#ifndef _RDS_RDS_H #define _RDS_RDS_H #include #include #include #include #include #include #include #include "info.h" /* * RDS Network protocol version */ #define RDS_PROTOCOL_3_0 0x0300 #define RDS_PROTOCOL_3_1 0x0301 #define RDS_PROTOCOL_VERSION RDS_PROTOCOL_3_1 #define RDS_PROTOCOL_MAJOR(v) ((v) >> 8) #define RDS_PROTOCOL_MINOR(v) ((v) & 255) #define RDS_PROTOCOL(maj, min) (((maj) << 8) | min) /* * XXX randomly chosen, but at least seems to be unused: * # 18464-18768 Unassigned * We should do better. We want a reserved port to discourage unpriv'ed * userspace from listening. */ #define RDS_PORT 18634 #ifdef ATOMIC64_INIT #define KERNEL_HAS_ATOMIC64 #endif #ifdef RDS_DEBUG #define rdsdebug(fmt, args...) pr_debug("%s(): " fmt, __func__ , ##args) #else /* sigh, pr_debug() causes unused variable warnings */ static inline __printf(1, 2) void rdsdebug(char *fmt, ...) { } #endif /* XXX is there one of these somewhere? */ #define ceil(x, y) \ ({ unsigned long __x = (x), __y = (y); (__x + __y - 1) / __y; }) #define RDS_FRAG_SHIFT 12 #define RDS_FRAG_SIZE ((unsigned int)(1 << RDS_FRAG_SHIFT)) #define RDS_CONG_MAP_BYTES (65536 / 8) #define RDS_CONG_MAP_PAGES (PAGE_ALIGN(RDS_CONG_MAP_BYTES) / PAGE_SIZE) #define RDS_CONG_MAP_PAGE_BITS (PAGE_SIZE * 8) struct rds_cong_map { struct rb_node m_rb_node; __be32 m_addr; wait_queue_head_t m_waitq; struct list_head m_conn_list; unsigned long m_page_addrs[RDS_CONG_MAP_PAGES]; }; /* * This is how we will track the connection state: * A connection is always in one of the following * states. Updates to the state are atomic and imply * a memory barrier. */ enum { RDS_CONN_DOWN = 0, RDS_CONN_CONNECTING, RDS_CONN_DISCONNECTING, RDS_CONN_UP, RDS_CONN_RESETTING, RDS_CONN_ERROR, }; /* Bits for c_flags */ #define RDS_LL_SEND_FULL 0 #define RDS_RECONNECT_PENDING 1 #define RDS_IN_XMIT 2 #define RDS_RECV_REFILL 3 /* Max number of multipaths per RDS connection. Must be a power of 2 */ #define RDS_MPATH_WORKERS 8 #define RDS_MPATH_HASH(rs, n) (jhash_1word((rs)->rs_bound_port, \ (rs)->rs_hash_initval) & ((n) - 1)) /* Per mpath connection state */ struct rds_conn_path { struct rds_connection *cp_conn; struct rds_message *cp_xmit_rm; unsigned long cp_xmit_sg; unsigned int cp_xmit_hdr_off; unsigned int cp_xmit_data_off; unsigned int cp_xmit_atomic_sent; unsigned int cp_xmit_rdma_sent; unsigned int cp_xmit_data_sent; spinlock_t cp_lock; /* protect msg queues */ u64 cp_next_tx_seq; struct list_head cp_send_queue; struct list_head cp_retrans; u64 cp_next_rx_seq; void *cp_transport_data; atomic_t cp_state; unsigned long cp_send_gen; unsigned long cp_flags; unsigned long cp_reconnect_jiffies; struct delayed_work cp_send_w; struct delayed_work cp_recv_w; struct delayed_work cp_conn_w; struct work_struct cp_down_w; struct mutex cp_cm_lock; /* protect cp_state & cm */ wait_queue_head_t cp_waitq; unsigned int cp_unacked_packets; unsigned int cp_unacked_bytes; unsigned int cp_outgoing:1, cp_pad_to_32:31; unsigned int cp_index; }; /* One rds_connection per RDS address pair */ struct rds_connection { struct hlist_node c_hash_node; __be32 c_laddr; __be32 c_faddr; unsigned int c_loopback:1, c_ping_triggered:1, c_pad_to_32:30; int c_npaths; struct rds_connection *c_passive; struct rds_transport *c_trans; struct rds_cong_map *c_lcong; struct rds_cong_map *c_fcong; /* Protocol version */ unsigned int c_version; possible_net_t c_net; struct list_head c_map_item; unsigned long c_map_queued; struct rds_conn_path c_path[RDS_MPATH_WORKERS]; wait_queue_head_t c_hs_waitq; /* handshake waitq */ u32 c_my_gen_num; u32 c_peer_gen_num; }; static inline struct net *rds_conn_net(struct rds_connection *conn) { return read_pnet(&conn->c_net); } static inline void rds_conn_net_set(struct rds_connection *conn, struct net *net) { write_pnet(&conn->c_net, net); } #define RDS_FLAG_CONG_BITMAP 0x01 #define RDS_FLAG_ACK_REQUIRED 0x02 #define RDS_FLAG_RETRANSMITTED 0x04 #define RDS_MAX_ADV_CREDIT 255 /* RDS_FLAG_PROBE_PORT is the reserved sport used for sending a ping * probe to exchange control information before establishing a connection. * Currently the control information that is exchanged is the number of * supported paths. If the peer is a legacy (older kernel revision) peer, * it would return a pong message without additional control information * that would then alert the sender that the peer was an older rev. */ #define RDS_FLAG_PROBE_PORT 1 #define RDS_HS_PROBE(sport, dport) \ ((sport == RDS_FLAG_PROBE_PORT && dport == 0) || \ (sport == 0 && dport == RDS_FLAG_PROBE_PORT)) /* * Maximum space available for extension headers. */ #define RDS_HEADER_EXT_SPACE 16 struct rds_header { __be64 h_sequence; __be64 h_ack; __be32 h_len; __be16 h_sport; __be16 h_dport; u8 h_flags; u8 h_credit; u8 h_padding[4]; __sum16 h_csum; u8 h_exthdr[RDS_HEADER_EXT_SPACE]; }; /* * Reserved - indicates end of extensions */ #define RDS_EXTHDR_NONE 0 /* * This extension header is included in the very * first message that is sent on a new connection, * and identifies the protocol level. This will help * rolling updates if a future change requires breaking * the protocol. * NB: This is no longer true for IB, where we do a version * negotiation during the connection setup phase (protocol * version information is included in the RDMA CM private data). */ #define RDS_EXTHDR_VERSION 1 struct rds_ext_header_version { __be32 h_version; }; /* * This extension header is included in the RDS message * chasing an RDMA operation. */ #define RDS_EXTHDR_RDMA 2 struct rds_ext_header_rdma { __be32 h_rdma_rkey; }; /* * This extension header tells the peer about the * destination of the requested RDMA * operation. */ #define RDS_EXTHDR_RDMA_DEST 3 struct rds_ext_header_rdma_dest { __be32 h_rdma_rkey; __be32 h_rdma_offset; }; /* Extension header announcing number of paths. * Implicit length = 2 bytes. */ #define RDS_EXTHDR_NPATHS 5 #define RDS_EXTHDR_GEN_NUM 6 #define __RDS_EXTHDR_MAX 16 /* for now */ struct rds_incoming { atomic_t i_refcount; struct list_head i_item; struct rds_connection *i_conn; struct rds_conn_path *i_conn_path; struct rds_header i_hdr; unsigned long i_rx_jiffies; __be32 i_saddr; rds_rdma_cookie_t i_rdma_cookie; struct timeval i_rx_tstamp; }; struct rds_mr { struct rb_node r_rb_node; atomic_t r_refcount; u32 r_key; /* A copy of the creation flags */ unsigned int r_use_once:1; unsigned int r_invalidate:1; unsigned int r_write:1; /* This is for RDS_MR_DEAD. * It would be nice & consistent to make this part of the above * bit field here, but we need to use test_and_set_bit. */ unsigned long r_state; struct rds_sock *r_sock; /* back pointer to the socket that owns us */ struct rds_transport *r_trans; void *r_trans_private; }; /* Flags for mr->r_state */ #define RDS_MR_DEAD 0 static inline rds_rdma_cookie_t rds_rdma_make_cookie(u32 r_key, u32 offset) { return r_key | (((u64) offset) << 32); } static inline u32 rds_rdma_cookie_key(rds_rdma_cookie_t cookie) { return cookie; } static inline u32 rds_rdma_cookie_offset(rds_rdma_cookie_t cookie) { return cookie >> 32; } /* atomic operation types */ #define RDS_ATOMIC_TYPE_CSWP 0 #define RDS_ATOMIC_TYPE_FADD 1 /* * m_sock_item and m_conn_item are on lists that are serialized under * conn->c_lock. m_sock_item has additional meaning in that once it is empty * the message will not be put back on the retransmit list after being sent. * messages that are canceled while being sent rely on this. * * m_inc is used by loopback so that it can pass an incoming message straight * back up into the rx path. It embeds a wire header which is also used by * the send path, which is kind of awkward. * * m_sock_item indicates the message's presence on a socket's send or receive * queue. m_rs will point to that socket. * * m_daddr is used by cancellation to prune messages to a given destination. * * The RDS_MSG_ON_SOCK and RDS_MSG_ON_CONN flags are used to avoid lock * nesting. As paths iterate over messages on a sock, or conn, they must * also lock the conn, or sock, to remove the message from those lists too. * Testing the flag to determine if the message is still on the lists lets * us avoid testing the list_head directly. That means each path can use * the message's list_head to keep it on a local list while juggling locks * without confusing the other path. * * m_ack_seq is an optional field set by transports who need a different * sequence number range to invalidate. They can use this in a callback * that they pass to rds_send_drop_acked() to see if each message has been * acked. The HAS_ACK_SEQ flag can be used to detect messages which haven't * had ack_seq set yet. */ #define RDS_MSG_ON_SOCK 1 #define RDS_MSG_ON_CONN 2 #define RDS_MSG_HAS_ACK_SEQ 3 #define RDS_MSG_ACK_REQUIRED 4 #define RDS_MSG_RETRANSMITTED 5 #define RDS_MSG_MAPPED 6 #define RDS_MSG_PAGEVEC 7 #define RDS_MSG_FLUSH 8 struct rds_message { atomic_t m_refcount; struct list_head m_sock_item; struct list_head m_conn_item; struct rds_incoming m_inc; u64 m_ack_seq; __be32 m_daddr; unsigned long m_flags; /* Never access m_rs without holding m_rs_lock. * Lock nesting is * rm->m_rs_lock * -> rs->rs_lock */ spinlock_t m_rs_lock; wait_queue_head_t m_flush_wait; struct rds_sock *m_rs; /* cookie to send to remote, in rds header */ rds_rdma_cookie_t m_rdma_cookie; unsigned int m_used_sgs; unsigned int m_total_sgs; void *m_final_op; struct { struct rm_atomic_op { int op_type; union { struct { uint64_t compare; uint64_t swap; uint64_t compare_mask; uint64_t swap_mask; } op_m_cswp; struct { uint64_t add; uint64_t nocarry_mask; } op_m_fadd; }; u32 op_rkey; u64 op_remote_addr; unsigned int op_notify:1; unsigned int op_recverr:1; unsigned int op_mapped:1; unsigned int op_silent:1; unsigned int op_active:1; struct scatterlist *op_sg; struct rds_notifier *op_notifier; struct rds_mr *op_rdma_mr; } atomic; struct rm_rdma_op { u32 op_rkey; u64 op_remote_addr; unsigned int op_write:1; unsigned int op_fence:1; unsigned int op_notify:1; unsigned int op_recverr:1; unsigned int op_mapped:1; unsigned int op_silent:1; unsigned int op_active:1; unsigned int op_bytes; unsigned int op_nents; unsigned int op_count; struct scatterlist *op_sg; struct rds_notifier *op_notifier; struct rds_mr *op_rdma_mr; } rdma; struct rm_data_op { unsigned int op_active:1; unsigned int op_nents; unsigned int op_count; unsigned int op_dmasg; unsigned int op_dmaoff; struct scatterlist *op_sg; } data; }; }; /* * The RDS notifier is used (optionally) to tell the application about * completed RDMA operations. Rather than keeping the whole rds message * around on the queue, we allocate a small notifier that is put on the * socket's notifier_list. Notifications are delivered to the application * through control messages. */ struct rds_notifier { struct list_head n_list; uint64_t n_user_token; int n_status; }; /** * struct rds_transport - transport specific behavioural hooks * * @xmit: .xmit is called by rds_send_xmit() to tell the transport to send * part of a message. The caller serializes on the send_sem so this * doesn't need to be reentrant for a given conn. The header must be * sent before the data payload. .xmit must be prepared to send a * message with no data payload. .xmit should return the number of * bytes that were sent down the connection, including header bytes. * Returning 0 tells the caller that it doesn't need to perform any * additional work now. This is usually the case when the transport has * filled the sending queue for its connection and will handle * triggering the rds thread to continue the send when space becomes * available. Returning -EAGAIN tells the caller to retry the send * immediately. Returning -ENOMEM tells the caller to retry the send at * some point in the future. * * @conn_shutdown: conn_shutdown stops traffic on the given connection. Once * it returns the connection can not call rds_recv_incoming(). * This will only be called once after conn_connect returns * non-zero success and will The caller serializes this with * the send and connecting paths (xmit_* and conn_*). The * transport is responsible for other serialization, including * rds_recv_incoming(). This is called in process context but * should try hard not to block. */ struct rds_transport { char t_name[TRANSNAMSIZ]; struct list_head t_item; struct module *t_owner; unsigned int t_prefer_loopback:1, t_mp_capable:1; unsigned int t_type; int (*laddr_check)(struct net *net, __be32 addr); int (*conn_alloc)(struct rds_connection *conn, gfp_t gfp); void (*conn_free)(void *data); int (*conn_path_connect)(struct rds_conn_path *cp); void (*conn_path_shutdown)(struct rds_conn_path *conn); void (*xmit_path_prepare)(struct rds_conn_path *cp); void (*xmit_path_complete)(struct rds_conn_path *cp); int (*xmit)(struct rds_connection *conn, struct rds_message *rm, unsigned int hdr_off, unsigned int sg, unsigned int off); int (*xmit_rdma)(struct rds_connection *conn, struct rm_rdma_op *op); int (*xmit_atomic)(struct rds_connection *conn, struct rm_atomic_op *op); int (*recv_path)(struct rds_conn_path *cp); int (*inc_copy_to_user)(struct rds_incoming *inc, struct iov_iter *to); void (*inc_free)(struct rds_incoming *inc); int (*cm_handle_connect)(struct rdma_cm_id *cm_id, struct rdma_cm_event *event); int (*cm_initiate_connect)(struct rdma_cm_id *cm_id); void (*cm_connect_complete)(struct rds_connection *conn, struct rdma_cm_event *event); unsigned int (*stats_info_copy)(struct rds_info_iterator *iter, unsigned int avail); void (*exit)(void); void *(*get_mr)(struct scatterlist *sg, unsigned long nr_sg, struct rds_sock *rs, u32 *key_ret); void (*sync_mr)(void *trans_private, int direction); void (*free_mr)(void *trans_private, int invalidate); void (*flush_mrs)(void); }; struct rds_sock { struct sock rs_sk; u64 rs_user_addr; u64 rs_user_bytes; /* * bound_addr used for both incoming and outgoing, no INADDR_ANY * support. */ struct rhash_head rs_bound_node; u64 rs_bound_key; __be32 rs_bound_addr; __be32 rs_conn_addr; __be16 rs_bound_port; __be16 rs_conn_port; struct rds_transport *rs_transport; /* * rds_sendmsg caches the conn it used the last time around. * This helps avoid costly lookups. */ struct rds_connection *rs_conn; /* flag indicating we were congested or not */ int rs_congested; /* seen congestion (ENOBUFS) when sending? */ int rs_seen_congestion; /* rs_lock protects all these adjacent members before the newline */ spinlock_t rs_lock; struct list_head rs_send_queue; u32 rs_snd_bytes; int rs_rcv_bytes; struct list_head rs_notify_queue; /* currently used for failed RDMAs */ /* Congestion wake_up. If rs_cong_monitor is set, we use cong_mask * to decide whether the application should be woken up. * If not set, we use rs_cong_track to find out whether a cong map * update arrived. */ uint64_t rs_cong_mask; uint64_t rs_cong_notify; struct list_head rs_cong_list; unsigned long rs_cong_track; /* * rs_recv_lock protects the receive queue, and is * used to serialize with rds_release. */ rwlock_t rs_recv_lock; struct list_head rs_recv_queue; /* just for stats reporting */ struct list_head rs_item; /* these have their own lock */ spinlock_t rs_rdma_lock; struct rb_root rs_rdma_keys; /* Socket options - in case there will be more */ unsigned char rs_recverr, rs_cong_monitor; u32 rs_hash_initval; }; static inline struct rds_sock *rds_sk_to_rs(const struct sock *sk) { return container_of(sk, struct rds_sock, rs_sk); } static inline struct sock *rds_rs_to_sk(struct rds_sock *rs) { return &rs->rs_sk; } /* * The stack assigns sk_sndbuf and sk_rcvbuf to twice the specified value * to account for overhead. We don't account for overhead, we just apply * the number of payload bytes to the specified value. */ static inline int rds_sk_sndbuf(struct rds_sock *rs) { return rds_rs_to_sk(rs)->sk_sndbuf / 2; } static inline int rds_sk_rcvbuf(struct rds_sock *rs) { return rds_rs_to_sk(rs)->sk_rcvbuf / 2; } struct rds_statistics { uint64_t s_conn_reset; uint64_t s_recv_drop_bad_checksum; uint64_t s_recv_drop_old_seq; uint64_t s_recv_drop_no_sock; uint64_t s_recv_drop_dead_sock; uint64_t s_recv_deliver_raced; uint64_t s_recv_delivered; uint64_t s_recv_queued; uint64_t s_recv_immediate_retry; uint64_t s_recv_delayed_retry; uint64_t s_recv_ack_required; uint64_t s_recv_rdma_bytes; uint64_t s_recv_ping; uint64_t s_send_queue_empty; uint64_t s_send_queue_full; uint64_t s_send_lock_contention; uint64_t s_send_lock_queue_raced; uint64_t s_send_immediate_retry; uint64_t s_send_delayed_retry; uint64_t s_send_drop_acked; uint64_t s_send_ack_required; uint64_t s_send_queued; uint64_t s_send_rdma; uint64_t s_send_rdma_bytes; uint64_t s_send_pong; uint64_t s_page_remainder_hit; uint64_t s_page_remainder_miss; uint64_t s_copy_to_user; uint64_t s_copy_from_user; uint64_t s_cong_update_queued; uint64_t s_cong_update_received; uint64_t s_cong_send_error; uint64_t s_cong_send_blocked; }; /* af_rds.c */ void rds_sock_addref(struct rds_sock *rs); void rds_sock_put(struct rds_sock *rs); void rds_wake_sk_sleep(struct rds_sock *rs); static inline void __rds_wake_sk_sleep(struct sock *sk) { wait_queue_head_t *waitq = sk_sleep(sk); if (!sock_flag(sk, SOCK_DEAD) && waitq) wake_up(waitq); } extern wait_queue_head_t rds_poll_waitq; /* bind.c */ int rds_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); void rds_remove_bound(struct rds_sock *rs); struct rds_sock *rds_find_bound(__be32 addr, __be16 port); int rds_bind_lock_init(void); void rds_bind_lock_destroy(void); /* cong.c */ int rds_cong_get_maps(struct rds_connection *conn); void rds_cong_add_conn(struct rds_connection *conn); void rds_cong_remove_conn(struct rds_connection *conn); void rds_cong_set_bit(struct rds_cong_map *map, __be16 port); void rds_cong_clear_bit(struct rds_cong_map *map, __be16 port); int rds_cong_wait(struct rds_cong_map *map, __be16 port, int nonblock, struct rds_sock *rs); void rds_cong_queue_updates(struct rds_cong_map *map); void rds_cong_map_updated(struct rds_cong_map *map, uint64_t); int rds_cong_updated_since(unsigned long *recent); void rds_cong_add_socket(struct rds_sock *); void rds_cong_remove_socket(struct rds_sock *); void rds_cong_exit(void); struct rds_message *rds_cong_update_alloc(struct rds_connection *conn); /* conn.c */ extern u32 rds_gen_num; int rds_conn_init(void); void rds_conn_exit(void); struct rds_connection *rds_conn_create(struct net *net, __be32 laddr, __be32 faddr, struct rds_transport *trans, gfp_t gfp); struct rds_connection *rds_conn_create_outgoing(struct net *net, __be32 laddr, __be32 faddr, struct rds_transport *trans, gfp_t gfp); void rds_conn_shutdown(struct rds_conn_path *cpath); void rds_conn_destroy(struct rds_connection *conn); void rds_conn_drop(struct rds_connection *conn); void rds_conn_path_drop(struct rds_conn_path *cpath); void rds_conn_connect_if_down(struct rds_connection *conn); void rds_conn_path_connect_if_down(struct rds_conn_path *cp); void rds_for_each_conn_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens, int (*visitor)(struct rds_connection *, void *), size_t item_len); __printf(2, 3) void __rds_conn_path_error(struct rds_conn_path *cp, const char *, ...); #define rds_conn_path_error(cp, fmt...) \ __rds_conn_path_error(cp, KERN_WARNING "RDS: " fmt) static inline int rds_conn_path_transition(struct rds_conn_path *cp, int old, int new) { return atomic_cmpxchg(&cp->cp_state, old, new) == old; } static inline int rds_conn_transition(struct rds_connection *conn, int old, int new) { WARN_ON(conn->c_trans->t_mp_capable); return rds_conn_path_transition(&conn->c_path[0], old, new); } static inline int rds_conn_path_state(struct rds_conn_path *cp) { return atomic_read(&cp->cp_state); } static inline int rds_conn_state(struct rds_connection *conn) { WARN_ON(conn->c_trans->t_mp_capable); return rds_conn_path_state(&conn->c_path[0]); } static inline int rds_conn_path_up(struct rds_conn_path *cp) { return atomic_read(&cp->cp_state) == RDS_CONN_UP; } static inline int rds_conn_up(struct rds_connection *conn) { WARN_ON(conn->c_trans->t_mp_capable); return rds_conn_path_up(&conn->c_path[0]); } static inline int rds_conn_path_connecting(struct rds_conn_path *cp) { return atomic_read(&cp->cp_state) == RDS_CONN_CONNECTING; } static inline int rds_conn_connecting(struct rds_connection *conn) { WARN_ON(conn->c_trans->t_mp_capable); return rds_conn_path_connecting(&conn->c_path[0]); } /* message.c */ struct rds_message *rds_message_alloc(unsigned int nents, gfp_t gfp); struct scatterlist *rds_message_alloc_sgs(struct rds_message *rm, int nents); int rds_message_copy_from_user(struct rds_message *rm, struct iov_iter *from); struct rds_message *rds_message_map_pages(unsigned long *page_addrs, unsigned int total_len); void rds_message_populate_header(struct rds_header *hdr, __be16 sport, __be16 dport, u64 seq); int rds_message_add_extension(struct rds_header *hdr, unsigned int type, const void *data, unsigned int len); int rds_message_next_extension(struct rds_header *hdr, unsigned int *pos, void *buf, unsigned int *buflen); int rds_message_add_rdma_dest_extension(struct rds_header *hdr, u32 r_key, u32 offset); int rds_message_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to); void rds_message_inc_free(struct rds_incoming *inc); void rds_message_addref(struct rds_message *rm); void rds_message_put(struct rds_message *rm); void rds_message_wait(struct rds_message *rm); void rds_message_unmapped(struct rds_message *rm); static inline void rds_message_make_checksum(struct rds_header *hdr) { hdr->h_csum = 0; hdr->h_csum = ip_fast_csum((void *) hdr, sizeof(*hdr) >> 2); } static inline int rds_message_verify_checksum(const struct rds_header *hdr) { return !hdr->h_csum || ip_fast_csum((void *) hdr, sizeof(*hdr) >> 2) == 0; } /* page.c */ int rds_page_remainder_alloc(struct scatterlist *scat, unsigned long bytes, gfp_t gfp); void rds_page_exit(void); /* recv.c */ void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn, __be32 saddr); void rds_inc_path_init(struct rds_incoming *inc, struct rds_conn_path *conn, __be32 saddr); void rds_inc_put(struct rds_incoming *inc); void rds_recv_incoming(struct rds_connection *conn, __be32 saddr, __be32 daddr, struct rds_incoming *inc, gfp_t gfp); int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int msg_flags); void rds_clear_recv_queue(struct rds_sock *rs); int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msg); void rds_inc_info_copy(struct rds_incoming *inc, struct rds_info_iterator *iter, __be32 saddr, __be32 daddr, int flip); /* send.c */ int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len); void rds_send_path_reset(struct rds_conn_path *conn); int rds_send_xmit(struct rds_conn_path *cp); struct sockaddr_in; void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest); typedef int (*is_acked_func)(struct rds_message *rm, uint64_t ack); void rds_send_drop_acked(struct rds_connection *conn, u64 ack, is_acked_func is_acked); void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack, is_acked_func is_acked); int rds_send_pong(struct rds_conn_path *cp, __be16 dport); /* rdma.c */ void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force); int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen); int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen); int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen); void rds_rdma_drop_keys(struct rds_sock *rs); int rds_rdma_extra_size(struct rds_rdma_args *args); int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg); int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg); int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg); int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg); void rds_rdma_free_op(struct rm_rdma_op *ro); void rds_atomic_free_op(struct rm_atomic_op *ao); void rds_rdma_send_complete(struct rds_message *rm, int wc_status); void rds_atomic_send_complete(struct rds_message *rm, int wc_status); int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm, struct cmsghdr *cmsg); void __rds_put_mr_final(struct rds_mr *mr); static inline void rds_mr_put(struct rds_mr *mr) { if (atomic_dec_and_test(&mr->r_refcount)) __rds_put_mr_final(mr); } /* stats.c */ DECLARE_PER_CPU_SHARED_ALIGNED(struct rds_statistics, rds_stats); #define rds_stats_inc_which(which, member) do { \ per_cpu(which, get_cpu()).member++; \ put_cpu(); \ } while (0) #define rds_stats_inc(member) rds_stats_inc_which(rds_stats, member) #define rds_stats_add_which(which, member, count) do { \ per_cpu(which, get_cpu()).member += count; \ put_cpu(); \ } while (0) #define rds_stats_add(member, count) rds_stats_add_which(rds_stats, member, count) int rds_stats_init(void); void rds_stats_exit(void); void rds_stats_info_copy(struct rds_info_iterator *iter, uint64_t *values, const char *const *names, size_t nr); /* sysctl.c */ int rds_sysctl_init(void); void rds_sysctl_exit(void); extern unsigned long rds_sysctl_sndbuf_min; extern unsigned long rds_sysctl_sndbuf_default; extern unsigned long rds_sysctl_sndbuf_max; extern unsigned long rds_sysctl_reconnect_min_jiffies; extern unsigned long rds_sysctl_reconnect_max_jiffies; extern unsigned int rds_sysctl_max_unacked_packets; extern unsigned int rds_sysctl_max_unacked_bytes; extern unsigned int rds_sysctl_ping_enable; extern unsigned long rds_sysctl_trace_flags; extern unsigned int rds_sysctl_trace_level; /* threads.c */ int rds_threads_init(void); void rds_threads_exit(void); extern struct workqueue_struct *rds_wq; void rds_queue_reconnect(struct rds_conn_path *cp); void rds_connect_worker(struct work_struct *); void rds_shutdown_worker(struct work_struct *); void rds_send_worker(struct work_struct *); void rds_recv_worker(struct work_struct *); void rds_connect_path_complete(struct rds_conn_path *conn, int curr); void rds_connect_complete(struct rds_connection *conn); /* transport.c */ int rds_trans_register(struct rds_transport *trans); void rds_trans_unregister(struct rds_transport *trans); struct rds_transport *rds_trans_get_preferred(struct net *net, __be32 addr); void rds_trans_put(struct rds_transport *trans); unsigned int rds_trans_stats_info_copy(struct rds_info_iterator *iter, unsigned int avail); struct rds_transport *rds_trans_get(int t_type); int rds_trans_init(void); void rds_trans_exit(void); #endif