/* * NET An implementation of the SOCKET network access protocol. * * Version: @(#)socket.c 1.1.93 18/02/95 * * Authors: Orest Zborowski, * Ross Biro * Fred N. van Kempen, * * Fixes: * Anonymous : NOTSOCK/BADF cleanup. Error fix in * shutdown() * Alan Cox : verify_area() fixes * Alan Cox : Removed DDI * Jonathan Kamens : SOCK_DGRAM reconnect bug * Alan Cox : Moved a load of checks to the very * top level. * Alan Cox : Move address structures to/from user * mode above the protocol layers. * Rob Janssen : Allow 0 length sends. * Alan Cox : Asynchronous I/O support (cribbed from the * tty drivers). * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) * Jeff Uphoff : Made max number of sockets command-line * configurable. * Matti Aarnio : Made the number of sockets dynamic, * to be allocated when needed, and mr. * Uphoff's max is used as max to be * allowed to allocate. * Linus : Argh. removed all the socket allocation * altogether: it's in the inode now. * Alan Cox : Made sock_alloc()/sock_release() public * for NetROM and future kernel nfsd type * stuff. * Alan Cox : sendmsg/recvmsg basics. * Tom Dyas : Export net symbols. * Marcin Dalecki : Fixed problems with CONFIG_NET="n". * Alan Cox : Added thread locking to sys_* calls * for sockets. May have errors at the * moment. * Kevin Buhr : Fixed the dumb errors in the above. * Andi Kleen : Some small cleanups, optimizations, * and fixed a copy_from_user() bug. * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) * Tigran Aivazian : Made listen(2) backlog sanity checks * protocol-independent * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * * This module is effectively the top level interface to the BSD socket * paradigm. * * Based upon Swansea University Computer Society NET3.039 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int sysctl_net_busy_read __read_mostly; unsigned int sysctl_net_busy_poll __read_mostly; #endif static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); static int sock_mmap(struct file *file, struct vm_area_struct *vma); static int sock_close(struct inode *inode, struct file *file); static unsigned int sock_poll(struct file *file, struct poll_table_struct *wait); static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #ifdef CONFIG_COMPAT static long compat_sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #endif static int sock_fasync(int fd, struct file *filp, int on); static ssize_t sock_sendpage(struct file *file, struct page *page, int offset, size_t size, loff_t *ppos, int more); static ssize_t sock_splice_read(struct file *file, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); /* * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear * in the operation structures but are done directly via the socketcall() multiplexor. */ static const struct file_operations socket_file_ops = { .owner = THIS_MODULE, .llseek = no_llseek, .read_iter = sock_read_iter, .write_iter = sock_write_iter, .poll = sock_poll, .unlocked_ioctl = sock_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = compat_sock_ioctl, #endif .mmap = sock_mmap, .release = sock_close, .fasync = sock_fasync, .sendpage = sock_sendpage, .splice_write = generic_splice_sendpage, .splice_read = sock_splice_read, }; /* * The protocol list. Each protocol is registered in here. */ static DEFINE_SPINLOCK(net_family_lock); static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; /* * Statistics counters of the socket lists */ static DEFINE_PER_CPU(int, sockets_in_use); /* * Support routines. * Move socket addresses back and forth across the kernel/user * divide and look after the messy bits. */ /** * move_addr_to_kernel - copy a socket address into kernel space * @uaddr: Address in user space * @kaddr: Address in kernel space * @ulen: Length in user space * * The address is copied into kernel space. If the provided address is * too long an error code of -EINVAL is returned. If the copy gives * invalid addresses -EFAULT is returned. On a success 0 is returned. */ int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) { if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) return -EINVAL; if (ulen == 0) return 0; if (copy_from_user(kaddr, uaddr, ulen)) return -EFAULT; return audit_sockaddr(ulen, kaddr); } /** * move_addr_to_user - copy an address to user space * @kaddr: kernel space address * @klen: length of address in kernel * @uaddr: user space address * @ulen: pointer to user length field * * The value pointed to by ulen on entry is the buffer length available. * This is overwritten with the buffer space used. -EINVAL is returned * if an overlong buffer is specified or a negative buffer size. -EFAULT * is returned if either the buffer or the length field are not * accessible. * After copying the data up to the limit the user specifies, the true * length of the data is written over the length limit the user * specified. Zero is returned for a success. */ static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, void __user *uaddr, int __user *ulen) { int err; int len; BUG_ON(klen > sizeof(struct sockaddr_storage)); err = get_user(len, ulen); if (err) return err; if (len > klen) len = klen; if (len < 0) return -EINVAL; if (len) { if (audit_sockaddr(klen, kaddr)) return -ENOMEM; if (copy_to_user(uaddr, kaddr, len)) return -EFAULT; } /* * "fromlen shall refer to the value before truncation.." * 1003.1g */ return __put_user(klen, ulen); } static struct kmem_cache *sock_inode_cachep __read_mostly; static struct inode *sock_alloc_inode(struct super_block *sb) { struct socket_alloc *ei; struct socket_wq *wq; ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); if (!ei) return NULL; wq = kmalloc(sizeof(*wq), GFP_KERNEL); if (!wq) { kmem_cache_free(sock_inode_cachep, ei); return NULL; } init_waitqueue_head(&wq->wait); wq->fasync_list = NULL; wq->flags = 0; RCU_INIT_POINTER(ei->socket.wq, wq); ei->socket.state = SS_UNCONNECTED; ei->socket.flags = 0; ei->socket.ops = NULL; ei->socket.sk = NULL; ei->socket.file = NULL; return &ei->vfs_inode; } static void sock_destroy_inode(struct inode *inode) { struct socket_alloc *ei; struct socket_wq *wq; ei = container_of(inode, struct socket_alloc, vfs_inode); wq = rcu_dereference_protected(ei->socket.wq, 1); kfree_rcu(wq, rcu); kmem_cache_free(sock_inode_cachep, ei); } static void init_once(void *foo) { struct socket_alloc *ei = (struct socket_alloc *)foo; inode_init_once(&ei->vfs_inode); } static void init_inodecache(void) { sock_inode_cachep = kmem_cache_create("sock_inode_cache", sizeof(struct socket_alloc), 0, (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), init_once); BUG_ON(sock_inode_cachep == NULL); } static const struct super_operations sockfs_ops = { .alloc_inode = sock_alloc_inode, .destroy_inode = sock_destroy_inode, .statfs = simple_statfs, }; /* * sockfs_dname() is called from d_path(). */ static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) { return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", d_inode(dentry)->i_ino); } static const struct dentry_operations sockfs_dentry_operations = { .d_dname = sockfs_dname, }; static int sockfs_xattr_get(const struct xattr_handler *handler, struct dentry *dentry, struct inode *inode, const char *suffix, void *value, size_t size) { if (value) { if (dentry->d_name.len + 1 > size) return -ERANGE; memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); } return dentry->d_name.len + 1; } #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) static const struct xattr_handler sockfs_xattr_handler = { .name = XATTR_NAME_SOCKPROTONAME, .get = sockfs_xattr_get, }; static int sockfs_security_xattr_set(const struct xattr_handler *handler, struct dentry *dentry, struct inode *inode, const char *suffix, const void *value, size_t size, int flags) { /* Handled by LSM. */ return -EAGAIN; } static const struct xattr_handler sockfs_security_xattr_handler = { .prefix = XATTR_SECURITY_PREFIX, .set = sockfs_security_xattr_set, }; static const struct xattr_handler *sockfs_xattr_handlers[] = { &sockfs_xattr_handler, &sockfs_security_xattr_handler, NULL }; static struct dentry *sockfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, sockfs_xattr_handlers, &sockfs_dentry_operations, SOCKFS_MAGIC); } static struct vfsmount *sock_mnt __read_mostly; static struct file_system_type sock_fs_type = { .name = "sockfs", .mount = sockfs_mount, .kill_sb = kill_anon_super, }; /* * Obtains the first available file descriptor and sets it up for use. * * These functions create file structures and maps them to fd space * of the current process. On success it returns file descriptor * and file struct implicitly stored in sock->file. * Note that another thread may close file descriptor before we return * from this function. We use the fact that now we do not refer * to socket after mapping. If one day we will need it, this * function will increment ref. count on file by 1. * * In any case returned fd MAY BE not valid! * This race condition is unavoidable * with shared fd spaces, we cannot solve it inside kernel, * but we take care of internal coherence yet. */ struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) { struct qstr name = { .name = "" }; struct path path; struct file *file; if (dname) { name.name = dname; name.len = strlen(name.name); } else if (sock->sk) { name.name = sock->sk->sk_prot_creator->name; name.len = strlen(name.name); } path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); if (unlikely(!path.dentry)) return ERR_PTR(-ENOMEM); path.mnt = mntget(sock_mnt); d_instantiate(path.dentry, SOCK_INODE(sock)); file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &socket_file_ops); if (IS_ERR(file)) { /* drop dentry, keep inode */ ihold(d_inode(path.dentry)); path_put(&path); return file; } sock->file = file; file->f_flags = O_RDWR | (flags & O_NONBLOCK); file->private_data = sock; return file; } EXPORT_SYMBOL(sock_alloc_file); static int sock_map_fd(struct socket *sock, int flags) { struct file *newfile; int fd = get_unused_fd_flags(flags); if (unlikely(fd < 0)) return fd; newfile = sock_alloc_file(sock, flags, NULL); if (likely(!IS_ERR(newfile))) { fd_install(fd, newfile); return fd; } put_unused_fd(fd); return PTR_ERR(newfile); } struct socket *sock_from_file(struct file *file, int *err) { if (file->f_op == &socket_file_ops) return file->private_data; /* set in sock_map_fd */ *err = -ENOTSOCK; return NULL; } EXPORT_SYMBOL(sock_from_file); /** * sockfd_lookup - Go from a file number to its socket slot * @fd: file handle * @err: pointer to an error code return * * The file handle passed in is locked and the socket it is bound * to is returned. If an error occurs the err pointer is overwritten * with a negative errno code and NULL is returned. The function checks * for both invalid handles and passing a handle which is not a socket. * * On a success the socket object pointer is returned. */ struct socket *sockfd_lookup(int fd, int *err) { struct file *file; struct socket *sock; file = fget(fd); if (!file) { *err = -EBADF; return NULL; } sock = sock_from_file(file, err); if (!sock) fput(file); return sock; } EXPORT_SYMBOL(sockfd_lookup); static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) { struct fd f = fdget(fd); struct socket *sock; *err = -EBADF; if (f.file) { sock = sock_from_file(f.file, err); if (likely(sock)) { *fput_needed = f.flags; return sock; } fdput(f); } return NULL; } static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, size_t size) { ssize_t len; ssize_t used = 0; len = security_inode_listsecurity(d_inode(dentry), buffer, size); if (len < 0) return len; used += len; if (buffer) { if (size < used) return -ERANGE; buffer += len; } len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); used += len; if (buffer) { if (size < used) return -ERANGE; memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); buffer += len; } return used; } static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) { int err = simple_setattr(dentry, iattr); if (!err && (iattr->ia_valid & ATTR_UID)) { struct socket *sock = SOCKET_I(d_inode(dentry)); sock->sk->sk_uid = iattr->ia_uid; } return err; } static const struct inode_operations sockfs_inode_ops = { .listxattr = sockfs_listxattr, .setattr = sockfs_setattr, }; /** * sock_alloc - allocate a socket * * Allocate a new inode and socket object. The two are bound together * and initialised. The socket is then returned. If we are out of inodes * NULL is returned. */ struct socket *sock_alloc(void) { struct inode *inode; struct socket *sock; inode = new_inode_pseudo(sock_mnt->mnt_sb); if (!inode) return NULL; sock = SOCKET_I(inode); kmemcheck_annotate_bitfield(sock, type); inode->i_ino = get_next_ino(); inode->i_mode = S_IFSOCK | S_IRWXUGO; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); inode->i_op = &sockfs_inode_ops; this_cpu_add(sockets_in_use, 1); return sock; } EXPORT_SYMBOL(sock_alloc); /** * sock_release - close a socket * @sock: socket to close * * The socket is released from the protocol stack if it has a release * callback, and the inode is then released if the socket is bound to * an inode not a file. */ void sock_release(struct socket *sock) { if (sock->ops) { struct module *owner = sock->ops->owner; sock->ops->release(sock); sock->ops = NULL; module_put(owner); } if (rcu_dereference_protected(sock->wq, 1)->fasync_list) pr_err("%s: fasync list not empty!\n", __func__); this_cpu_sub(sockets_in_use, 1); if (!sock->file) { iput(SOCK_INODE(sock)); return; } sock->file = NULL; } EXPORT_SYMBOL(sock_release); void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) { u8 flags = *tx_flags; if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) flags |= SKBTX_HW_TSTAMP; if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) flags |= SKBTX_SW_TSTAMP; if (tsflags & SOF_TIMESTAMPING_TX_SCHED) flags |= SKBTX_SCHED_TSTAMP; *tx_flags = flags; } EXPORT_SYMBOL(__sock_tx_timestamp); static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) { int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); BUG_ON(ret == -EIOCBQUEUED); return ret; } int sock_sendmsg(struct socket *sock, struct msghdr *msg) { int err = security_socket_sendmsg(sock, msg, msg_data_left(msg)); return err ?: sock_sendmsg_nosec(sock, msg); } EXPORT_SYMBOL(sock_sendmsg); int kernel_sendmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size) { iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); return sock_sendmsg(sock, msg); } EXPORT_SYMBOL(kernel_sendmsg); static bool skb_is_err_queue(const struct sk_buff *skb) { /* pkt_type of skbs enqueued on the error queue are set to * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do * in recvmsg, since skbs received on a local socket will never * have a pkt_type of PACKET_OUTGOING. */ return skb->pkt_type == PACKET_OUTGOING; } /* On transmit, software and hardware timestamps are returned independently. * As the two skb clones share the hardware timestamp, which may be updated * before the software timestamp is received, a hardware TX timestamp may be * returned only if there is no software TX timestamp. Ignore false software * timestamps, which may be made in the __sock_recv_timestamp() call when the * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a * hardware timestamp. */ static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) { return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); } static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) { struct scm_ts_pktinfo ts_pktinfo; struct net_device *orig_dev; if (!skb_mac_header_was_set(skb)) return; memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); rcu_read_lock(); orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); if (orig_dev) ts_pktinfo.if_index = orig_dev->ifindex; rcu_read_unlock(); ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, sizeof(ts_pktinfo), &ts_pktinfo); } /* * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) */ void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); struct scm_timestamping tss; int empty = 1, false_tstamp = 0; struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); /* Race occurred between timestamp enabling and packet receiving. Fill in the current time for now. */ if (need_software_tstamp && skb->tstamp == 0) { __net_timestamp(skb); false_tstamp = 1; } if (need_software_tstamp) { if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { struct timeval tv; skb_get_timestamp(skb, &tv); put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv); } else { struct timespec ts; skb_get_timestampns(skb, &ts); put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts); } } memset(&tss, 0, sizeof(tss)); if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) empty = 0; if (shhwtstamps && (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && !skb_is_swtx_tstamp(skb, false_tstamp) && ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { empty = 0; if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && !skb_is_err_queue(skb)) put_ts_pktinfo(msg, skb); } if (!empty) { put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING, sizeof(tss), &tss); if (skb_is_err_queue(skb) && skb->len && SKB_EXT_ERR(skb)->opt_stats) put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, skb->len, skb->data); } } EXPORT_SYMBOL_GPL(__sock_recv_timestamp); void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { int ack; if (!sock_flag(sk, SOCK_WIFI_STATUS)) return; if (!skb->wifi_acked_valid) return; ack = skb->wifi_acked; put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); } EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); } void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { sock_recv_timestamp(msg, sk, skb); sock_recv_drops(msg, sk, skb); } EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, int flags) { return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); } int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) { int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); return err ?: sock_recvmsg_nosec(sock, msg, flags); } EXPORT_SYMBOL(sock_recvmsg); /** * kernel_recvmsg - Receive a message from a socket (kernel space) * @sock: The socket to receive the message from * @msg: Received message * @vec: Input s/g array for message data * @num: Size of input s/g array * @size: Number of bytes to read * @flags: Message flags (MSG_DONTWAIT, etc...) * * On return the msg structure contains the scatter/gather array passed in the * vec argument. The array is modified so that it consists of the unfilled * portion of the original array. * * The returned value is the total number of bytes received, or an error. */ int kernel_recvmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size, int flags) { mm_segment_t oldfs = get_fs(); int result; iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); set_fs(KERNEL_DS); result = sock_recvmsg(sock, msg, flags); set_fs(oldfs); return result; } EXPORT_SYMBOL(kernel_recvmsg); static ssize_t sock_sendpage(struct file *file, struct page *page, int offset, size_t size, loff_t *ppos, int more) { struct socket *sock; int flags; sock = file->private_data; flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ flags |= more; return kernel_sendpage(sock, page, offset, size, flags); } static ssize_t sock_splice_read(struct file *file, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct socket *sock = file->private_data; if (unlikely(!sock->ops->splice_read)) return -EINVAL; return sock->ops->splice_read(sock, ppos, pipe, len, flags); } static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct socket *sock = file->private_data; struct msghdr msg = {.msg_iter = *to, .msg_iocb = iocb}; ssize_t res; if (file->f_flags & O_NONBLOCK) msg.msg_flags = MSG_DONTWAIT; if (iocb->ki_pos != 0) return -ESPIPE; if (!iov_iter_count(to)) /* Match SYS5 behaviour */ return 0; res = sock_recvmsg(sock, &msg, msg.msg_flags); *to = msg.msg_iter; return res; } static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct socket *sock = file->private_data; struct msghdr msg = {.msg_iter = *from, .msg_iocb = iocb}; ssize_t res; if (iocb->ki_pos != 0) return -ESPIPE; if (file->f_flags & O_NONBLOCK) msg.msg_flags = MSG_DONTWAIT; if (sock->type == SOCK_SEQPACKET) msg.msg_flags |= MSG_EOR; res = sock_sendmsg(sock, &msg); *from = msg.msg_iter; return res; } /* * Atomic setting of ioctl hooks to avoid race * with module unload. */ static DEFINE_MUTEX(br_ioctl_mutex); static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) { mutex_lock(&br_ioctl_mutex); br_ioctl_hook = hook; mutex_unlock(&br_ioctl_mutex); } EXPORT_SYMBOL(brioctl_set); static DEFINE_MUTEX(vlan_ioctl_mutex); static int (*vlan_ioctl_hook) (struct net *, void __user *arg); void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) { mutex_lock(&vlan_ioctl_mutex); vlan_ioctl_hook = hook; mutex_unlock(&vlan_ioctl_mutex); } EXPORT_SYMBOL(vlan_ioctl_set); static DEFINE_MUTEX(dlci_ioctl_mutex); static int (*dlci_ioctl_hook) (unsigned int, void __user *); void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) { mutex_lock(&dlci_ioctl_mutex); dlci_ioctl_hook = hook; mutex_unlock(&dlci_ioctl_mutex); } EXPORT_SYMBOL(dlci_ioctl_set); static long sock_do_ioctl(struct net *net, struct socket *sock, unsigned int cmd, unsigned long arg) { int err; void __user *argp = (void __user *)arg; err = sock->ops->ioctl(sock, cmd, arg); /* * If this ioctl is unknown try to hand it down * to the NIC driver. */ if (err == -ENOIOCTLCMD) err = dev_ioctl(net, cmd, argp); return err; } /* * With an ioctl, arg may well be a user mode pointer, but we don't know * what to do with it - that's up to the protocol still. */ static struct ns_common *get_net_ns(struct ns_common *ns) { return &get_net(container_of(ns, struct net, ns))->ns; } static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) { struct socket *sock; struct sock *sk; void __user *argp = (void __user *)arg; int pid, err; struct net *net; sock = file->private_data; sk = sock->sk; net = sock_net(sk); if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { err = dev_ioctl(net, cmd, argp); } else #ifdef CONFIG_WEXT_CORE if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { err = dev_ioctl(net, cmd, argp); } else #endif switch (cmd) { case FIOSETOWN: case SIOCSPGRP: err = -EFAULT; if (get_user(pid, (int __user *)argp)) break; err = f_setown(sock->file, pid, 1); break; case FIOGETOWN: case SIOCGPGRP: err = put_user(f_getown(sock->file), (int __user *)argp); break; case SIOCGIFBR: case SIOCSIFBR: case SIOCBRADDBR: case SIOCBRDELBR: err = -ENOPKG; if (!br_ioctl_hook) request_module("bridge"); mutex_lock(&br_ioctl_mutex); if (br_ioctl_hook) err = br_ioctl_hook(net, cmd, argp); mutex_unlock(&br_ioctl_mutex); break; case SIOCGIFVLAN: case SIOCSIFVLAN: err = -ENOPKG; if (!vlan_ioctl_hook) request_module("8021q"); mutex_lock(&vlan_ioctl_mutex); if (vlan_ioctl_hook) err = vlan_ioctl_hook(net, argp); mutex_unlock(&vlan_ioctl_mutex); break; case SIOCADDDLCI: case SIOCDELDLCI: err = -ENOPKG; if (!dlci_ioctl_hook) request_module("dlci"); mutex_lock(&dlci_ioctl_mutex); if (dlci_ioctl_hook) err = dlci_ioctl_hook(cmd, argp); mutex_unlock(&dlci_ioctl_mutex); break; case SIOCGSKNS: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; err = open_related_ns(&net->ns, get_net_ns); break; default: err = sock_do_ioctl(net, sock, cmd, arg); break; } return err; } int sock_create_lite(int family, int type, int protocol, struct socket **res) { int err; struct socket *sock = NULL; err = security_socket_create(family, type, protocol, 1); if (err) goto out; sock = sock_alloc(); if (!sock) { err = -ENOMEM; goto out; } sock->type = type; err = security_socket_post_create(sock, family, type, protocol, 1); if (err) goto out_release; out: *res = sock; return err; out_release: sock_release(sock); sock = NULL; goto out; } EXPORT_SYMBOL(sock_create_lite); /* No kernel lock held - perfect */ static unsigned int sock_poll(struct file *file, poll_table *wait) { unsigned int busy_flag = 0; struct socket *sock; /* * We can't return errors to poll, so it's either yes or no. */ sock = file->private_data; if (sk_can_busy_loop(sock->sk)) { /* this socket can poll_ll so tell the system call */ busy_flag = POLL_BUSY_LOOP; /* once, only if requested by syscall */ if (wait && (wait->_key & POLL_BUSY_LOOP)) sk_busy_loop(sock->sk, 1); } return busy_flag | sock->ops->poll(file, sock, wait); } static int sock_mmap(struct file *file, struct vm_area_struct *vma) { struct socket *sock = file->private_data; return sock->ops->mmap(file, sock, vma); } static int sock_close(struct inode *inode, struct file *filp) { sock_release(SOCKET_I(inode)); return 0; } /* * Update the socket async list * * Fasync_list locking strategy. * * 1. fasync_list is modified only under process context socket lock * i.e. under semaphore. * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) * or under socket lock */ static int sock_fasync(int fd, struct file *filp, int on) { struct socket *sock = filp->private_data; struct sock *sk = sock->sk; struct socket_wq *wq; if (sk == NULL) return -EINVAL; lock_sock(sk); wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); fasync_helper(fd, filp, on, &wq->fasync_list); if (!wq->fasync_list) sock_reset_flag(sk, SOCK_FASYNC); else sock_set_flag(sk, SOCK_FASYNC); release_sock(sk); return 0; } /* This function may be called only under rcu_lock */ int sock_wake_async(struct socket_wq *wq, int how, int band) { if (!wq || !wq->fasync_list) return -1; switch (how) { case SOCK_WAKE_WAITD: if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) break; goto call_kill; case SOCK_WAKE_SPACE: if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) break; /* fall through */ case SOCK_WAKE_IO: call_kill: kill_fasync(&wq->fasync_list, SIGIO, band); break; case SOCK_WAKE_URG: kill_fasync(&wq->fasync_list, SIGURG, band); } return 0; } EXPORT_SYMBOL(sock_wake_async); int __sock_create(struct net *net, int family, int type, int protocol, struct socket **res, int kern) { int err; struct socket *sock; const struct net_proto_family *pf; /* * Check protocol is in range */ if (family < 0 || family >= NPROTO) return -EAFNOSUPPORT; if (type < 0 || type >= SOCK_MAX) return -EINVAL; /* Compatibility. This uglymoron is moved from INET layer to here to avoid deadlock in module load. */ if (family == PF_INET && type == SOCK_PACKET) { pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); family = PF_PACKET; } err = security_socket_create(family, type, protocol, kern); if (err) return err; /* * Allocate the socket and allow the family to set things up. if * the protocol is 0, the family is instructed to select an appropriate * default. */ sock = sock_alloc(); if (!sock) { net_warn_ratelimited("socket: no more sockets\n"); return -ENFILE; /* Not exactly a match, but its the closest posix thing */ } sock->type = type; #ifdef CONFIG_MODULES /* Attempt to load a protocol module if the find failed. * * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user * requested real, full-featured networking support upon configuration. * Otherwise module support will break! */ if (rcu_access_pointer(net_families[family]) == NULL) request_module("net-pf-%d", family); #endif rcu_read_lock(); pf = rcu_dereference(net_families[family]); err = -EAFNOSUPPORT; if (!pf) goto out_release; /* * We will call the ->create function, that possibly is in a loadable * module, so we have to bump that loadable module refcnt first. */ if (!try_module_get(pf->owner)) goto out_release; /* Now protected by module ref count */ rcu_read_unlock(); err = pf->create(net, sock, protocol, kern); if (err < 0) goto out_module_put; /* * Now to bump the refcnt of the [loadable] module that owns this * socket at sock_release time we decrement its refcnt. */ if (!try_module_get(sock->ops->owner)) goto out_module_busy; /* * Now that we're done with the ->create function, the [loadable] * module can have its refcnt decremented */ module_put(pf->owner); err = security_socket_post_create(sock, family, type, protocol, kern); if (err) goto out_sock_release; *res = sock; return 0; out_module_busy: err = -EAFNOSUPPORT; out_module_put: sock->ops = NULL; module_put(pf->owner); out_sock_release: sock_release(sock); return err; out_release: rcu_read_unlock(); goto out_sock_release; } EXPORT_SYMBOL(__sock_create); int sock_create(int family, int type, int protocol, struct socket **res) { return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); } EXPORT_SYMBOL(sock_create); int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) { return __sock_create(net, family, type, protocol, res, 1); } EXPORT_SYMBOL(sock_create_kern); SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) { int retval; struct socket *sock; int flags; /* Check the SOCK_* constants for consistency. */ BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); flags = type & ~SOCK_TYPE_MASK; if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; type &= SOCK_TYPE_MASK; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; retval = sock_create(family, type, protocol, &sock); if (retval < 0) goto out; retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); if (retval < 0) goto out_release; out: /* It may be already another descriptor 8) Not kernel problem. */ return retval; out_release: sock_release(sock); return retval; } /* * Create a pair of connected sockets. */ SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, int __user *, usockvec) { struct socket *sock1, *sock2; int fd1, fd2, err; struct file *newfile1, *newfile2; int flags; flags = type & ~SOCK_TYPE_MASK; if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; type &= SOCK_TYPE_MASK; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; /* * Obtain the first socket and check if the underlying protocol * supports the socketpair call. */ err = sock_create(family, type, protocol, &sock1); if (err < 0) goto out; err = sock_create(family, type, protocol, &sock2); if (err < 0) goto out_release_1; err = sock1->ops->socketpair(sock1, sock2); if (err < 0) goto out_release_both; fd1 = get_unused_fd_flags(flags); if (unlikely(fd1 < 0)) { err = fd1; goto out_release_both; } fd2 = get_unused_fd_flags(flags); if (unlikely(fd2 < 0)) { err = fd2; goto out_put_unused_1; } newfile1 = sock_alloc_file(sock1, flags, NULL); if (IS_ERR(newfile1)) { err = PTR_ERR(newfile1); goto out_put_unused_both; } newfile2 = sock_alloc_file(sock2, flags, NULL); if (IS_ERR(newfile2)) { err = PTR_ERR(newfile2); goto out_fput_1; } err = put_user(fd1, &usockvec[0]); if (err) goto out_fput_both; err = put_user(fd2, &usockvec[1]); if (err) goto out_fput_both; audit_fd_pair(fd1, fd2); fd_install(fd1, newfile1); fd_install(fd2, newfile2); /* fd1 and fd2 may be already another descriptors. * Not kernel problem. */ return 0; out_fput_both: fput(newfile2); fput(newfile1); put_unused_fd(fd2); put_unused_fd(fd1); goto out; out_fput_1: fput(newfile1); put_unused_fd(fd2); put_unused_fd(fd1); sock_release(sock2); goto out; out_put_unused_both: put_unused_fd(fd2); out_put_unused_1: put_unused_fd(fd1); out_release_both: sock_release(sock2); out_release_1: sock_release(sock1); out: return err; } /* * Bind a name to a socket. Nothing much to do here since it's * the protocol's responsibility to handle the local address. * * We move the socket address to kernel space before we call * the protocol layer (having also checked the address is ok). */ SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) { struct socket *sock; struct sockaddr_storage address; int err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock) { err = move_addr_to_kernel(umyaddr, addrlen, &address); if (err >= 0) { err = security_socket_bind(sock, (struct sockaddr *)&address, addrlen); if (!err) err = sock->ops->bind(sock, (struct sockaddr *) &address, addrlen); } fput_light(sock->file, fput_needed); } return err; } /* * Perform a listen. Basically, we allow the protocol to do anything * necessary for a listen, and if that works, we mark the socket as * ready for listening. */ SYSCALL_DEFINE2(listen, int, fd, int, backlog) { struct socket *sock; int err, fput_needed; int somaxconn; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock) { somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; if ((unsigned int)backlog > somaxconn) backlog = somaxconn; err = security_socket_listen(sock, backlog); if (!err) err = sock->ops->listen(sock, backlog); fput_light(sock->file, fput_needed); } return err; } /* * For accept, we attempt to create a new socket, set up the link * with the client, wake up the client, then return the new * connected fd. We collect the address of the connector in kernel * space and move it to user at the very end. This is unclean because * we open the socket then return an error. * * 1003.1g adds the ability to recvmsg() to query connection pending * status to recvmsg. We need to add that support in a way thats * clean when we restucture accept also. */ SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen, int, flags) { struct socket *sock, *newsock; struct file *newfile; int err, len, newfd, fput_needed; struct sockaddr_storage address; if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = -ENFILE; newsock = sock_alloc(); if (!newsock) goto out_put; newsock->type = sock->type; newsock->ops = sock->ops; /* * We don't need try_module_get here, as the listening socket (sock) * has the protocol module (sock->ops->owner) held. */ __module_get(newsock->ops->owner); newfd = get_unused_fd_flags(flags); if (unlikely(newfd < 0)) { err = newfd; sock_release(newsock); goto out_put; } newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); if (IS_ERR(newfile)) { err = PTR_ERR(newfile); put_unused_fd(newfd); sock_release(newsock); goto out_put; } err = security_socket_accept(sock, newsock); if (err) goto out_fd; err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); if (err < 0) goto out_fd; if (upeer_sockaddr) { if (newsock->ops->getname(newsock, (struct sockaddr *)&address, &len, 2) < 0) { err = -ECONNABORTED; goto out_fd; } err = move_addr_to_user(&address, len, upeer_sockaddr, upeer_addrlen); if (err < 0) goto out_fd; } /* File flags are not inherited via accept() unlike another OSes. */ fd_install(newfd, newfile); err = newfd; out_put: fput_light(sock->file, fput_needed); out: return err; out_fd: fput(newfile); put_unused_fd(newfd); goto out_put; } SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen) { return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); } /* * Attempt to connect to a socket with the server address. The address * is in user space so we verify it is OK and move it to kernel space. * * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to * break bindings * * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and * other SEQPACKET protocols that take time to connect() as it doesn't * include the -EINPROGRESS status for such sockets. */ SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, int, addrlen) { struct socket *sock; struct sockaddr_storage address; int err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = move_addr_to_kernel(uservaddr, addrlen, &address); if (err < 0) goto out_put; err = security_socket_connect(sock, (struct sockaddr *)&address, addrlen); if (err) goto out_put; err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, sock->file->f_flags); out_put: fput_light(sock->file, fput_needed); out: return err; } /* * Get the local address ('name') of a socket object. Move the obtained * name to user space. */ SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, int __user *, usockaddr_len) { struct socket *sock; struct sockaddr_storage address; int len, err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = security_socket_getsockname(sock); if (err) goto out_put; err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); if (err) goto out_put; err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); out_put: fput_light(sock->file, fput_needed); out: return err; } /* * Get the remote address ('name') of a socket object. Move the obtained * name to user space. */ SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, int __user *, usockaddr_len) { struct socket *sock; struct sockaddr_storage address; int len, err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock != NULL) { err = security_socket_getpeername(sock); if (err) { fput_light(sock->file, fput_needed); return err; } err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1); if (!err) err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); fput_light(sock->file, fput_needed); } return err; } /* * Send a datagram to a given address. We move the address into kernel * space and check the user space data area is readable before invoking * the protocol. */ SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, unsigned int, flags, struct sockaddr __user *, addr, int, addr_len) { struct socket *sock; struct sockaddr_storage address; int err; struct msghdr msg; struct iovec iov; int fput_needed; err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); if (unlikely(err)) return err; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; msg.msg_name = NULL; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_namelen = 0; if (addr) { err = move_addr_to_kernel(addr, addr_len, &address); if (err < 0) goto out_put; msg.msg_name = (struct sockaddr *)&address; msg.msg_namelen = addr_len; } if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; msg.msg_flags = flags; err = sock_sendmsg(sock, &msg); out_put: fput_light(sock->file, fput_needed); out: return err; } /* * Send a datagram down a socket. */ SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, unsigned int, flags) { return sys_sendto(fd, buff, len, flags, NULL, 0); } /* * Receive a frame from the socket and optionally record the address of the * sender. We verify the buffers are writable and if needed move the * sender address from kernel to user space. */ SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, unsigned int, flags, struct sockaddr __user *, addr, int __user *, addr_len) { struct socket *sock; struct iovec iov; struct msghdr msg; struct sockaddr_storage address; int err, err2; int fput_needed; err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); if (unlikely(err)) return err; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; msg.msg_control = NULL; msg.msg_controllen = 0; /* Save some cycles and don't copy the address if not needed */ msg.msg_name = addr ? (struct sockaddr *)&address : NULL; /* We assume all kernel code knows the size of sockaddr_storage */ msg.msg_namelen = 0; msg.msg_iocb = NULL; msg.msg_flags = 0; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; err = sock_recvmsg(sock, &msg, flags); if (err >= 0 && addr != NULL) { err2 = move_addr_to_user(&address, msg.msg_namelen, addr, addr_len); if (err2 < 0) err = err2; } fput_light(sock->file, fput_needed); out: return err; } /* * Receive a datagram from a socket. */ SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, unsigned int, flags) { return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); } /* * Set a socket option. Because we don't know the option lengths we have * to pass the user mode parameter for the protocols to sort out. */ SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, char __user *, optval, int, optlen) { int err, fput_needed; struct socket *sock; if (optlen < 0) return -EINVAL; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock != NULL) { err = security_socket_setsockopt(sock, level, optname); if (err) goto out_put; if (level == SOL_SOCKET) err = sock_setsockopt(sock, level, optname, optval, optlen); else err = sock->ops->setsockopt(sock, level, optname, optval, optlen); out_put: fput_light(sock->file, fput_needed); } return err; } /* * Get a socket option. Because we don't know the option lengths we have * to pass a user mode parameter for the protocols to sort out. */ SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, char __user *, optval, int __user *, optlen) { int err, fput_needed; struct socket *sock; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock != NULL) { err = security_socket_getsockopt(sock, level, optname); if (err) goto out_put; if (level == SOL_SOCKET) err = sock_getsockopt(sock, level, optname, optval, optlen); else err = sock->ops->getsockopt(sock, level, optname, optval, optlen); out_put: fput_light(sock->file, fput_needed); } return err; } /* * Shutdown a socket. */ SYSCALL_DEFINE2(shutdown, int, fd, int, how) { int err, fput_needed; struct socket *sock; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock != NULL) { err = security_socket_shutdown(sock, how); if (!err) err = sock->ops->shutdown(sock, how); fput_light(sock->file, fput_needed); } return err; } /* A couple of helpful macros for getting the address of the 32/64 bit * fields which are the same type (int / unsigned) on our platforms. */ #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) struct used_address { struct sockaddr_storage name; unsigned int name_len; }; static int copy_msghdr_from_user(struct msghdr *kmsg, struct user_msghdr __user *umsg, struct sockaddr __user **save_addr, struct iovec **iov) { struct user_msghdr msg; ssize_t err; if (copy_from_user(&msg, umsg, sizeof(*umsg))) return -EFAULT; kmsg->msg_control = msg.msg_control; kmsg->msg_controllen = msg.msg_controllen; kmsg->msg_flags = msg.msg_flags; kmsg->msg_namelen = msg.msg_namelen; if (!msg.msg_name) kmsg->msg_namelen = 0; if (kmsg->msg_namelen < 0) return -EINVAL; if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) kmsg->msg_namelen = sizeof(struct sockaddr_storage); if (save_addr) *save_addr = msg.msg_name; if (msg.msg_name && kmsg->msg_namelen) { if (!save_addr) { err = move_addr_to_kernel(msg.msg_name, kmsg->msg_namelen, kmsg->msg_name); if (err < 0) return err; } } else { kmsg->msg_name = NULL; kmsg->msg_namelen = 0; } if (msg.msg_iovlen > UIO_MAXIOV) return -EMSGSIZE; kmsg->msg_iocb = NULL; return import_iovec(save_addr ? READ : WRITE, msg.msg_iov, msg.msg_iovlen, UIO_FASTIOV, iov, &kmsg->msg_iter); } static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, struct msghdr *msg_sys, unsigned int flags, struct used_address *used_address, unsigned int allowed_msghdr_flags) { struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; struct sockaddr_storage address; struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; unsigned char ctl[sizeof(struct cmsghdr) + 20] __aligned(sizeof(__kernel_size_t)); /* 20 is size of ipv6_pktinfo */ unsigned char *ctl_buf = ctl; int ctl_len; ssize_t err; msg_sys->msg_name = &address; if (MSG_CMSG_COMPAT & flags) err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); else err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); if (err < 0) return err; err = -ENOBUFS; if (msg_sys->msg_controllen > INT_MAX) goto out_freeiov; flags |= (msg_sys->msg_flags & allowed_msghdr_flags); ctl_len = msg_sys->msg_controllen; if ((MSG_CMSG_COMPAT & flags) && ctl_len) { err = cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, sizeof(ctl)); if (err) goto out_freeiov; ctl_buf = msg_sys->msg_control; ctl_len = msg_sys->msg_controllen; } else if (ctl_len) { BUILD_BUG_ON(sizeof(struct cmsghdr) != CMSG_ALIGN(sizeof(struct cmsghdr))); if (ctl_len > sizeof(ctl)) { ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); if (ctl_buf == NULL) goto out_freeiov; } err = -EFAULT; /* * Careful! Before this, msg_sys->msg_control contains a user pointer. * Afterwards, it will be a kernel pointer. Thus the compiler-assisted * checking falls down on this. */ if (copy_from_user(ctl_buf, (void __user __force *)msg_sys->msg_control, ctl_len)) goto out_freectl; msg_sys->msg_control = ctl_buf; } msg_sys->msg_flags = flags; if (sock->file->f_flags & O_NONBLOCK) msg_sys->msg_flags |= MSG_DONTWAIT; /* * If this is sendmmsg() and current destination address is same as * previously succeeded address, omit asking LSM's decision. * used_address->name_len is initialized to UINT_MAX so that the first * destination address never matches. */ if (used_address && msg_sys->msg_name && used_address->name_len == msg_sys->msg_namelen && !memcmp(&used_address->name, msg_sys->msg_name, used_address->name_len)) { err = sock_sendmsg_nosec(sock, msg_sys); goto out_freectl; } err = sock_sendmsg(sock, msg_sys); /* * If this is sendmmsg() and sending to current destination address was * successful, remember it. */ if (used_address && err >= 0) { used_address->name_len = msg_sys->msg_namelen; if (msg_sys->msg_name) memcpy(&used_address->name, msg_sys->msg_name, used_address->name_len); } out_freectl: if (ctl_buf != ctl) sock_kfree_s(sock->sk, ctl_buf, ctl_len); out_freeiov: kfree(iov); return err; } /* * BSD sendmsg interface */ long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) { int fput_needed, err; struct msghdr msg_sys; struct socket *sock; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); fput_light(sock->file, fput_needed); out: return err; } SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) { if (flags & MSG_CMSG_COMPAT) return -EINVAL; return __sys_sendmsg(fd, msg, flags); } /* * Linux sendmmsg interface */ int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags) { int fput_needed, err, datagrams; struct socket *sock; struct mmsghdr __user *entry; struct compat_mmsghdr __user *compat_entry; struct msghdr msg_sys; struct used_address used_address; unsigned int oflags = flags; if (vlen > UIO_MAXIOV) vlen = UIO_MAXIOV; datagrams = 0; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) return err; used_address.name_len = UINT_MAX; entry = mmsg; compat_entry = (struct compat_mmsghdr __user *)mmsg; err = 0; flags |= MSG_BATCH; while (datagrams < vlen) { if (datagrams == vlen - 1) flags = oflags; if (MSG_CMSG_COMPAT & flags) { err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, &msg_sys, flags, &used_address, MSG_EOR); if (err < 0) break; err = __put_user(err, &compat_entry->msg_len); ++compat_entry; } else { err = ___sys_sendmsg(sock, (struct user_msghdr __user *)entry, &msg_sys, flags, &used_address, MSG_EOR); if (err < 0) break; err = put_user(err, &entry->msg_len); ++entry; } if (err) break; ++datagrams; if (msg_data_left(&msg_sys)) break; cond_resched(); } fput_light(sock->file, fput_needed); /* We only return an error if no datagrams were able to be sent */ if (datagrams != 0) return datagrams; return err; } SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags) { if (flags & MSG_CMSG_COMPAT) return -EINVAL; return __sys_sendmmsg(fd, mmsg, vlen, flags); } static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, struct msghdr *msg_sys, unsigned int flags, int nosec) { struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov = iovstack; unsigned long cmsg_ptr; int len; ssize_t err; /* kernel mode address */ struct sockaddr_storage addr; /* user mode address pointers */ struct sockaddr __user *uaddr; int __user *uaddr_len = COMPAT_NAMELEN(msg); msg_sys->msg_name = &addr; if (MSG_CMSG_COMPAT & flags) err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); else err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); if (err < 0) return err; cmsg_ptr = (unsigned long)msg_sys->msg_control; msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); /* We assume all kernel code knows the size of sockaddr_storage */ msg_sys->msg_namelen = 0; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); if (err < 0) goto out_freeiov; len = err; if (uaddr != NULL) { err = move_addr_to_user(&addr, msg_sys->msg_namelen, uaddr, uaddr_len); if (err < 0) goto out_freeiov; } err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), COMPAT_FLAGS(msg)); if (err) goto out_freeiov; if (MSG_CMSG_COMPAT & flags) err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, &msg_compat->msg_controllen); else err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, &msg->msg_controllen); if (err) goto out_freeiov; err = len; out_freeiov: kfree(iov); return err; } /* * BSD recvmsg interface */ long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) { int fput_needed, err; struct msghdr msg_sys; struct socket *sock; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); fput_light(sock->file, fput_needed); out: return err; } SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) { if (flags & MSG_CMSG_COMPAT) return -EINVAL; return __sys_recvmsg(fd, msg, flags); } /* * Linux recvmmsg interface */ int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct timespec *timeout) { int fput_needed, err, datagrams; struct socket *sock; struct mmsghdr __user *entry; struct compat_mmsghdr __user *compat_entry; struct msghdr msg_sys; struct timespec64 end_time; struct timespec64 timeout64; if (timeout && poll_select_set_timeout(&end_time, timeout->tv_sec, timeout->tv_nsec)) return -EINVAL; datagrams = 0; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) return err; err = sock_error(sock->sk); if (err) { datagrams = err; goto out_put; } entry = mmsg; compat_entry = (struct compat_mmsghdr __user *)mmsg; while (datagrams < vlen) { /* * No need to ask LSM for more than the first datagram. */ if (MSG_CMSG_COMPAT & flags) { err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, &msg_sys, flags & ~MSG_WAITFORONE, datagrams); if (err < 0) break; err = __put_user(err, &compat_entry->msg_len); ++compat_entry; } else { err = ___sys_recvmsg(sock, (struct user_msghdr __user *)entry, &msg_sys, flags & ~MSG_WAITFORONE, datagrams); if (err < 0) break; err = put_user(err, &entry->msg_len); ++entry; } if (err) break; ++datagrams; /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ if (flags & MSG_WAITFORONE) flags |= MSG_DONTWAIT; if (timeout) { ktime_get_ts64(&timeout64); *timeout = timespec64_to_timespec( timespec64_sub(end_time, timeout64)); if (timeout->tv_sec < 0) { timeout->tv_sec = timeout->tv_nsec = 0; break; } /* Timeout, return less than vlen datagrams */ if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) break; } /* Out of band data, return right away */ if (msg_sys.msg_flags & MSG_OOB) break; cond_resched(); } if (err == 0) goto out_put; if (datagrams == 0) { datagrams = err; goto out_put; } /* * We may return less entries than requested (vlen) if the * sock is non block and there aren't enough datagrams... */ if (err != -EAGAIN) { /* * ... or if recvmsg returns an error after we * received some datagrams, where we record the * error to return on the next call or if the * app asks about it using getsockopt(SO_ERROR). */ sock->sk->sk_err = -err; } out_put: fput_light(sock->file, fput_needed); return datagrams; } SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags, struct timespec __user *, timeout) { int datagrams; struct timespec timeout_sys; if (flags & MSG_CMSG_COMPAT) return -EINVAL; if (!timeout) return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) return -EFAULT; datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); if (datagrams > 0 && copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) datagrams = -EFAULT; return datagrams; } #ifdef __ARCH_WANT_SYS_SOCKETCALL /* Argument list sizes for sys_socketcall */ #define AL(x) ((x) * sizeof(unsigned long)) static const unsigned char nargs[21] = { AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), AL(4), AL(5), AL(4) }; #undef AL /* * System call vectors. * * Argument checking cleaned up. Saved 20% in size. * This function doesn't need to set the kernel lock because * it is set by the callees. */ SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) { unsigned long a[AUDITSC_ARGS]; unsigned long a0, a1; int err; unsigned int len; if (call < 1 || call > SYS_SENDMMSG) return -EINVAL; len = nargs[call]; if (len > sizeof(a)) return -EINVAL; /* copy_from_user should be SMP safe. */ if (copy_from_user(a, args, len)) return -EFAULT; err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); if (err) return err; a0 = a[0]; a1 = a[1]; switch (call) { case SYS_SOCKET: err = sys_socket(a0, a1, a[2]); break; case SYS_BIND: err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); break; case SYS_CONNECT: err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); break; case SYS_LISTEN: err = sys_listen(a0, a1); break; case SYS_ACCEPT: err = sys_accept4(a0, (struct sockaddr __user *)a1, (int __user *)a[2], 0); break; case SYS_GETSOCKNAME: err = sys_getsockname(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); break; case SYS_GETPEERNAME: err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); break; case SYS_SOCKETPAIR: err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); break; case SYS_SEND: err = sys_send(a0, (void __user *)a1, a[2], a[3]); break; case SYS_SENDTO: err = sys_sendto(a0, (void __user *)a1, a[2], a[3], (struct sockaddr __user *)a[4], a[5]); break; case SYS_RECV: err = sys_recv(a0, (void __user *)a1, a[2], a[3]); break; case SYS_RECVFROM: err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], (struct sockaddr __user *)a[4], (int __user *)a[5]); break; case SYS_SHUTDOWN: err = sys_shutdown(a0, a1); break; case SYS_SETSOCKOPT: err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); break; case SYS_GETSOCKOPT: err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); break; case SYS_SENDMSG: err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); break; case SYS_SENDMMSG: err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); break; case SYS_RECVMSG: err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); break; case SYS_RECVMMSG: err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], (struct timespec __user *)a[4]); break; case SYS_ACCEPT4: err = sys_accept4(a0, (struct sockaddr __user *)a1, (int __user *)a[2], a[3]); break; default: err = -EINVAL; break; } return err; } #endif /* __ARCH_WANT_SYS_SOCKETCALL */ /** * sock_register - add a socket protocol handler * @ops: description of protocol * * This function is called by a protocol handler that wants to * advertise its address family, and have it linked into the * socket interface. The value ops->family corresponds to the * socket system call protocol family. */ int sock_register(const struct net_proto_family *ops) { int err; if (ops->family >= NPROTO) { pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); return -ENOBUFS; } spin_lock(&net_family_lock); if (rcu_dereference_protected(net_families[ops->family], lockdep_is_held(&net_family_lock))) err = -EEXIST; else { rcu_assign_pointer(net_families[ops->family], ops); err = 0; } spin_unlock(&net_family_lock); pr_info("NET: Registered protocol family %d\n", ops->family); return err; } EXPORT_SYMBOL(sock_register); /** * sock_unregister - remove a protocol handler * @family: protocol family to remove * * This function is called by a protocol handler that wants to * remove its address family, and have it unlinked from the * new socket creation. * * If protocol handler is a module, then it can use module reference * counts to protect against new references. If protocol handler is not * a module then it needs to provide its own protection in * the ops->create routine. */ void sock_unregister(int family) { BUG_ON(family < 0 || family >= NPROTO); spin_lock(&net_family_lock); RCU_INIT_POINTER(net_families[family], NULL); spin_unlock(&net_family_lock); synchronize_rcu(); pr_info("NET: Unregistered protocol family %d\n", family); } EXPORT_SYMBOL(sock_unregister); static int __init sock_init(void) { int err; /* * Initialize the network sysctl infrastructure. */ err = net_sysctl_init(); if (err) goto out; /* * Initialize skbuff SLAB cache */ skb_init(); /* * Initialize the protocols module. */ init_inodecache(); err = register_filesystem(&sock_fs_type); if (err) goto out_fs; sock_mnt = kern_mount(&sock_fs_type); if (IS_ERR(sock_mnt)) { err = PTR_ERR(sock_mnt); goto out_mount; } /* The real protocol initialization is performed in later initcalls. */ #ifdef CONFIG_NETFILTER err = netfilter_init(); if (err) goto out; #endif ptp_classifier_init(); out: return err; out_mount: unregister_filesystem(&sock_fs_type); out_fs: goto out; } core_initcall(sock_init); /* early initcall */ #ifdef CONFIG_PROC_FS void socket_seq_show(struct seq_file *seq) { int cpu; int counter = 0; for_each_possible_cpu(cpu) counter += per_cpu(sockets_in_use, cpu); /* It can be negative, by the way. 8) */ if (counter < 0) counter = 0; seq_printf(seq, "sockets: used %d\n", counter); } #endif /* CONFIG_PROC_FS */ #ifdef CONFIG_COMPAT static int do_siocgstamp(struct net *net, struct socket *sock, unsigned int cmd, void __user *up) { mm_segment_t old_fs = get_fs(); struct timeval ktv; int err; set_fs(KERNEL_DS); err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); set_fs(old_fs); if (!err) err = compat_put_timeval(&ktv, up); return err; } static int do_siocgstampns(struct net *net, struct socket *sock, unsigned int cmd, void __user *up) { mm_segment_t old_fs = get_fs(); struct timespec kts; int err; set_fs(KERNEL_DS); err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); set_fs(old_fs); if (!err) err = compat_put_timespec(&kts, up); return err; } static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) { struct ifreq __user *uifr; int err; uifr = compat_alloc_user_space(sizeof(struct ifreq)); if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) return -EFAULT; err = dev_ioctl(net, SIOCGIFNAME, uifr); if (err) return err; if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) return -EFAULT; return 0; } static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) { struct compat_ifconf ifc32; struct ifconf ifc; struct ifconf __user *uifc; struct compat_ifreq __user *ifr32; struct ifreq __user *ifr; unsigned int i, j; int err; if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) return -EFAULT; memset(&ifc, 0, sizeof(ifc)); if (ifc32.ifcbuf == 0) { ifc32.ifc_len = 0; ifc.ifc_len = 0; ifc.ifc_req = NULL; uifc = compat_alloc_user_space(sizeof(struct ifconf)); } else { size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * sizeof(struct ifreq); uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); ifc.ifc_len = len; ifr = ifc.ifc_req = (void __user *)(uifc + 1); ifr32 = compat_ptr(ifc32.ifcbuf); for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) return -EFAULT; ifr++; ifr32++; } } if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) return -EFAULT; err = dev_ioctl(net, SIOCGIFCONF, uifc); if (err) return err; if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) return -EFAULT; ifr = ifc.ifc_req; ifr32 = compat_ptr(ifc32.ifcbuf); for (i = 0, j = 0; i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) return -EFAULT; ifr32++; ifr++; } if (ifc32.ifcbuf == 0) { /* Translate from 64-bit structure multiple to * a 32-bit one. */ i = ifc.ifc_len; i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); ifc32.ifc_len = i; } else { ifc32.ifc_len = i; } if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) return -EFAULT; return 0; } static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) { struct compat_ethtool_rxnfc __user *compat_rxnfc; bool convert_in = false, convert_out = false; size_t buf_size = ALIGN(sizeof(struct ifreq), 8); struct ethtool_rxnfc __user *rxnfc; struct ifreq __user *ifr; u32 rule_cnt = 0, actual_rule_cnt; u32 ethcmd; u32 data; int ret; if (get_user(data, &ifr32->ifr_ifru.ifru_data)) return -EFAULT; compat_rxnfc = compat_ptr(data); if (get_user(ethcmd, &compat_rxnfc->cmd)) return -EFAULT; /* Most ethtool structures are defined without padding. * Unfortunately struct ethtool_rxnfc is an exception. */ switch (ethcmd) { default: break; case ETHTOOL_GRXCLSRLALL: /* Buffer size is variable */ if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) return -EFAULT; if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) return -ENOMEM; buf_size += rule_cnt * sizeof(u32); /* fall through */ case ETHTOOL_GRXRINGS: case ETHTOOL_GRXCLSRLCNT: case ETHTOOL_GRXCLSRULE: case ETHTOOL_SRXCLSRLINS: convert_out = true; /* fall through */ case ETHTOOL_SRXCLSRLDEL: buf_size += sizeof(struct ethtool_rxnfc); convert_in = true; break; } ifr = compat_alloc_user_space(buf_size); rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) return -EFAULT; if (put_user(convert_in ? rxnfc : compat_ptr(data), &ifr->ifr_ifru.ifru_data)) return -EFAULT; if (convert_in) { /* We expect there to be holes between fs.m_ext and * fs.ring_cookie and at the end of fs, but nowhere else. */ BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + sizeof(compat_rxnfc->fs.m_ext) != offsetof(struct ethtool_rxnfc, fs.m_ext) + sizeof(rxnfc->fs.m_ext)); BUILD_BUG_ON( offsetof(struct compat_ethtool_rxnfc, fs.location) - offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != offsetof(struct ethtool_rxnfc, fs.location) - offsetof(struct ethtool_rxnfc, fs.ring_cookie)); if (copy_in_user(rxnfc, compat_rxnfc, (void __user *)(&rxnfc->fs.m_ext + 1) - (void __user *)rxnfc) || copy_in_user(&rxnfc->fs.ring_cookie, &compat_rxnfc->fs.ring_cookie, (void __user *)(&rxnfc->fs.location + 1) - (void __user *)&rxnfc->fs.ring_cookie) || copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, sizeof(rxnfc->rule_cnt))) return -EFAULT; } ret = dev_ioctl(net, SIOCETHTOOL, ifr); if (ret) return ret; if (convert_out) { if (copy_in_user(compat_rxnfc, rxnfc, (const void __user *)(&rxnfc->fs.m_ext + 1) - (const void __user *)rxnfc) || copy_in_user(&compat_rxnfc->fs.ring_cookie, &rxnfc->fs.ring_cookie, (const void __user *)(&rxnfc->fs.location + 1) - (const void __user *)&rxnfc->fs.ring_cookie) || copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, sizeof(rxnfc->rule_cnt))) return -EFAULT; if (ethcmd == ETHTOOL_GRXCLSRLALL) { /* As an optimisation, we only copy the actual * number of rules that the underlying * function returned. Since Mallory might * change the rule count in user memory, we * check that it is less than the rule count * originally given (as the user buffer size), * which has been range-checked. */ if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) return -EFAULT; if (actual_rule_cnt < rule_cnt) rule_cnt = actual_rule_cnt; if (copy_in_user(&compat_rxnfc->rule_locs[0], &rxnfc->rule_locs[0], rule_cnt * sizeof(u32))) return -EFAULT; } } return 0; } static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) { void __user *uptr; compat_uptr_t uptr32; struct ifreq __user *uifr; uifr = compat_alloc_user_space(sizeof(*uifr)); if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) return -EFAULT; if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) return -EFAULT; uptr = compat_ptr(uptr32); if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) return -EFAULT; return dev_ioctl(net, SIOCWANDEV, uifr); } static int bond_ioctl(struct net *net, unsigned int cmd, struct compat_ifreq __user *ifr32) { struct ifreq kifr; mm_segment_t old_fs; int err; switch (cmd) { case SIOCBONDENSLAVE: case SIOCBONDRELEASE: case SIOCBONDSETHWADDR: case SIOCBONDCHANGEACTIVE: if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) return -EFAULT; old_fs = get_fs(); set_fs(KERNEL_DS); err = dev_ioctl(net, cmd, (struct ifreq __user __force *) &kifr); set_fs(old_fs); return err; default: return -ENOIOCTLCMD; } } /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, struct compat_ifreq __user *u_ifreq32) { struct ifreq __user *u_ifreq64; char tmp_buf[IFNAMSIZ]; void __user *data64; u32 data32; if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), IFNAMSIZ)) return -EFAULT; if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) return -EFAULT; data64 = compat_ptr(data32); u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], IFNAMSIZ)) return -EFAULT; if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) return -EFAULT; return dev_ioctl(net, cmd, u_ifreq64); } static int dev_ifsioc(struct net *net, struct socket *sock, unsigned int cmd, struct compat_ifreq __user *uifr32) { struct ifreq __user *uifr; int err; uifr = compat_alloc_user_space(sizeof(*uifr)); if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) return -EFAULT; err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); if (!err) { switch (cmd) { case SIOCGIFFLAGS: case SIOCGIFMETRIC: case SIOCGIFMTU: case SIOCGIFMEM: case SIOCGIFHWADDR: case SIOCGIFINDEX: case SIOCGIFADDR: case SIOCGIFBRDADDR: case SIOCGIFDSTADDR: case SIOCGIFNETMASK: case SIOCGIFPFLAGS: case SIOCGIFTXQLEN: case SIOCGMIIPHY: case SIOCGMIIREG: if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) err = -EFAULT; break; } } return err; } static int compat_sioc_ifmap(struct net *net, unsigned int cmd, struct compat_ifreq __user *uifr32) { struct ifreq ifr; struct compat_ifmap __user *uifmap32; mm_segment_t old_fs; int err; uifmap32 = &uifr32->ifr_ifru.ifru_map; err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); err |= get_user(ifr.ifr_map.port, &uifmap32->port); if (err) return -EFAULT; old_fs = get_fs(); set_fs(KERNEL_DS); err = dev_ioctl(net, cmd, (void __user __force *)&ifr); set_fs(old_fs); if (cmd == SIOCGIFMAP && !err) { err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); err |= put_user(ifr.ifr_map.port, &uifmap32->port); if (err) err = -EFAULT; } return err; } struct rtentry32 { u32 rt_pad1; struct sockaddr rt_dst; /* target address */ struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ struct sockaddr rt_genmask; /* target network mask (IP) */ unsigned short rt_flags; short rt_pad2; u32 rt_pad3; unsigned char rt_tos; unsigned char rt_class; short rt_pad4; short rt_metric; /* +1 for binary compatibility! */ /* char * */ u32 rt_dev; /* forcing the device at add */ u32 rt_mtu; /* per route MTU/Window */ u32 rt_window; /* Window clamping */ unsigned short rt_irtt; /* Initial RTT */ }; struct in6_rtmsg32 { struct in6_addr rtmsg_dst; struct in6_addr rtmsg_src; struct in6_addr rtmsg_gateway; u32 rtmsg_type; u16 rtmsg_dst_len; u16 rtmsg_src_len; u32 rtmsg_metric; u32 rtmsg_info; u32 rtmsg_flags; s32 rtmsg_ifindex; }; static int routing_ioctl(struct net *net, struct socket *sock, unsigned int cmd, void __user *argp) { int ret; void *r = NULL; struct in6_rtmsg r6; struct rtentry r4; char devname[16]; u32 rtdev; mm_segment_t old_fs = get_fs(); if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ struct in6_rtmsg32 __user *ur6 = argp; ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3 * sizeof(struct in6_addr)); ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); r = (void *) &r6; } else { /* ipv4 */ struct rtentry32 __user *ur4 = argp; ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3 * sizeof(struct sockaddr)); ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); ret |= get_user(r4.rt_window, &(ur4->rt_window)); ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); ret |= get_user(rtdev, &(ur4->rt_dev)); if (rtdev) { ret |= copy_from_user(devname, compat_ptr(rtdev), 15); r4.rt_dev = (char __user __force *)devname; devname[15] = 0; } else r4.rt_dev = NULL; r = (void *) &r4; } if (ret) { ret = -EFAULT; goto out; } set_fs(KERNEL_DS); ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); set_fs(old_fs); out: return ret; } /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE * for some operations; this forces use of the newer bridge-utils that * use compatible ioctls */ static int old_bridge_ioctl(compat_ulong_t __user *argp) { compat_ulong_t tmp; if (get_user(tmp, argp)) return -EFAULT; if (tmp == BRCTL_GET_VERSION) return BRCTL_VERSION + 1; return -EINVAL; } static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = compat_ptr(arg); struct sock *sk = sock->sk; struct net *net = sock_net(sk); if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) return compat_ifr_data_ioctl(net, cmd, argp); switch (cmd) { case SIOCSIFBR: case SIOCGIFBR: return old_bridge_ioctl(argp); case SIOCGIFNAME: return dev_ifname32(net, argp); case SIOCGIFCONF: return dev_ifconf(net, argp); case SIOCETHTOOL: return ethtool_ioctl(net, argp); case SIOCWANDEV: return compat_siocwandev(net, argp); case SIOCGIFMAP: case SIOCSIFMAP: return compat_sioc_ifmap(net, cmd, argp); case SIOCBONDENSLAVE: case SIOCBONDRELEASE: case SIOCBONDSETHWADDR: case SIOCBONDCHANGEACTIVE: return bond_ioctl(net, cmd, argp); case SIOCADDRT: case SIOCDELRT: return routing_ioctl(net, sock, cmd, argp); case SIOCGSTAMP: return do_siocgstamp(net, sock, cmd, argp); case SIOCGSTAMPNS: return do_siocgstampns(net, sock, cmd, argp); case SIOCBONDSLAVEINFOQUERY: case SIOCBONDINFOQUERY: case SIOCSHWTSTAMP: case SIOCGHWTSTAMP: return compat_ifr_data_ioctl(net, cmd, argp); case FIOSETOWN: case SIOCSPGRP: case FIOGETOWN: case SIOCGPGRP: case SIOCBRADDBR: case SIOCBRDELBR: case SIOCGIFVLAN: case SIOCSIFVLAN: case SIOCADDDLCI: case SIOCDELDLCI: case SIOCGSKNS: return sock_ioctl(file, cmd, arg); case SIOCGIFFLAGS: case SIOCSIFFLAGS: case SIOCGIFMETRIC: case SIOCSIFMETRIC: case SIOCGIFMTU: case SIOCSIFMTU: case SIOCGIFMEM: case SIOCSIFMEM: case SIOCGIFHWADDR: case SIOCSIFHWADDR: case SIOCADDMULTI: case SIOCDELMULTI: case SIOCGIFINDEX: case SIOCGIFADDR: case SIOCSIFADDR: case SIOCSIFHWBROADCAST: case SIOCDIFADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCSIFPFLAGS: case SIOCGIFPFLAGS: case SIOCGIFTXQLEN: case SIOCSIFTXQLEN: case SIOCBRADDIF: case SIOCBRDELIF: case SIOCSIFNAME: case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return dev_ifsioc(net, sock, cmd, argp); case SIOCSARP: case SIOCGARP: case SIOCDARP: case SIOCATMARK: return sock_do_ioctl(net, sock, cmd, arg); } return -ENOIOCTLCMD; } static long compat_sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct socket *sock = file->private_data; int ret = -ENOIOCTLCMD; struct sock *sk; struct net *net; sk = sock->sk; net = sock_net(sk); if (sock->ops->compat_ioctl) ret = sock->ops->compat_ioctl(sock, cmd, arg); if (ret == -ENOIOCTLCMD && (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) ret = compat_wext_handle_ioctl(net, cmd, arg); if (ret == -ENOIOCTLCMD) ret = compat_sock_ioctl_trans(file, sock, cmd, arg); return ret; } #endif int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) { return sock->ops->bind(sock, addr, addrlen); } EXPORT_SYMBOL(kernel_bind); int kernel_listen(struct socket *sock, int backlog) { return sock->ops->listen(sock, backlog); } EXPORT_SYMBOL(kernel_listen); int kernel_accept(struct socket *sock, struct socket **newsock, int flags) { struct sock *sk = sock->sk; int err; err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, newsock); if (err < 0) goto done; err = sock->ops->accept(sock, *newsock, flags, true); if (err < 0) { sock_release(*newsock); *newsock = NULL; goto done; } (*newsock)->ops = sock->ops; __module_get((*newsock)->ops->owner); done: return err; } EXPORT_SYMBOL(kernel_accept); int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, int flags) { return sock->ops->connect(sock, addr, addrlen, flags); } EXPORT_SYMBOL(kernel_connect); int kernel_getsockname(struct socket *sock, struct sockaddr *addr, int *addrlen) { return sock->ops->getname(sock, addr, addrlen, 0); } EXPORT_SYMBOL(kernel_getsockname); int kernel_getpeername(struct socket *sock, struct sockaddr *addr, int *addrlen) { return sock->ops->getname(sock, addr, addrlen, 1); } EXPORT_SYMBOL(kernel_getpeername); int kernel_getsockopt(struct socket *sock, int level, int optname, char *optval, int *optlen) { mm_segment_t oldfs = get_fs(); char __user *uoptval; int __user *uoptlen; int err; uoptval = (char __user __force *) optval; uoptlen = (int __user __force *) optlen; set_fs(KERNEL_DS); if (level == SOL_SOCKET) err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); else err = sock->ops->getsockopt(sock, level, optname, uoptval, uoptlen); set_fs(oldfs); return err; } EXPORT_SYMBOL(kernel_getsockopt); int kernel_setsockopt(struct socket *sock, int level, int optname, char *optval, unsigned int optlen) { mm_segment_t oldfs = get_fs(); char __user *uoptval; int err; uoptval = (char __user __force *) optval; set_fs(KERNEL_DS); if (level == SOL_SOCKET) err = sock_setsockopt(sock, level, optname, uoptval, optlen); else err = sock->ops->setsockopt(sock, level, optname, uoptval, optlen); set_fs(oldfs); return err; } EXPORT_SYMBOL(kernel_setsockopt); int kernel_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) { if (sock->ops->sendpage) return sock->ops->sendpage(sock, page, offset, size, flags); return sock_no_sendpage(sock, page, offset, size, flags); } EXPORT_SYMBOL(kernel_sendpage); int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) { mm_segment_t oldfs = get_fs(); int err; set_fs(KERNEL_DS); err = sock->ops->ioctl(sock, cmd, arg); set_fs(oldfs); return err; } EXPORT_SYMBOL(kernel_sock_ioctl); int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) { return sock->ops->shutdown(sock, how); } EXPORT_SYMBOL(kernel_sock_shutdown); /* This routine returns the IP overhead imposed by a socket i.e. * the length of the underlying IP header, depending on whether * this is an IPv4 or IPv6 socket and the length from IP options turned * on at the socket. Assumes that the caller has a lock on the socket. */ u32 kernel_sock_ip_overhead(struct sock *sk) { struct inet_sock *inet; struct ip_options_rcu *opt; u32 overhead = 0; #if IS_ENABLED(CONFIG_IPV6) struct ipv6_pinfo *np; struct ipv6_txoptions *optv6 = NULL; #endif /* IS_ENABLED(CONFIG_IPV6) */ if (!sk) return overhead; switch (sk->sk_family) { case AF_INET: inet = inet_sk(sk); overhead += sizeof(struct iphdr); opt = rcu_dereference_protected(inet->inet_opt, sock_owned_by_user(sk)); if (opt) overhead += opt->opt.optlen; return overhead; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: np = inet6_sk(sk); overhead += sizeof(struct ipv6hdr); if (np) optv6 = rcu_dereference_protected(np->opt, sock_owned_by_user(sk)); if (optv6) overhead += (optv6->opt_flen + optv6->opt_nflen); return overhead; #endif /* IS_ENABLED(CONFIG_IPV6) */ default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ return overhead; } } EXPORT_SYMBOL(kernel_sock_ip_overhead);