/* * net/switchdev/switchdev.c - Switch device API * Copyright (c) 2014-2015 Jiri Pirko * Copyright (c) 2014-2015 Scott Feldman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include /** * switchdev_trans_item_enqueue - Enqueue data item to transaction queue * * @trans: transaction * @data: pointer to data being queued * @destructor: data destructor * @tritem: transaction item being queued * * Enqeueue data item to transaction queue. tritem is typically placed in * cointainter pointed at by data pointer. Destructor is called on * transaction abort and after successful commit phase in case * the caller did not dequeue the item before. */ void switchdev_trans_item_enqueue(struct switchdev_trans *trans, void *data, void (*destructor)(void const *), struct switchdev_trans_item *tritem) { tritem->data = data; tritem->destructor = destructor; list_add_tail(&tritem->list, &trans->item_list); } EXPORT_SYMBOL_GPL(switchdev_trans_item_enqueue); static struct switchdev_trans_item * __switchdev_trans_item_dequeue(struct switchdev_trans *trans) { struct switchdev_trans_item *tritem; if (list_empty(&trans->item_list)) return NULL; tritem = list_first_entry(&trans->item_list, struct switchdev_trans_item, list); list_del(&tritem->list); return tritem; } /** * switchdev_trans_item_dequeue - Dequeue data item from transaction queue * * @trans: transaction */ void *switchdev_trans_item_dequeue(struct switchdev_trans *trans) { struct switchdev_trans_item *tritem; tritem = __switchdev_trans_item_dequeue(trans); BUG_ON(!tritem); return tritem->data; } EXPORT_SYMBOL_GPL(switchdev_trans_item_dequeue); static void switchdev_trans_init(struct switchdev_trans *trans) { INIT_LIST_HEAD(&trans->item_list); } static void switchdev_trans_items_destroy(struct switchdev_trans *trans) { struct switchdev_trans_item *tritem; while ((tritem = __switchdev_trans_item_dequeue(trans))) tritem->destructor(tritem->data); } static void switchdev_trans_items_warn_destroy(struct net_device *dev, struct switchdev_trans *trans) { WARN(!list_empty(&trans->item_list), "%s: transaction item queue is not empty.\n", dev->name); switchdev_trans_items_destroy(trans); } static LIST_HEAD(deferred); static DEFINE_SPINLOCK(deferred_lock); typedef void switchdev_deferred_func_t(struct net_device *dev, const void *data); struct switchdev_deferred_item { struct list_head list; struct net_device *dev; switchdev_deferred_func_t *func; unsigned long data[0]; }; static struct switchdev_deferred_item *switchdev_deferred_dequeue(void) { struct switchdev_deferred_item *dfitem; spin_lock_bh(&deferred_lock); if (list_empty(&deferred)) { dfitem = NULL; goto unlock; } dfitem = list_first_entry(&deferred, struct switchdev_deferred_item, list); list_del(&dfitem->list); unlock: spin_unlock_bh(&deferred_lock); return dfitem; } /** * switchdev_deferred_process - Process ops in deferred queue * * Called to flush the ops currently queued in deferred ops queue. * rtnl_lock must be held. */ void switchdev_deferred_process(void) { struct switchdev_deferred_item *dfitem; ASSERT_RTNL(); while ((dfitem = switchdev_deferred_dequeue())) { dfitem->func(dfitem->dev, dfitem->data); dev_put(dfitem->dev); kfree(dfitem); } } EXPORT_SYMBOL_GPL(switchdev_deferred_process); static void switchdev_deferred_process_work(struct work_struct *work) { rtnl_lock(); switchdev_deferred_process(); rtnl_unlock(); } static DECLARE_WORK(deferred_process_work, switchdev_deferred_process_work); static int switchdev_deferred_enqueue(struct net_device *dev, const void *data, size_t data_len, switchdev_deferred_func_t *func) { struct switchdev_deferred_item *dfitem; dfitem = kmalloc(sizeof(*dfitem) + data_len, GFP_ATOMIC); if (!dfitem) return -ENOMEM; dfitem->dev = dev; dfitem->func = func; memcpy(dfitem->data, data, data_len); dev_hold(dev); spin_lock_bh(&deferred_lock); list_add_tail(&dfitem->list, &deferred); spin_unlock_bh(&deferred_lock); schedule_work(&deferred_process_work); return 0; } /** * switchdev_port_attr_get - Get port attribute * * @dev: port device * @attr: attribute to get */ int switchdev_port_attr_get(struct net_device *dev, struct switchdev_attr *attr) { const struct switchdev_ops *ops = dev->switchdev_ops; struct net_device *lower_dev; struct list_head *iter; struct switchdev_attr first = { .id = SWITCHDEV_ATTR_ID_UNDEFINED }; int err = -EOPNOTSUPP; if (ops && ops->switchdev_port_attr_get) return ops->switchdev_port_attr_get(dev, attr); if (attr->flags & SWITCHDEV_F_NO_RECURSE) return err; /* Switch device port(s) may be stacked under * bond/team/vlan dev, so recurse down to get attr on * each port. Return -ENODATA if attr values don't * compare across ports. */ netdev_for_each_lower_dev(dev, lower_dev, iter) { err = switchdev_port_attr_get(lower_dev, attr); if (err) break; if (first.id == SWITCHDEV_ATTR_ID_UNDEFINED) first = *attr; else if (memcmp(&first, attr, sizeof(*attr))) return -ENODATA; } return err; } EXPORT_SYMBOL_GPL(switchdev_port_attr_get); static int __switchdev_port_attr_set(struct net_device *dev, const struct switchdev_attr *attr, struct switchdev_trans *trans) { const struct switchdev_ops *ops = dev->switchdev_ops; struct net_device *lower_dev; struct list_head *iter; int err = -EOPNOTSUPP; if (ops && ops->switchdev_port_attr_set) return ops->switchdev_port_attr_set(dev, attr, trans); if (attr->flags & SWITCHDEV_F_NO_RECURSE) goto done; /* Switch device port(s) may be stacked under * bond/team/vlan dev, so recurse down to set attr on * each port. */ netdev_for_each_lower_dev(dev, lower_dev, iter) { err = __switchdev_port_attr_set(lower_dev, attr, trans); if (err == -EOPNOTSUPP && attr->flags & SWITCHDEV_F_SKIP_EOPNOTSUPP) continue; if (err) break; } done: if (err == -EOPNOTSUPP && attr->flags & SWITCHDEV_F_SKIP_EOPNOTSUPP) err = 0; return err; } static int switchdev_port_attr_set_now(struct net_device *dev, const struct switchdev_attr *attr) { struct switchdev_trans trans; int err; switchdev_trans_init(&trans); /* Phase I: prepare for attr set. Driver/device should fail * here if there are going to be issues in the commit phase, * such as lack of resources or support. The driver/device * should reserve resources needed for the commit phase here, * but should not commit the attr. */ trans.ph_prepare = true; err = __switchdev_port_attr_set(dev, attr, &trans); if (err) { /* Prepare phase failed: abort the transaction. Any * resources reserved in the prepare phase are * released. */ if (err != -EOPNOTSUPP) switchdev_trans_items_destroy(&trans); return err; } /* Phase II: commit attr set. This cannot fail as a fault * of driver/device. If it does, it's a bug in the driver/device * because the driver said everythings was OK in phase I. */ trans.ph_prepare = false; err = __switchdev_port_attr_set(dev, attr, &trans); WARN(err, "%s: Commit of attribute (id=%d) failed.\n", dev->name, attr->id); switchdev_trans_items_warn_destroy(dev, &trans); return err; } static void switchdev_port_attr_set_deferred(struct net_device *dev, const void *data) { const struct switchdev_attr *attr = data; int err; err = switchdev_port_attr_set_now(dev, attr); if (err && err != -EOPNOTSUPP) netdev_err(dev, "failed (err=%d) to set attribute (id=%d)\n", err, attr->id); } static int switchdev_port_attr_set_defer(struct net_device *dev, const struct switchdev_attr *attr) { return switchdev_deferred_enqueue(dev, attr, sizeof(*attr), switchdev_port_attr_set_deferred); } /** * switchdev_port_attr_set - Set port attribute * * @dev: port device * @attr: attribute to set * * Use a 2-phase prepare-commit transaction model to ensure * system is not left in a partially updated state due to * failure from driver/device. * * rtnl_lock must be held and must not be in atomic section, * in case SWITCHDEV_F_DEFER flag is not set. */ int switchdev_port_attr_set(struct net_device *dev, const struct switchdev_attr *attr) { if (attr->flags & SWITCHDEV_F_DEFER) return switchdev_port_attr_set_defer(dev, attr); ASSERT_RTNL(); return switchdev_port_attr_set_now(dev, attr); } EXPORT_SYMBOL_GPL(switchdev_port_attr_set); static int __switchdev_port_obj_add(struct net_device *dev, const struct switchdev_obj *obj, struct switchdev_trans *trans) { const struct switchdev_ops *ops = dev->switchdev_ops; struct net_device *lower_dev; struct list_head *iter; int err = -EOPNOTSUPP; if (ops && ops->switchdev_port_obj_add) return ops->switchdev_port_obj_add(dev, obj, trans); /* Switch device port(s) may be stacked under * bond/team/vlan dev, so recurse down to add object on * each port. */ netdev_for_each_lower_dev(dev, lower_dev, iter) { err = __switchdev_port_obj_add(lower_dev, obj, trans); if (err) break; } return err; } /** * switchdev_port_obj_add - Add port object * * @dev: port device * @id: object ID * @obj: object to add * * Use a 2-phase prepare-commit transaction model to ensure * system is not left in a partially updated state due to * failure from driver/device. * * rtnl_lock must be held. */ int switchdev_port_obj_add(struct net_device *dev, const struct switchdev_obj *obj) { struct switchdev_trans trans; int err; ASSERT_RTNL(); switchdev_trans_init(&trans); /* Phase I: prepare for obj add. Driver/device should fail * here if there are going to be issues in the commit phase, * such as lack of resources or support. The driver/device * should reserve resources needed for the commit phase here, * but should not commit the obj. */ trans.ph_prepare = true; err = __switchdev_port_obj_add(dev, obj, &trans); if (err) { /* Prepare phase failed: abort the transaction. Any * resources reserved in the prepare phase are * released. */ if (err != -EOPNOTSUPP) switchdev_trans_items_destroy(&trans); return err; } /* Phase II: commit obj add. This cannot fail as a fault * of driver/device. If it does, it's a bug in the driver/device * because the driver said everythings was OK in phase I. */ trans.ph_prepare = false; err = __switchdev_port_obj_add(dev, obj, &trans); WARN(err, "%s: Commit of object (id=%d) failed.\n", dev->name, obj->id); switchdev_trans_items_warn_destroy(dev, &trans); return err; } EXPORT_SYMBOL_GPL(switchdev_port_obj_add); /** * switchdev_port_obj_del - Delete port object * * @dev: port device * @id: object ID * @obj: object to delete */ int switchdev_port_obj_del(struct net_device *dev, const struct switchdev_obj *obj) { const struct switchdev_ops *ops = dev->switchdev_ops; struct net_device *lower_dev; struct list_head *iter; int err = -EOPNOTSUPP; if (ops && ops->switchdev_port_obj_del) return ops->switchdev_port_obj_del(dev, obj); /* Switch device port(s) may be stacked under * bond/team/vlan dev, so recurse down to delete object on * each port. */ netdev_for_each_lower_dev(dev, lower_dev, iter) { err = switchdev_port_obj_del(lower_dev, obj); if (err) break; } return err; } EXPORT_SYMBOL_GPL(switchdev_port_obj_del); /** * switchdev_port_obj_dump - Dump port objects * * @dev: port device * @id: object ID * @obj: object to dump * @cb: function to call with a filled object */ int switchdev_port_obj_dump(struct net_device *dev, struct switchdev_obj *obj, switchdev_obj_dump_cb_t *cb) { const struct switchdev_ops *ops = dev->switchdev_ops; struct net_device *lower_dev; struct list_head *iter; int err = -EOPNOTSUPP; if (ops && ops->switchdev_port_obj_dump) return ops->switchdev_port_obj_dump(dev, obj, cb); /* Switch device port(s) may be stacked under * bond/team/vlan dev, so recurse down to dump objects on * first port at bottom of stack. */ netdev_for_each_lower_dev(dev, lower_dev, iter) { err = switchdev_port_obj_dump(lower_dev, obj, cb); break; } return err; } EXPORT_SYMBOL_GPL(switchdev_port_obj_dump); static DEFINE_MUTEX(switchdev_mutex); static RAW_NOTIFIER_HEAD(switchdev_notif_chain); /** * register_switchdev_notifier - Register notifier * @nb: notifier_block * * Register switch device notifier. This should be used by code * which needs to monitor events happening in particular device. * Return values are same as for atomic_notifier_chain_register(). */ int register_switchdev_notifier(struct notifier_block *nb) { int err; mutex_lock(&switchdev_mutex); err = raw_notifier_chain_register(&switchdev_notif_chain, nb); mutex_unlock(&switchdev_mutex); return err; } EXPORT_SYMBOL_GPL(register_switchdev_notifier); /** * unregister_switchdev_notifier - Unregister notifier * @nb: notifier_block * * Unregister switch device notifier. * Return values are same as for atomic_notifier_chain_unregister(). */ int unregister_switchdev_notifier(struct notifier_block *nb) { int err; mutex_lock(&switchdev_mutex); err = raw_notifier_chain_unregister(&switchdev_notif_chain, nb); mutex_unlock(&switchdev_mutex); return err; } EXPORT_SYMBOL_GPL(unregister_switchdev_notifier); /** * call_switchdev_notifiers - Call notifiers * @val: value passed unmodified to notifier function * @dev: port device * @info: notifier information data * * Call all network notifier blocks. This should be called by driver * when it needs to propagate hardware event. * Return values are same as for atomic_notifier_call_chain(). */ int call_switchdev_notifiers(unsigned long val, struct net_device *dev, struct switchdev_notifier_info *info) { int err; info->dev = dev; mutex_lock(&switchdev_mutex); err = raw_notifier_call_chain(&switchdev_notif_chain, val, info); mutex_unlock(&switchdev_mutex); return err; } EXPORT_SYMBOL_GPL(call_switchdev_notifiers); struct switchdev_vlan_dump { struct switchdev_obj_port_vlan vlan; struct sk_buff *skb; u32 filter_mask; u16 flags; u16 begin; u16 end; }; static int switchdev_port_vlan_dump_put(struct switchdev_vlan_dump *dump) { struct bridge_vlan_info vinfo; vinfo.flags = dump->flags; if (dump->begin == 0 && dump->end == 0) { return 0; } else if (dump->begin == dump->end) { vinfo.vid = dump->begin; if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO, sizeof(vinfo), &vinfo)) return -EMSGSIZE; } else { vinfo.vid = dump->begin; vinfo.flags |= BRIDGE_VLAN_INFO_RANGE_BEGIN; if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO, sizeof(vinfo), &vinfo)) return -EMSGSIZE; vinfo.vid = dump->end; vinfo.flags &= ~BRIDGE_VLAN_INFO_RANGE_BEGIN; vinfo.flags |= BRIDGE_VLAN_INFO_RANGE_END; if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO, sizeof(vinfo), &vinfo)) return -EMSGSIZE; } return 0; } static int switchdev_port_vlan_dump_cb(struct switchdev_obj *obj) { struct switchdev_obj_port_vlan *vlan = SWITCHDEV_OBJ_PORT_VLAN(obj); struct switchdev_vlan_dump *dump = container_of(vlan, struct switchdev_vlan_dump, vlan); int err = 0; if (vlan->vid_begin > vlan->vid_end) return -EINVAL; if (dump->filter_mask & RTEXT_FILTER_BRVLAN) { dump->flags = vlan->flags; for (dump->begin = dump->end = vlan->vid_begin; dump->begin <= vlan->vid_end; dump->begin++, dump->end++) { err = switchdev_port_vlan_dump_put(dump); if (err) return err; } } else if (dump->filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED) { if (dump->begin > vlan->vid_begin && dump->begin >= vlan->vid_end) { if ((dump->begin - 1) == vlan->vid_end && dump->flags == vlan->flags) { /* prepend */ dump->begin = vlan->vid_begin; } else { err = switchdev_port_vlan_dump_put(dump); dump->flags = vlan->flags; dump->begin = vlan->vid_begin; dump->end = vlan->vid_end; } } else if (dump->end <= vlan->vid_begin && dump->end < vlan->vid_end) { if ((dump->end + 1) == vlan->vid_begin && dump->flags == vlan->flags) { /* append */ dump->end = vlan->vid_end; } else { err = switchdev_port_vlan_dump_put(dump); dump->flags = vlan->flags; dump->begin = vlan->vid_begin; dump->end = vlan->vid_end; } } else { err = -EINVAL; } } return err; } static int switchdev_port_vlan_fill(struct sk_buff *skb, struct net_device *dev, u32 filter_mask) { struct switchdev_vlan_dump dump = { .vlan.obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN, .skb = skb, .filter_mask = filter_mask, }; int err = 0; if ((filter_mask & RTEXT_FILTER_BRVLAN) || (filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED)) { err = switchdev_port_obj_dump(dev, &dump.vlan.obj, switchdev_port_vlan_dump_cb); if (err) goto err_out; if (filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED) /* last one */ err = switchdev_port_vlan_dump_put(&dump); } err_out: return err == -EOPNOTSUPP ? 0 : err; } /** * switchdev_port_bridge_getlink - Get bridge port attributes * * @dev: port device * * Called for SELF on rtnl_bridge_getlink to get bridge port * attributes. */ int switchdev_port_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, struct net_device *dev, u32 filter_mask, int nlflags) { struct switchdev_attr attr = { .id = SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS, }; u16 mode = BRIDGE_MODE_UNDEF; u32 mask = BR_LEARNING | BR_LEARNING_SYNC; int err; err = switchdev_port_attr_get(dev, &attr); if (err && err != -EOPNOTSUPP) return err; return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, attr.u.brport_flags, mask, nlflags, filter_mask, switchdev_port_vlan_fill); } EXPORT_SYMBOL_GPL(switchdev_port_bridge_getlink); static int switchdev_port_br_setflag(struct net_device *dev, struct nlattr *nlattr, unsigned long brport_flag) { struct switchdev_attr attr = { .id = SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS, }; u8 flag = nla_get_u8(nlattr); int err; err = switchdev_port_attr_get(dev, &attr); if (err) return err; if (flag) attr.u.brport_flags |= brport_flag; else attr.u.brport_flags &= ~brport_flag; return switchdev_port_attr_set(dev, &attr); } static const struct nla_policy switchdev_port_bridge_policy[IFLA_BRPORT_MAX + 1] = { [IFLA_BRPORT_STATE] = { .type = NLA_U8 }, [IFLA_BRPORT_COST] = { .type = NLA_U32 }, [IFLA_BRPORT_PRIORITY] = { .type = NLA_U16 }, [IFLA_BRPORT_MODE] = { .type = NLA_U8 }, [IFLA_BRPORT_GUARD] = { .type = NLA_U8 }, [IFLA_BRPORT_PROTECT] = { .type = NLA_U8 }, [IFLA_BRPORT_FAST_LEAVE] = { .type = NLA_U8 }, [IFLA_BRPORT_LEARNING] = { .type = NLA_U8 }, [IFLA_BRPORT_LEARNING_SYNC] = { .type = NLA_U8 }, [IFLA_BRPORT_UNICAST_FLOOD] = { .type = NLA_U8 }, }; static int switchdev_port_br_setlink_protinfo(struct net_device *dev, struct nlattr *protinfo) { struct nlattr *attr; int rem; int err; err = nla_validate_nested(protinfo, IFLA_BRPORT_MAX, switchdev_port_bridge_policy); if (err) return err; nla_for_each_nested(attr, protinfo, rem) { switch (nla_type(attr)) { case IFLA_BRPORT_LEARNING: err = switchdev_port_br_setflag(dev, attr, BR_LEARNING); break; case IFLA_BRPORT_LEARNING_SYNC: err = switchdev_port_br_setflag(dev, attr, BR_LEARNING_SYNC); break; default: err = -EOPNOTSUPP; break; } if (err) return err; } return 0; } static int switchdev_port_br_afspec(struct net_device *dev, struct nlattr *afspec, int (*f)(struct net_device *dev, const struct switchdev_obj *obj)) { struct nlattr *attr; struct bridge_vlan_info *vinfo; struct switchdev_obj_port_vlan vlan = { .obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN, }; int rem; int err; nla_for_each_nested(attr, afspec, rem) { if (nla_type(attr) != IFLA_BRIDGE_VLAN_INFO) continue; if (nla_len(attr) != sizeof(struct bridge_vlan_info)) return -EINVAL; vinfo = nla_data(attr); vlan.flags = vinfo->flags; if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_BEGIN) { if (vlan.vid_begin) return -EINVAL; vlan.vid_begin = vinfo->vid; /* don't allow range of pvids */ if (vlan.flags & BRIDGE_VLAN_INFO_PVID) return -EINVAL; } else if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_END) { if (!vlan.vid_begin) return -EINVAL; vlan.vid_end = vinfo->vid; if (vlan.vid_end <= vlan.vid_begin) return -EINVAL; err = f(dev, &vlan.obj); if (err) return err; memset(&vlan, 0, sizeof(vlan)); } else { if (vlan.vid_begin) return -EINVAL; vlan.vid_begin = vinfo->vid; vlan.vid_end = vinfo->vid; err = f(dev, &vlan.obj); if (err) return err; memset(&vlan, 0, sizeof(vlan)); } } return 0; } /** * switchdev_port_bridge_setlink - Set bridge port attributes * * @dev: port device * @nlh: netlink header * @flags: netlink flags * * Called for SELF on rtnl_bridge_setlink to set bridge port * attributes. */ int switchdev_port_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, u16 flags) { struct nlattr *protinfo; struct nlattr *afspec; int err = 0; protinfo = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_PROTINFO); if (protinfo) { err = switchdev_port_br_setlink_protinfo(dev, protinfo); if (err) return err; } afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); if (afspec) err = switchdev_port_br_afspec(dev, afspec, switchdev_port_obj_add); return err; } EXPORT_SYMBOL_GPL(switchdev_port_bridge_setlink); /** * switchdev_port_bridge_dellink - Set bridge port attributes * * @dev: port device * @nlh: netlink header * @flags: netlink flags * * Called for SELF on rtnl_bridge_dellink to set bridge port * attributes. */ int switchdev_port_bridge_dellink(struct net_device *dev, struct nlmsghdr *nlh, u16 flags) { struct nlattr *afspec; afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); if (afspec) return switchdev_port_br_afspec(dev, afspec, switchdev_port_obj_del); return 0; } EXPORT_SYMBOL_GPL(switchdev_port_bridge_dellink); /** * switchdev_port_fdb_add - Add FDB (MAC/VLAN) entry to port * * @ndmsg: netlink hdr * @nlattr: netlink attributes * @dev: port device * @addr: MAC address to add * @vid: VLAN to add * * Add FDB entry to switch device. */ int switchdev_port_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 nlm_flags) { struct switchdev_obj_port_fdb fdb = { .obj.id = SWITCHDEV_OBJ_ID_PORT_FDB, .addr = addr, .vid = vid, }; return switchdev_port_obj_add(dev, &fdb.obj); } EXPORT_SYMBOL_GPL(switchdev_port_fdb_add); /** * switchdev_port_fdb_del - Delete FDB (MAC/VLAN) entry from port * * @ndmsg: netlink hdr * @nlattr: netlink attributes * @dev: port device * @addr: MAC address to delete * @vid: VLAN to delete * * Delete FDB entry from switch device. */ int switchdev_port_fdb_del(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid) { struct switchdev_obj_port_fdb fdb = { .obj.id = SWITCHDEV_OBJ_ID_PORT_FDB, .addr = addr, .vid = vid, }; return switchdev_port_obj_del(dev, &fdb.obj); } EXPORT_SYMBOL_GPL(switchdev_port_fdb_del); struct switchdev_fdb_dump { struct switchdev_obj_port_fdb fdb; struct net_device *dev; struct sk_buff *skb; struct netlink_callback *cb; int idx; }; static int switchdev_port_fdb_dump_cb(struct switchdev_obj *obj) { struct switchdev_obj_port_fdb *fdb = SWITCHDEV_OBJ_PORT_FDB(obj); struct switchdev_fdb_dump *dump = container_of(fdb, struct switchdev_fdb_dump, fdb); u32 portid = NETLINK_CB(dump->cb->skb).portid; u32 seq = dump->cb->nlh->nlmsg_seq; struct nlmsghdr *nlh; struct ndmsg *ndm; if (dump->idx < dump->cb->args[0]) goto skip; nlh = nlmsg_put(dump->skb, portid, seq, RTM_NEWNEIGH, sizeof(*ndm), NLM_F_MULTI); if (!nlh) return -EMSGSIZE; ndm = nlmsg_data(nlh); ndm->ndm_family = AF_BRIDGE; ndm->ndm_pad1 = 0; ndm->ndm_pad2 = 0; ndm->ndm_flags = NTF_SELF; ndm->ndm_type = 0; ndm->ndm_ifindex = dump->dev->ifindex; ndm->ndm_state = fdb->ndm_state; if (nla_put(dump->skb, NDA_LLADDR, ETH_ALEN, fdb->addr)) goto nla_put_failure; if (fdb->vid && nla_put_u16(dump->skb, NDA_VLAN, fdb->vid)) goto nla_put_failure; nlmsg_end(dump->skb, nlh); skip: dump->idx++; return 0; nla_put_failure: nlmsg_cancel(dump->skb, nlh); return -EMSGSIZE; } /** * switchdev_port_fdb_dump - Dump port FDB (MAC/VLAN) entries * * @skb: netlink skb * @cb: netlink callback * @dev: port device * @filter_dev: filter device * @idx: * * Delete FDB entry from switch device. */ int switchdev_port_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev, struct net_device *filter_dev, int idx) { struct switchdev_fdb_dump dump = { .fdb.obj.id = SWITCHDEV_OBJ_ID_PORT_FDB, .dev = dev, .skb = skb, .cb = cb, .idx = idx, }; switchdev_port_obj_dump(dev, &dump.fdb.obj, switchdev_port_fdb_dump_cb); return dump.idx; } EXPORT_SYMBOL_GPL(switchdev_port_fdb_dump); static struct net_device *switchdev_get_lowest_dev(struct net_device *dev) { const struct switchdev_ops *ops = dev->switchdev_ops; struct net_device *lower_dev; struct net_device *port_dev; struct list_head *iter; /* Recusively search down until we find a sw port dev. * (A sw port dev supports switchdev_port_attr_get). */ if (ops && ops->switchdev_port_attr_get) return dev; netdev_for_each_lower_dev(dev, lower_dev, iter) { port_dev = switchdev_get_lowest_dev(lower_dev); if (port_dev) return port_dev; } return NULL; } static struct net_device *switchdev_get_dev_by_nhs(struct fib_info *fi) { struct switchdev_attr attr = { .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID, }; struct switchdev_attr prev_attr; struct net_device *dev = NULL; int nhsel; /* For this route, all nexthop devs must be on the same switch. */ for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { const struct fib_nh *nh = &fi->fib_nh[nhsel]; if (!nh->nh_dev) return NULL; dev = switchdev_get_lowest_dev(nh->nh_dev); if (!dev) return NULL; if (switchdev_port_attr_get(dev, &attr)) return NULL; if (nhsel > 0 && !netdev_phys_item_id_same(&prev_attr.u.ppid, &attr.u.ppid)) return NULL; prev_attr = attr; } return dev; } /** * switchdev_fib_ipv4_add - Add/modify switch IPv4 route entry * * @dst: route's IPv4 destination address * @dst_len: destination address length (prefix length) * @fi: route FIB info structure * @tos: route TOS * @type: route type * @nlflags: netlink flags passed in (NLM_F_*) * @tb_id: route table ID * * Add/modify switch IPv4 route entry. */ int switchdev_fib_ipv4_add(u32 dst, int dst_len, struct fib_info *fi, u8 tos, u8 type, u32 nlflags, u32 tb_id) { struct switchdev_obj_ipv4_fib ipv4_fib = { .obj.id = SWITCHDEV_OBJ_ID_IPV4_FIB, .dst = dst, .dst_len = dst_len, .fi = fi, .tos = tos, .type = type, .nlflags = nlflags, .tb_id = tb_id, }; struct net_device *dev; int err = 0; /* Don't offload route if using custom ip rules or if * IPv4 FIB offloading has been disabled completely. */ #ifdef CONFIG_IP_MULTIPLE_TABLES if (fi->fib_net->ipv4.fib_has_custom_rules) return 0; #endif if (fi->fib_net->ipv4.fib_offload_disabled) return 0; dev = switchdev_get_dev_by_nhs(fi); if (!dev) return 0; err = switchdev_port_obj_add(dev, &ipv4_fib.obj); if (!err) fi->fib_flags |= RTNH_F_OFFLOAD; return err == -EOPNOTSUPP ? 0 : err; } EXPORT_SYMBOL_GPL(switchdev_fib_ipv4_add); /** * switchdev_fib_ipv4_del - Delete IPv4 route entry from switch * * @dst: route's IPv4 destination address * @dst_len: destination address length (prefix length) * @fi: route FIB info structure * @tos: route TOS * @type: route type * @tb_id: route table ID * * Delete IPv4 route entry from switch device. */ int switchdev_fib_ipv4_del(u32 dst, int dst_len, struct fib_info *fi, u8 tos, u8 type, u32 tb_id) { struct switchdev_obj_ipv4_fib ipv4_fib = { .obj.id = SWITCHDEV_OBJ_ID_IPV4_FIB, .dst = dst, .dst_len = dst_len, .fi = fi, .tos = tos, .type = type, .nlflags = 0, .tb_id = tb_id, }; struct net_device *dev; int err = 0; if (!(fi->fib_flags & RTNH_F_OFFLOAD)) return 0; dev = switchdev_get_dev_by_nhs(fi); if (!dev) return 0; err = switchdev_port_obj_del(dev, &ipv4_fib.obj); if (!err) fi->fib_flags &= ~RTNH_F_OFFLOAD; return err == -EOPNOTSUPP ? 0 : err; } EXPORT_SYMBOL_GPL(switchdev_fib_ipv4_del); /** * switchdev_fib_ipv4_abort - Abort an IPv4 FIB operation * * @fi: route FIB info structure */ void switchdev_fib_ipv4_abort(struct fib_info *fi) { /* There was a problem installing this route to the offload * device. For now, until we come up with more refined * policy handling, abruptly end IPv4 fib offloading for * for entire net by flushing offload device(s) of all * IPv4 routes, and mark IPv4 fib offloading broken from * this point forward. */ fib_flush_external(fi->fib_net); fi->fib_net->ipv4.fib_offload_disabled = true; } EXPORT_SYMBOL_GPL(switchdev_fib_ipv4_abort); static bool switchdev_port_same_parent_id(struct net_device *a, struct net_device *b) { struct switchdev_attr a_attr = { .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID, .flags = SWITCHDEV_F_NO_RECURSE, }; struct switchdev_attr b_attr = { .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID, .flags = SWITCHDEV_F_NO_RECURSE, }; if (switchdev_port_attr_get(a, &a_attr) || switchdev_port_attr_get(b, &b_attr)) return false; return netdev_phys_item_id_same(&a_attr.u.ppid, &b_attr.u.ppid); } static u32 switchdev_port_fwd_mark_get(struct net_device *dev, struct net_device *group_dev) { struct net_device *lower_dev; struct list_head *iter; netdev_for_each_lower_dev(group_dev, lower_dev, iter) { if (lower_dev == dev) continue; if (switchdev_port_same_parent_id(dev, lower_dev)) return lower_dev->offload_fwd_mark; return switchdev_port_fwd_mark_get(dev, lower_dev); } return dev->ifindex; } static void switchdev_port_fwd_mark_reset(struct net_device *group_dev, u32 old_mark, u32 *reset_mark) { struct net_device *lower_dev; struct list_head *iter; netdev_for_each_lower_dev(group_dev, lower_dev, iter) { if (lower_dev->offload_fwd_mark == old_mark) { if (!*reset_mark) *reset_mark = lower_dev->ifindex; lower_dev->offload_fwd_mark = *reset_mark; } switchdev_port_fwd_mark_reset(lower_dev, old_mark, reset_mark); } } /** * switchdev_port_fwd_mark_set - Set port offload forwarding mark * * @dev: port device * @group_dev: containing device * @joining: true if dev is joining group; false if leaving group * * An ungrouped port's offload mark is just its ifindex. A grouped * port's (member of a bridge, for example) offload mark is the ifindex * of one of the ports in the group with the same parent (switch) ID. * Ports on the same device in the same group will have the same mark. * * Example: * * br0 ifindex=9 * sw1p1 ifindex=2 mark=2 * sw1p2 ifindex=3 mark=2 * sw2p1 ifindex=4 mark=5 * sw2p2 ifindex=5 mark=5 * * If sw2p2 leaves the bridge, we'll have: * * br0 ifindex=9 * sw1p1 ifindex=2 mark=2 * sw1p2 ifindex=3 mark=2 * sw2p1 ifindex=4 mark=4 * sw2p2 ifindex=5 mark=5 */ void switchdev_port_fwd_mark_set(struct net_device *dev, struct net_device *group_dev, bool joining) { u32 mark = dev->ifindex; u32 reset_mark = 0; if (group_dev && joining) { mark = switchdev_port_fwd_mark_get(dev, group_dev); } else if (group_dev && !joining) { if (dev->offload_fwd_mark == mark) /* Ohoh, this port was the mark reference port, * but it's leaving the group, so reset the * mark for the remaining ports in the group. */ switchdev_port_fwd_mark_reset(group_dev, mark, &reset_mark); } dev->offload_fwd_mark = mark; } EXPORT_SYMBOL_GPL(switchdev_port_fwd_mark_set);