Realtek Semiconductor Corp. // // Author: Jack Yu // // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rl6231.h" #include "rt1015.h" static const struct reg_default rt1015_reg[] = { { 0x0000, 0x0000 }, { 0x0004, 0xa000 }, { 0x0006, 0x0003 }, { 0x000a, 0x081e }, { 0x000c, 0x0006 }, { 0x000e, 0x0000 }, { 0x0010, 0x0000 }, { 0x0012, 0x0000 }, { 0x0014, 0x0000 }, { 0x0016, 0x0000 }, { 0x0018, 0x0000 }, { 0x0020, 0x8000 }, { 0x0022, 0x8043 }, { 0x0076, 0x0000 }, { 0x0078, 0x0000 }, { 0x007a, 0x0002 }, { 0x007c, 0x10ec }, { 0x007d, 0x1015 }, { 0x00f0, 0x5000 }, { 0x00f2, 0x004c }, { 0x00f3, 0xecfe }, { 0x00f4, 0x0000 }, { 0x00f6, 0x0400 }, { 0x0100, 0x0028 }, { 0x0102, 0xff02 }, { 0x0104, 0xa213 }, { 0x0106, 0x200c }, { 0x010c, 0x0000 }, { 0x010e, 0x0058 }, { 0x0111, 0x0200 }, { 0x0112, 0x0400 }, { 0x0114, 0x0022 }, { 0x0116, 0x0000 }, { 0x0118, 0x0000 }, { 0x011a, 0x0123 }, { 0x011c, 0x4567 }, { 0x0300, 0x203d }, { 0x0302, 0x001e }, { 0x0311, 0x0000 }, { 0x0313, 0x6014 }, { 0x0314, 0x00a2 }, { 0x031a, 0x00a0 }, { 0x031c, 0x001f }, { 0x031d, 0xffff }, { 0x031e, 0x0000 }, { 0x031f, 0x0000 }, { 0x0320, 0x0000 }, { 0x0321, 0x0000 }, { 0x0322, 0xd7df }, { 0x0328, 0x10b2 }, { 0x0329, 0x0175 }, { 0x032a, 0x36ad }, { 0x032b, 0x7e55 }, { 0x032c, 0x0520 }, { 0x032d, 0xaa00 }, { 0x032e, 0x570e }, { 0x0330, 0xe180 }, { 0x0332, 0x0034 }, { 0x0334, 0x0001 }, { 0x0336, 0x0010 }, { 0x0338, 0x0000 }, { 0x04fa, 0x0030 }, { 0x04fc, 0x35c8 }, { 0x04fe, 0x0800 }, { 0x0500, 0x0400 }, { 0x0502, 0x1000 }, { 0x0504, 0x0000 }, { 0x0506, 0x04ff }, { 0x0508, 0x0010 }, { 0x050a, 0x001a }, { 0x0519, 0x1c68 }, { 0x051a, 0x0ccc }, { 0x051b, 0x0666 }, { 0x051d, 0x0000 }, { 0x051f, 0x0000 }, { 0x0536, 0x061c }, { 0x0538, 0x0000 }, { 0x053a, 0x0000 }, { 0x053c, 0x0000 }, { 0x053d, 0x0000 }, { 0x053e, 0x0000 }, { 0x053f, 0x0000 }, { 0x0540, 0x0000 }, { 0x0541, 0x0000 }, { 0x0542, 0x0000 }, { 0x0543, 0x0000 }, { 0x0544, 0x0000 }, { 0x0568, 0x0000 }, { 0x056a, 0x0000 }, { 0x1000, 0x0040 }, { 0x1002, 0x5405 }, { 0x1006, 0x5515 }, { 0x1007, 0x05f7 }, { 0x1009, 0x0b0a }, { 0x100a, 0x00ef }, { 0x100d, 0x0003 }, { 0x1010, 0xa433 }, { 0x1020, 0x0000 }, { 0x1200, 0x5a01 }, { 0x1202, 0x6524 }, { 0x1204, 0x1f00 }, { 0x1206, 0x0000 }, { 0x1208, 0x0000 }, { 0x120a, 0x0000 }, { 0x120c, 0x0000 }, { 0x120e, 0x0000 }, { 0x1210, 0x0000 }, { 0x1212, 0x0000 }, { 0x1300, 0x10a1 }, { 0x1302, 0x12ff }, { 0x1304, 0x0400 }, { 0x1305, 0x0844 }, { 0x1306, 0x4611 }, { 0x1308, 0x555e }, { 0x130a, 0x0000 }, { 0x130c, 0x2000 }, { 0x130e, 0x0100 }, { 0x130f, 0x0001 }, { 0x1310, 0x0000 }, { 0x1312, 0x0000 }, { 0x1314, 0x0000 }, { 0x1316, 0x0000 }, { 0x1318, 0x0000 }, { 0x131a, 0x0000 }, { 0x1322, 0x0029 }, { 0x1323, 0x4a52 }, { 0x1324, 0x002c }, { 0x1325, 0x0b02 }, { 0x1326, 0x002d }, { 0x1327, 0x6b5a }, { 0x1328, 0x002e }, { 0x1329, 0xcbb2 }, { 0x132a, 0x0030 }, { 0x132b, 0x2c0b }, { 0x1330, 0x0031 }, { 0x1331, 0x8c63 }, { 0x1332, 0x0032 }, { 0x1333, 0xecbb }, { 0x1334, 0x0034 }, { 0x1335, 0x4d13 }, { 0x1336, 0x0037 }, { 0x1337, 0x0dc3 }, { 0x1338, 0x003d }, { 0x1339, 0xef7b }, { 0x133a, 0x0044 }, { 0x133b, 0xd134 }, { 0x133c, 0x0047 }, { 0x133d, 0x91e4 }, { 0x133e, 0x004d }, { 0x133f, 0xc370 }, { 0x1340, 0x0053 }, { 0x1341, 0xf4fd }, { 0x1342, 0x0060 }, { 0x1343, 0x5816 }, { 0x1344, 0x006c }, { 0x1345, 0xbb2e }, { 0x1346, 0x0072 }, { 0x1347, 0xecbb }, { 0x1348, 0x0076 }, { 0x1349, 0x5d97 }, }; static bool rt1015_volatile_register(struct device *dev, unsigned int reg) { switch (reg) { case RT1015_RESET: case RT1015_CLK_DET: case RT1015_SIL_DET: case RT1015_VER_ID: case RT1015_VENDOR_ID: case RT1015_DEVICE_ID: case RT1015_PRO_ALT: case RT1015_DAC3: case RT1015_VBAT_TEST_OUT1: case RT1015_VBAT_TEST_OUT2: case RT1015_VBAT_PROT_ATT: case RT1015_VBAT_DET_CODE: case RT1015_SMART_BST_CTRL1: case RT1015_SPK_DC_DETECT1: case RT1015_SPK_DC_DETECT4: case RT1015_SPK_DC_DETECT5: case RT1015_DC_CALIB_CLSD1: case RT1015_DC_CALIB_CLSD5: case RT1015_DC_CALIB_CLSD6: case RT1015_DC_CALIB_CLSD7: case RT1015_DC_CALIB_CLSD8: case RT1015_S_BST_TIMING_INTER1: case RT1015_OSCK_STA: case RT1015_MONO_DYNA_CTRL1: case RT1015_MONO_DYNA_CTRL5: return true; default: return false; } } static bool rt1015_readable_register(struct device *dev, unsigned int reg) { switch (reg) { case RT1015_RESET: case RT1015_CLK2: case RT1015_CLK3: case RT1015_PLL1: case RT1015_PLL2: case RT1015_DUM_RW1: case RT1015_DUM_RW2: case RT1015_DUM_RW3: case RT1015_DUM_RW4: case RT1015_DUM_RW5: case RT1015_DUM_RW6: case RT1015_CLK_DET: case RT1015_SIL_DET: case RT1015_CUSTOMER_ID: case RT1015_PCODE_FWVER: case RT1015_VER_ID: case RT1015_VENDOR_ID: case RT1015_DEVICE_ID: case RT1015_PAD_DRV1: case RT1015_PAD_DRV2: case RT1015_GAT_BOOST: case RT1015_PRO_ALT: case RT1015_OSCK_STA: case RT1015_MAN_I2C: case RT1015_DAC1: case RT1015_DAC2: case RT1015_DAC3: case RT1015_ADC1: case RT1015_ADC2: case RT1015_TDM_MASTER: case RT1015_TDM_TCON: case RT1015_TDM1_1: case RT1015_TDM1_2: case RT1015_TDM1_3: case RT1015_TDM1_4: case RT1015_TDM1_5: case RT1015_MIXER1: case RT1015_MIXER2: case RT1015_ANA_PROTECT1: case RT1015_ANA_CTRL_SEQ1: case RT1015_ANA_CTRL_SEQ2: case RT1015_VBAT_DET_DEB: case RT1015_VBAT_VOLT_DET1: case RT1015_VBAT_VOLT_DET2: case RT1015_VBAT_TEST_OUT1: case RT1015_VBAT_TEST_OUT2: case RT1015_VBAT_PROT_ATT: case RT1015_VBAT_DET_CODE: case RT1015_PWR1: case RT1015_PWR4: case RT1015_PWR5: case RT1015_PWR6: case RT1015_PWR7: case RT1015_PWR8: case RT1015_PWR9: case RT1015_CLASSD_SEQ: case RT1015_SMART_BST_CTRL1: case RT1015_SMART_BST_CTRL2: case RT1015_ANA_CTRL1: case RT1015_ANA_CTRL2: case RT1015_PWR_STATE_CTRL: case RT1015_MONO_DYNA_CTRL: case RT1015_MONO_DYNA_CTRL1: case RT1015_MONO_DYNA_CTRL2: case RT1015_MONO_DYNA_CTRL3: case RT1015_MONO_DYNA_CTRL4: case RT1015_MONO_DYNA_CTRL5: case RT1015_SPK_VOL: case RT1015_SHORT_DETTOP1: case RT1015_SHORT_DETTOP2: case RT1015_SPK_DC_DETECT1: case RT1015_SPK_DC_DETECT2: case RT1015_SPK_DC_DETECT3: case RT1015_SPK_DC_DETECT4: case RT1015_SPK_DC_DETECT5: case RT1015_BAT_RPO_STEP1: case RT1015_BAT_RPO_STEP2: case RT1015_BAT_RPO_STEP3: case RT1015_BAT_RPO_STEP4: case RT1015_BAT_RPO_STEP5: case RT1015_BAT_RPO_STEP6: case RT1015_BAT_RPO_STEP7: case RT1015_BAT_RPO_STEP8: case RT1015_BAT_RPO_STEP9: case RT1015_BAT_RPO_STEP10: case RT1015_BAT_RPO_STEP11: case RT1015_BAT_RPO_STEP12: case RT1015_SPREAD_SPEC1: case RT1015_SPREAD_SPEC2: case RT1015_PAD_STATUS: case RT1015_PADS_PULLING_CTRL1: case RT1015_PADS_DRIVING: case RT1015_SYS_RST1: case RT1015_SYS_RST2: case RT1015_SYS_GATING1: case RT1015_TEST_MODE1: case RT1015_TEST_MODE2: case RT1015_TIMING_CTRL1: case RT1015_PLL_INT: case RT1015_TEST_OUT1: case RT1015_DC_CALIB_CLSD1: case RT1015_DC_CALIB_CLSD2: case RT1015_DC_CALIB_CLSD3: case RT1015_DC_CALIB_CLSD4: case RT1015_DC_CALIB_CLSD5: case RT1015_DC_CALIB_CLSD6: case RT1015_DC_CALIB_CLSD7: case RT1015_DC_CALIB_CLSD8: case RT1015_DC_CALIB_CLSD9: case RT1015_DC_CALIB_CLSD10: case RT1015_CLSD_INTERNAL1: case RT1015_CLSD_INTERNAL2: case RT1015_CLSD_INTERNAL3: case RT1015_CLSD_INTERNAL4: case RT1015_CLSD_INTERNAL5: case RT1015_CLSD_INTERNAL6: case RT1015_CLSD_INTERNAL7: case RT1015_CLSD_INTERNAL8: case RT1015_CLSD_INTERNAL9: case RT1015_CLSD_OCP_CTRL: case RT1015_VREF_LV: case RT1015_MBIAS1: case RT1015_MBIAS2: case RT1015_MBIAS3: case RT1015_MBIAS4: case RT1015_VREF_LV1: case RT1015_S_BST_TIMING_INTER1: case RT1015_S_BST_TIMING_INTER2: case RT1015_S_BST_TIMING_INTER3: case RT1015_S_BST_TIMING_INTER4: case RT1015_S_BST_TIMING_INTER5: case RT1015_S_BST_TIMING_INTER6: case RT1015_S_BST_TIMING_INTER7: case RT1015_S_BST_TIMING_INTER8: case RT1015_S_BST_TIMING_INTER9: case RT1015_S_BST_TIMING_INTER10: case RT1015_S_BST_TIMING_INTER11: case RT1015_S_BST_TIMING_INTER12: case RT1015_S_BST_TIMING_INTER13: case RT1015_S_BST_TIMING_INTER14: case RT1015_S_BST_TIMING_INTER15: case RT1015_S_BST_TIMING_INTER16: case RT1015_S_BST_TIMING_INTER17: case RT1015_S_BST_TIMING_INTER18: case RT1015_S_BST_TIMING_INTER19: case RT1015_S_BST_TIMING_INTER20: case RT1015_S_BST_TIMING_INTER21: case RT1015_S_BST_TIMING_INTER22: case RT1015_S_BST_TIMING_INTER23: case RT1015_S_BST_TIMING_INTER24: case RT1015_S_BST_TIMING_INTER25: case RT1015_S_BST_TIMING_INTER26: case RT1015_S_BST_TIMING_INTER27: case RT1015_S_BST_TIMING_INTER28: case RT1015_S_BST_TIMING_INTER29: case RT1015_S_BST_TIMING_INTER30: case RT1015_S_BST_TIMING_INTER31: case RT1015_S_BST_TIMING_INTER32: case RT1015_S_BST_TIMING_INTER33: case RT1015_S_BST_TIMING_INTER34: case RT1015_S_BST_TIMING_INTER35: case RT1015_S_BST_TIMING_INTER36: return true; default: return false; } } static const DECLARE_TLV_DB_SCALE(dac_vol_tlv, -9525, 75, 0); static const char * const rt1015_din_source_select[] = { "Left", "Right", "Left + Right average", }; static SOC_ENUM_SINGLE_DECL(rt1015_mono_lr_sel, RT1015_PAD_DRV2, 4, rt1015_din_source_select); static const char * const rt1015_boost_mode[] = { "Bypass", "Adaptive", "Fixed Adaptive" }; static SOC_ENUM_SINGLE_DECL(rt1015_boost_mode_enum, 0, 0, rt1015_boost_mode); static int rt1015_boost_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); ucontrol->value.integer.value[0] = rt1015->boost_mode; return 0; } static int rt1015_boost_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); rt1015->boost_mode = ucontrol->value.integer.value[0]; switch (rt1015->boost_mode) { case BYPASS: snd_soc_component_update_bits(component, RT1015_SMART_BST_CTRL1, RT1015_ABST_AUTO_EN_MASK | RT1015_ABST_FIX_TGT_MASK | RT1015_BYPASS_SWR_REG_MASK, RT1015_ABST_REG_MODE | RT1015_ABST_FIX_TGT_DIS | RT1015_BYPASS_SWRREG_BYPASS); break; case ADAPTIVE: snd_soc_component_update_bits(component, RT1015_SMART_BST_CTRL1, RT1015_ABST_AUTO_EN_MASK | RT1015_ABST_FIX_TGT_MASK | RT1015_BYPASS_SWR_REG_MASK, RT1015_ABST_AUTO_MODE | RT1015_ABST_FIX_TGT_DIS | RT1015_BYPASS_SWRREG_PASS); break; case FIXED_ADAPTIVE: snd_soc_component_update_bits(component, RT1015_SMART_BST_CTRL1, RT1015_ABST_AUTO_EN_MASK | RT1015_ABST_FIX_TGT_MASK | RT1015_BYPASS_SWR_REG_MASK, RT1015_ABST_AUTO_MODE | RT1015_ABST_FIX_TGT_EN | RT1015_BYPASS_SWRREG_PASS); break; default: dev_err(component->dev, "Unknown boost control.\n"); } return 0; } static int rt1015_bypass_boost_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); ucontrol->value.integer.value[0] = rt1015->bypass_boost; return 0; } static void rt1015_calibrate(struct rt1015_priv *rt1015) { struct snd_soc_component *component = rt1015->component; struct regmap *regmap = rt1015->regmap; snd_soc_dapm_mutex_lock(&component->dapm); regcache_cache_bypass(regmap, true); regmap_write(regmap, RT1015_PWR1, 0xd7df); regmap_write(regmap, RT1015_PWR4, 0x00b2); regmap_write(regmap, RT1015_CLSD_INTERNAL8, 0x2008); regmap_write(regmap, RT1015_CLSD_INTERNAL9, 0x0140); regmap_write(regmap, RT1015_GAT_BOOST, 0x0efe); regmap_write(regmap, RT1015_PWR_STATE_CTRL, 0x000d); regmap_write(regmap, RT1015_PWR_STATE_CTRL, 0x000e); regmap_write(regmap, RT1015_DC_CALIB_CLSD1, 0x5a00); regmap_write(regmap, RT1015_DC_CALIB_CLSD1, 0x5a01); regmap_write(regmap, RT1015_DC_CALIB_CLSD1, 0x5a05); msleep(500); regmap_write(regmap, RT1015_PWR1, 0x0); regcache_cache_bypass(regmap, false); regcache_mark_dirty(regmap); regcache_sync(regmap); snd_soc_dapm_mutex_unlock(&component->dapm); } static int rt1015_bypass_boost_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); if (!rt1015->dac_is_used) { rt1015->bypass_boost = ucontrol->value.integer.value[0]; if (rt1015->bypass_boost == RT1015_Bypass_Boost && !rt1015->cali_done) { rt1015_calibrate(rt1015); rt1015->cali_done = 1; regmap_write(rt1015->regmap, RT1015_MONO_DYNA_CTRL, 0x0010); } } else dev_err(component->dev, "DAC is being used!\n"); return 0; } static void rt1015_flush_work(struct work_struct *work) { struct rt1015_priv *rt1015 = container_of(work, struct rt1015_priv, flush_work.work); struct snd_soc_component *component = rt1015->component; unsigned int val, i = 0, count = 20; while (i < count) { usleep_range(1000, 1500); dev_dbg(component->dev, "Flush DAC (retry:%u)\n", i); regmap_read(rt1015->regmap, RT1015_CLK_DET, &val); if (val & 0x800) break; i++; } regmap_write(rt1015->regmap, RT1015_SYS_RST1, 0x0597); regmap_write(rt1015->regmap, RT1015_SYS_RST1, 0x05f7); regmap_write(rt1015->regmap, RT1015_MAN_I2C, 0x0028); if (val & 0x800) dev_dbg(component->dev, "Flush DAC completed.\n"); else dev_warn(component->dev, "Fail to flush DAC data.\n"); } static const struct snd_kcontrol_new rt1015_snd_controls[] = { SOC_SINGLE_TLV("DAC Playback Volume", RT1015_DAC1, RT1015_DAC_VOL_SFT, 127, 0, dac_vol_tlv), SOC_DOUBLE("DAC Playback Switch", RT1015_DAC3, RT1015_DA_MUTE_SFT, RT1015_DVOL_MUTE_FLAG_SFT, 1, 1), SOC_ENUM_EXT("Boost Mode", rt1015_boost_mode_enum, rt1015_boost_mode_get, rt1015_boost_mode_put), SOC_ENUM("Mono LR Select", rt1015_mono_lr_sel), SOC_SINGLE_EXT("Bypass Boost", SND_SOC_NOPM, 0, 1, 0, rt1015_bypass_boost_get, rt1015_bypass_boost_put), }; static int rt1015_is_sys_clk_from_pll(struct snd_soc_dapm_widget *source, struct snd_soc_dapm_widget *sink) { struct snd_soc_component *component = snd_soc_dapm_to_component(source->dapm); struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); if (rt1015->sysclk_src == RT1015_SCLK_S_PLL) return 1; else return 0; } static int r1015_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_PRE_PMU: rt1015->dac_is_used = 1; if (rt1015->bypass_boost == RT1015_Enable_Boost) { snd_soc_component_write(component, RT1015_SYS_RST1, 0x05f7); snd_soc_component_write(component, RT1015_GAT_BOOST, 0xacfe); snd_soc_component_write(component, RT1015_PWR9, 0xaa00); snd_soc_component_write(component, RT1015_GAT_BOOST, 0xecfe); } else { snd_soc_component_write(component, RT1015_SYS_RST1, 0x05f7); snd_soc_component_write(component, RT1015_PWR_STATE_CTRL, 0x026e); } break; case SND_SOC_DAPM_POST_PMU: regmap_write(rt1015->regmap, RT1015_MAN_I2C, 0x00a8); break; case SND_SOC_DAPM_POST_PMD: if (rt1015->bypass_boost == RT1015_Enable_Boost) { snd_soc_component_write(component, RT1015_PWR9, 0xa800); snd_soc_component_write(component, RT1015_SYS_RST1, 0x05f5); } else { snd_soc_component_write(component, RT1015_PWR_STATE_CTRL, 0x0268); snd_soc_component_write(component, RT1015_SYS_RST1, 0x05f5); } rt1015->dac_is_used = 0; cancel_delayed_work_sync(&rt1015->flush_work); break; default: break; } return 0; } static int rt1015_amp_drv_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: if (rt1015->hw_config == RT1015_HW_28) schedule_delayed_work(&rt1015->flush_work, msecs_to_jiffies(10)); break; default: break; } return 0; } static const struct snd_soc_dapm_widget rt1015_dapm_widgets[] = { SND_SOC_DAPM_SUPPLY("LDO2", RT1015_PWR1, RT1015_PWR_LDO2_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("INT RC CLK", RT1015_PWR1, RT1015_PWR_INTCLK_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("ISENSE", RT1015_PWR1, RT1015_PWR_ISENSE_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("VSENSE", RT1015_PWR1, RT1015_PWR_VSENSE_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("PLL", RT1015_PWR1, RT1015_PWR_PLL_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("BG1 BG2", RT1015_PWR1, RT1015_PWR_BG_1_2_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("MBIAS BG", RT1015_PWR1, RT1015_PWR_MBIAS_BG_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("VBAT", RT1015_PWR1, RT1015_PWR_VBAT_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("MBIAS", RT1015_PWR1, RT1015_PWR_MBIAS_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("ADCV", RT1015_PWR1, RT1015_PWR_ADCV_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("MIXERV", RT1015_PWR1, RT1015_PWR_MIXERV_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("SUMV", RT1015_PWR1, RT1015_PWR_SUMV_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("VREFLV", RT1015_PWR1, RT1015_PWR_VREFLV_BIT, 0, NULL, 0), SND_SOC_DAPM_AIF_IN("AIFRX", "AIF Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC_E("DAC", NULL, RT1015_PWR1, RT1015_PWR_DAC_BIT, 0, r1015_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_OUT_DRV_E("Amp Drv", SND_SOC_NOPM, 0, 0, NULL, 0, rt1015_amp_drv_event, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_OUTPUT("SPO"), }; static const struct snd_soc_dapm_route rt1015_dapm_routes[] = { { "DAC", NULL, "AIFRX" }, { "DAC", NULL, "LDO2" }, { "DAC", NULL, "PLL", rt1015_is_sys_clk_from_pll}, { "DAC", NULL, "INT RC CLK" }, { "DAC", NULL, "ISENSE" }, { "DAC", NULL, "VSENSE" }, { "DAC", NULL, "BG1 BG2" }, { "DAC", NULL, "MBIAS BG" }, { "DAC", NULL, "VBAT" }, { "DAC", NULL, "MBIAS" }, { "DAC", NULL, "ADCV" }, { "DAC", NULL, "MIXERV" }, { "DAC", NULL, "SUMV" }, { "DAC", NULL, "VREFLV" }, { "Amp Drv", NULL, "DAC" }, { "SPO", NULL, "Amp Drv" }, }; static int rt1015_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); int pre_div, bclk_ms, frame_size; unsigned int val_len = 0; rt1015->lrck = params_rate(params); pre_div = rl6231_get_clk_info(rt1015->sysclk, rt1015->lrck); if (pre_div < 0) { dev_err(component->dev, "Unsupported clock rate\n"); return -EINVAL; } frame_size = snd_soc_params_to_frame_size(params); if (frame_size < 0) { dev_err(component->dev, "Unsupported frame size: %d\n", frame_size); return -EINVAL; } bclk_ms = frame_size > 32; rt1015->bclk = rt1015->lrck * (32 << bclk_ms); dev_dbg(component->dev, "bclk_ms is %d and pre_div is %d for iis %d\n", bclk_ms, pre_div, dai->id); dev_dbg(component->dev, "lrck is %dHz and pre_div is %d for iis %d\n", rt1015->lrck, pre_div, dai->id); switch (params_width(params)) { case 16: break; case 20: val_len = RT1015_I2S_DL_20; break; case 24: val_len = RT1015_I2S_DL_24; break; case 8: val_len = RT1015_I2S_DL_8; break; default: return -EINVAL; } snd_soc_component_update_bits(component, RT1015_TDM_MASTER, RT1015_I2S_DL_MASK, val_len); snd_soc_component_update_bits(component, RT1015_CLK2, RT1015_FS_PD_MASK, pre_div << RT1015_FS_PD_SFT); return 0; } static int rt1015_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_component *component = dai->component; unsigned int reg_val = 0, reg_val2 = 0; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: reg_val |= RT1015_TCON_TDM_MS_M; break; case SND_SOC_DAIFMT_CBS_CFS: reg_val |= RT1015_TCON_TDM_MS_S; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: reg_val2 |= RT1015_TDM_INV_BCLK; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: break; case SND_SOC_DAIFMT_LEFT_J: reg_val |= RT1015_I2S_M_DF_LEFT; break; case SND_SOC_DAIFMT_DSP_A: reg_val |= RT1015_I2S_M_DF_PCM_A; break; case SND_SOC_DAIFMT_DSP_B: reg_val |= RT1015_I2S_M_DF_PCM_B; break; default: return -EINVAL; } snd_soc_component_update_bits(component, RT1015_TDM_MASTER, RT1015_TCON_TDM_MS_MASK | RT1015_I2S_M_DF_MASK, reg_val); snd_soc_component_update_bits(component, RT1015_TDM1_1, RT1015_TDM_INV_BCLK_MASK, reg_val2); return 0; } static int rt1015_set_component_sysclk(struct snd_soc_component *component, int clk_id, int source, unsigned int freq, int dir) { struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); unsigned int reg_val = 0; if (freq == rt1015->sysclk && clk_id == rt1015->sysclk_src) return 0; switch (clk_id) { case RT1015_SCLK_S_MCLK: reg_val |= RT1015_CLK_SYS_PRE_SEL_MCLK; break; case RT1015_SCLK_S_PLL: reg_val |= RT1015_CLK_SYS_PRE_SEL_PLL; break; default: dev_err(component->dev, "Invalid clock id (%d)\n", clk_id); return -EINVAL; } rt1015->sysclk = freq; rt1015->sysclk_src = clk_id; dev_dbg(component->dev, "Sysclk is %dHz and clock id is %d\n", freq, clk_id); snd_soc_component_update_bits(component, RT1015_CLK2, RT1015_CLK_SYS_PRE_SEL_MASK, reg_val); return 0; } static int rt1015_set_component_pll(struct snd_soc_component *component, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); struct rl6231_pll_code pll_code; int ret; if (!freq_in || !freq_out) { dev_dbg(component->dev, "PLL disabled\n"); rt1015->pll_in = 0; rt1015->pll_out = 0; return 0; } if (source == rt1015->pll_src && freq_in == rt1015->pll_in && freq_out == rt1015->pll_out) return 0; if (source == RT1015_PLL_S_BCLK) { if (rt1015->bclk_ratio == 0) { dev_err(component->dev, "Can not support bclk ratio as 0.\n"); return -EINVAL; } } switch (source) { case RT1015_PLL_S_MCLK: snd_soc_component_update_bits(component, RT1015_CLK2, RT1015_PLL_SEL_MASK, RT1015_PLL_SEL_PLL_SRC2); break; case RT1015_PLL_S_BCLK: snd_soc_component_update_bits(component, RT1015_CLK2, RT1015_PLL_SEL_MASK, RT1015_PLL_SEL_BCLK); break; default: dev_err(component->dev, "Unknown PLL Source %d\n", source); return -EINVAL; } ret = rl6231_pll_calc(freq_in, freq_out, &pll_code); if (ret < 0) { dev_err(component->dev, "Unsupport input clock %d\n", freq_in); return ret; } dev_dbg(component->dev, "bypass=%d m=%d n=%d k=%d\n", pll_code.m_bp, (pll_code.m_bp ? 0 : pll_code.m_code), pll_code.n_code, pll_code.k_code); snd_soc_component_write(component, RT1015_PLL1, (pll_code.m_bp ? 0 : pll_code.m_code) << RT1015_PLL_M_SFT | pll_code.m_bp << RT1015_PLL_M_BP_SFT | pll_code.n_code); snd_soc_component_write(component, RT1015_PLL2, pll_code.k_code); rt1015->pll_in = freq_in; rt1015->pll_out = freq_out; rt1015->pll_src = source; return 0; } static int rt1015_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio) { struct snd_soc_component *component = dai->component; struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); dev_dbg(component->dev, "%s ratio=%d\n", __func__, ratio); rt1015->bclk_ratio = ratio; if (ratio == 50) { dev_dbg(component->dev, "Unsupport bclk ratio\n"); return -EINVAL; } return 0; } static int rt1015_probe(struct snd_soc_component *component) { struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); rt1015->component = component; rt1015->bclk_ratio = 0; rt1015->cali_done = 0; snd_soc_component_write(component, RT1015_BAT_RPO_STEP1, 0x061c); INIT_DELAYED_WORK(&rt1015->flush_work, rt1015_flush_work); return 0; } static void rt1015_remove(struct snd_soc_component *component) { struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); cancel_delayed_work_sync(&rt1015->flush_work); regmap_write(rt1015->regmap, RT1015_RESET, 0); } #define RT1015_STEREO_RATES SNDRV_PCM_RATE_8000_192000 #define RT1015_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \ SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S8) static struct snd_soc_dai_ops rt1015_aif_dai_ops = { .hw_params = rt1015_hw_params, .set_fmt = rt1015_set_dai_fmt, .set_bclk_ratio = rt1015_set_bclk_ratio, }; static struct snd_soc_dai_driver rt1015_dai[] = { { .name = "rt1015-aif", .id = 0, .playback = { .stream_name = "AIF Playback", .channels_min = 1, .channels_max = 4, .rates = RT1015_STEREO_RATES, .formats = RT1015_FORMATS, }, .ops = &rt1015_aif_dai_ops, } }; #ifdef CONFIG_PM static int rt1015_suspend(struct snd_soc_component *component) { struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); regcache_cache_only(rt1015->regmap, true); regcache_mark_dirty(rt1015->regmap); return 0; } static int rt1015_resume(struct snd_soc_component *component) { struct rt1015_priv *rt1015 = snd_soc_component_get_drvdata(component); regcache_cache_only(rt1015->regmap, false); regcache_sync(rt1015->regmap); return 0; } #else #define rt1015_suspend NULL #define rt1015_resume NULL #endif static const struct snd_soc_component_driver soc_component_dev_rt1015 = { .probe = rt1015_probe, .remove = rt1015_remove, .suspend = rt1015_suspend, .resume = rt1015_resume, .controls = rt1015_snd_controls, .num_controls = ARRAY_SIZE(rt1015_snd_controls), .dapm_widgets = rt1015_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(rt1015_dapm_widgets), .dapm_routes = rt1015_dapm_routes, .num_dapm_routes = ARRAY_SIZE(rt1015_dapm_routes), .set_sysclk = rt1015_set_component_sysclk, .set_pll = rt1015_set_component_pll, .use_pmdown_time = 1, .endianness = 1, .non_legacy_dai_naming = 1, }; static const struct regmap_config rt1015_regmap = { .reg_bits = 16, .val_bits = 16, .max_register = RT1015_S_BST_TIMING_INTER36, .volatile_reg = rt1015_volatile_register, .readable_reg = rt1015_readable_register, .cache_type = REGCACHE_RBTREE, .reg_defaults = rt1015_reg, .num_reg_defaults = ARRAY_SIZE(rt1015_reg), }; static const struct i2c_device_id rt1015_i2c_id[] = { { "rt1015", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, rt1015_i2c_id); #if defined(CONFIG_OF) static const struct of_device_id rt1015_of_match[] = { { .compatible = "realtek,rt1015", }, {}, }; MODULE_DEVICE_TABLE(of, rt1015_of_match); #endif #ifdef CONFIG_ACPI static struct acpi_device_id rt1015_acpi_match[] = { {"10EC1015", 0,}, {}, }; MODULE_DEVICE_TABLE(acpi, rt1015_acpi_match); #endif static int rt1015_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct rt1015_priv *rt1015; int ret; unsigned int val; rt1015 = devm_kzalloc(&i2c->dev, sizeof(struct rt1015_priv), GFP_KERNEL); if (rt1015 == NULL) return -ENOMEM; i2c_set_clientdata(i2c, rt1015); rt1015->regmap = devm_regmap_init_i2c(i2c, &rt1015_regmap); if (IS_ERR(rt1015->regmap)) { ret = PTR_ERR(rt1015->regmap); dev_err(&i2c->dev, "Failed to allocate register map: %d\n", ret); return ret; } rt1015->hw_config = (i2c->addr == 0x29) ? RT1015_HW_29 : RT1015_HW_28; regmap_read(rt1015->regmap, RT1015_DEVICE_ID, &val); if ((val != RT1015_DEVICE_ID_VAL) && (val != RT1015_DEVICE_ID_VAL2)) { dev_err(&i2c->dev, "Device with ID register %x is not rt1015\n", val); return -ENODEV; } return devm_snd_soc_register_component(&i2c->dev, &soc_component_dev_rt1015, rt1015_dai, ARRAY_SIZE(rt1015_dai)); } static void rt1015_i2c_shutdown(struct i2c_client *client) { struct rt1015_priv *rt1015 = i2c_get_clientdata(client); regmap_write(rt1015->regmap, RT1015_RESET, 0); } static struct i2c_driver rt1015_i2c_driver = { .driver = { .name = "rt1015", .of_match_table = of_match_ptr(rt1015_of_match), .acpi_match_table = ACPI_PTR(rt1015_acpi_match), }, .probe = rt1015_i2c_probe, .shutdown = rt1015_i2c_shutdown, .id_table = rt1015_i2c_id, }; module_i2c_driver(rt1015_i2c_driver); MODULE_DESCRIPTION("ASoC RT1015 driver"); MODULE_AUTHOR("Jack Yu "); MODULE_LICENSE("GPL v2");