// SPDX-License-Identifier: GPL-2.0 /* * linux/mm/swap_state.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * Swap reorganised 29.12.95, Stephen Tweedie * * Rewritten to use page cache, (C) 1998 Stephen Tweedie */ #include <linux/mm.h> #include <linux/gfp.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/init.h> #include <linux/pagemap.h> #include <linux/backing-dev.h> #include <linux/blkdev.h> #include <linux/pagevec.h> #include <linux/migrate.h> #include <linux/vmalloc.h> #include <linux/swap_slots.h> #include <linux/huge_mm.h> #include <asm/pgtable.h> /* * swapper_space is a fiction, retained to simplify the path through * vmscan's shrink_page_list. */ static const struct address_space_operations swap_aops = { .writepage = swap_writepage, .set_page_dirty = swap_set_page_dirty, #ifdef CONFIG_MIGRATION .migratepage = migrate_page, #endif }; struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; static bool enable_vma_readahead __read_mostly = true; #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) #define SWAP_RA_VAL(addr, win, hits) \ (((addr) & PAGE_MASK) | \ (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ ((hits) & SWAP_RA_HITS_MASK)) /* Initial readahead hits is 4 to start up with a small window */ #define GET_SWAP_RA_VAL(vma) \ (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) #define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0) static struct { unsigned long add_total; unsigned long del_total; unsigned long find_success; unsigned long find_total; } swap_cache_info; unsigned long total_swapcache_pages(void) { unsigned int i, j, nr; unsigned long ret = 0; struct address_space *spaces; struct swap_info_struct *si; for (i = 0; i < MAX_SWAPFILES; i++) { swp_entry_t entry = swp_entry(i, 1); /* Avoid get_swap_device() to warn for bad swap entry */ if (!swp_swap_info(entry)) continue; /* Prevent swapoff to free swapper_spaces */ si = get_swap_device(entry); if (!si) continue; nr = nr_swapper_spaces[i]; spaces = swapper_spaces[i]; for (j = 0; j < nr; j++) ret += spaces[j].nrpages; put_swap_device(si); } return ret; } static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); void show_swap_cache_info(void) { printk("%lu pages in swap cache\n", total_swapcache_pages()); printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", swap_cache_info.add_total, swap_cache_info.del_total, swap_cache_info.find_success, swap_cache_info.find_total); printk("Free swap = %ldkB\n", get_nr_swap_pages() << (PAGE_SHIFT - 10)); printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); } /* * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, * but sets SwapCache flag and private instead of mapping and index. */ int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp) { struct address_space *address_space = swap_address_space(entry); pgoff_t idx = swp_offset(entry); XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page)); unsigned long i, nr = hpage_nr_pages(page); VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(PageSwapCache(page), page); VM_BUG_ON_PAGE(!PageSwapBacked(page), page); page_ref_add(page, nr); SetPageSwapCache(page); do { xas_lock_irq(&xas); xas_create_range(&xas); if (xas_error(&xas)) goto unlock; for (i = 0; i < nr; i++) { VM_BUG_ON_PAGE(xas.xa_index != idx + i, page); set_page_private(page + i, entry.val + i); xas_store(&xas, page); xas_next(&xas); } address_space->nrpages += nr; __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); ADD_CACHE_INFO(add_total, nr); unlock: xas_unlock_irq(&xas); } while (xas_nomem(&xas, gfp)); if (!xas_error(&xas)) return 0; ClearPageSwapCache(page); page_ref_sub(page, nr); return xas_error(&xas); } /* * This must be called only on pages that have * been verified to be in the swap cache. */ void __delete_from_swap_cache(struct page *page, swp_entry_t entry) { struct address_space *address_space = swap_address_space(entry); int i, nr = hpage_nr_pages(page); pgoff_t idx = swp_offset(entry); XA_STATE(xas, &address_space->i_pages, idx); VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(!PageSwapCache(page), page); VM_BUG_ON_PAGE(PageWriteback(page), page); for (i = 0; i < nr; i++) { void *entry = xas_store(&xas, NULL); VM_BUG_ON_PAGE(entry != page, entry); set_page_private(page + i, 0); xas_next(&xas); } ClearPageSwapCache(page); address_space->nrpages -= nr; __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); ADD_CACHE_INFO(del_total, nr); } /** * add_to_swap - allocate swap space for a page * @page: page we want to move to swap * * Allocate swap space for the page and add the page to the * swap cache. Caller needs to hold the page lock. */ int add_to_swap(struct page *page) { swp_entry_t entry; int err; VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(!PageUptodate(page), page); entry = get_swap_page(page); if (!entry.val) return 0; /* * XArray node allocations from PF_MEMALLOC contexts could * completely exhaust the page allocator. __GFP_NOMEMALLOC * stops emergency reserves from being allocated. * * TODO: this could cause a theoretical memory reclaim * deadlock in the swap out path. */ /* * Add it to the swap cache. */ err = add_to_swap_cache(page, entry, __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); if (err) /* * add_to_swap_cache() doesn't return -EEXIST, so we can safely * clear SWAP_HAS_CACHE flag. */ goto fail; /* * Normally the page will be dirtied in unmap because its pte should be * dirty. A special case is MADV_FREE page. The page'e pte could have * dirty bit cleared but the page's SwapBacked bit is still set because * clearing the dirty bit and SwapBacked bit has no lock protected. For * such page, unmap will not set dirty bit for it, so page reclaim will * not write the page out. This can cause data corruption when the page * is swap in later. Always setting the dirty bit for the page solves * the problem. */ set_page_dirty(page); return 1; fail: put_swap_page(page, entry); return 0; } /* * This must be called only on pages that have * been verified to be in the swap cache and locked. * It will never put the page into the free list, * the caller has a reference on the page. */ void delete_from_swap_cache(struct page *page) { swp_entry_t entry = { .val = page_private(page) }; struct address_space *address_space = swap_address_space(entry); xa_lock_irq(&address_space->i_pages); __delete_from_swap_cache(page, entry); xa_unlock_irq(&address_space->i_pages); put_swap_page(page, entry); page_ref_sub(page, hpage_nr_pages(page)); } /* * If we are the only user, then try to free up the swap cache. * * Its ok to check for PageSwapCache without the page lock * here because we are going to recheck again inside * try_to_free_swap() _with_ the lock. * - Marcelo */ static inline void free_swap_cache(struct page *page) { if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { try_to_free_swap(page); unlock_page(page); } } /* * Perform a free_page(), also freeing any swap cache associated with * this page if it is the last user of the page. */ void free_page_and_swap_cache(struct page *page) { free_swap_cache(page); if (!is_huge_zero_page(page)) put_page(page); } /* * Passed an array of pages, drop them all from swapcache and then release * them. They are removed from the LRU and freed if this is their last use. */ void free_pages_and_swap_cache(struct page **pages, int nr) { struct page **pagep = pages; int i; lru_add_drain(); for (i = 0; i < nr; i++) free_swap_cache(pagep[i]); release_pages(pagep, nr); } static inline bool swap_use_vma_readahead(void) { return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); } /* * Lookup a swap entry in the swap cache. A found page will be returned * unlocked and with its refcount incremented - we rely on the kernel * lock getting page table operations atomic even if we drop the page * lock before returning. */ struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, unsigned long addr) { struct page *page; struct swap_info_struct *si; si = get_swap_device(entry); if (!si) return NULL; page = find_get_page(swap_address_space(entry), swp_offset(entry)); put_swap_device(si); INC_CACHE_INFO(find_total); if (page) { bool vma_ra = swap_use_vma_readahead(); bool readahead; INC_CACHE_INFO(find_success); /* * At the moment, we don't support PG_readahead for anon THP * so let's bail out rather than confusing the readahead stat. */ if (unlikely(PageTransCompound(page))) return page; readahead = TestClearPageReadahead(page); if (vma && vma_ra) { unsigned long ra_val; int win, hits; ra_val = GET_SWAP_RA_VAL(vma); win = SWAP_RA_WIN(ra_val); hits = SWAP_RA_HITS(ra_val); if (readahead) hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(addr, win, hits)); } if (readahead) { count_vm_event(SWAP_RA_HIT); if (!vma || !vma_ra) atomic_inc(&swapin_readahead_hits); } } return page; } struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, struct vm_area_struct *vma, unsigned long addr, bool *new_page_allocated) { struct page *found_page = NULL, *new_page = NULL; struct swap_info_struct *si; int err; *new_page_allocated = false; do { /* * First check the swap cache. Since this is normally * called after lookup_swap_cache() failed, re-calling * that would confuse statistics. */ si = get_swap_device(entry); if (!si) break; found_page = find_get_page(swap_address_space(entry), swp_offset(entry)); put_swap_device(si); if (found_page) break; /* * Just skip read ahead for unused swap slot. * During swap_off when swap_slot_cache is disabled, * we have to handle the race between putting * swap entry in swap cache and marking swap slot * as SWAP_HAS_CACHE. That's done in later part of code or * else swap_off will be aborted if we return NULL. */ if (!__swp_swapcount(entry) && swap_slot_cache_enabled) break; /* * Get a new page to read into from swap. */ if (!new_page) { new_page = alloc_page_vma(gfp_mask, vma, addr); if (!new_page) break; /* Out of memory */ } /* * Swap entry may have been freed since our caller observed it. */ err = swapcache_prepare(entry); if (err == -EEXIST) { /* * We might race against get_swap_page() and stumble * across a SWAP_HAS_CACHE swap_map entry whose page * has not been brought into the swapcache yet. */ cond_resched(); continue; } else if (err) /* swp entry is obsolete ? */ break; /* May fail (-ENOMEM) if XArray node allocation failed. */ __SetPageLocked(new_page); __SetPageSwapBacked(new_page); err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL); if (likely(!err)) { /* Initiate read into locked page */ SetPageWorkingset(new_page); lru_cache_add_anon(new_page); *new_page_allocated = true; return new_page; } __ClearPageLocked(new_page); /* * add_to_swap_cache() doesn't return -EEXIST, so we can safely * clear SWAP_HAS_CACHE flag. */ put_swap_page(new_page, entry); } while (err != -ENOMEM); if (new_page) put_page(new_page); return found_page; } /* * Locate a page of swap in physical memory, reserving swap cache space * and reading the disk if it is not already cached. * A failure return means that either the page allocation failed or that * the swap entry is no longer in use. */ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, struct vm_area_struct *vma, unsigned long addr, bool do_poll) { bool page_was_allocated; struct page *retpage = __read_swap_cache_async(entry, gfp_mask, vma, addr, &page_was_allocated); if (page_was_allocated) swap_readpage(retpage, do_poll); return retpage; } static unsigned int __swapin_nr_pages(unsigned long prev_offset, unsigned long offset, int hits, int max_pages, int prev_win) { unsigned int pages, last_ra; /* * This heuristic has been found to work well on both sequential and * random loads, swapping to hard disk or to SSD: please don't ask * what the "+ 2" means, it just happens to work well, that's all. */ pages = hits + 2; if (pages == 2) { /* * We can have no readahead hits to judge by: but must not get * stuck here forever, so check for an adjacent offset instead * (and don't even bother to check whether swap type is same). */ if (offset != prev_offset + 1 && offset != prev_offset - 1) pages = 1; } else { unsigned int roundup = 4; while (roundup < pages) roundup <<= 1; pages = roundup; } if (pages > max_pages) pages = max_pages; /* Don't shrink readahead too fast */ last_ra = prev_win / 2; if (pages < last_ra) pages = last_ra; return pages; } static unsigned long swapin_nr_pages(unsigned long offset) { static unsigned long prev_offset; unsigned int hits, pages, max_pages; static atomic_t last_readahead_pages; max_pages = 1 << READ_ONCE(page_cluster); if (max_pages <= 1) return 1; hits = atomic_xchg(&swapin_readahead_hits, 0); pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages, atomic_read(&last_readahead_pages)); if (!hits) prev_offset = offset; atomic_set(&last_readahead_pages, pages); return pages; } /** * swap_cluster_readahead - swap in pages in hope we need them soon * @entry: swap entry of this memory * @gfp_mask: memory allocation flags * @vmf: fault information * * Returns the struct page for entry and addr, after queueing swapin. * * Primitive swap readahead code. We simply read an aligned block of * (1 << page_cluster) entries in the swap area. This method is chosen * because it doesn't cost us any seek time. We also make sure to queue * the 'original' request together with the readahead ones... * * This has been extended to use the NUMA policies from the mm triggering * the readahead. * * Caller must hold read mmap_sem if vmf->vma is not NULL. */ struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, struct vm_fault *vmf) { struct page *page; unsigned long entry_offset = swp_offset(entry); unsigned long offset = entry_offset; unsigned long start_offset, end_offset; unsigned long mask; struct swap_info_struct *si = swp_swap_info(entry); struct blk_plug plug; bool do_poll = true, page_allocated; struct vm_area_struct *vma = vmf->vma; unsigned long addr = vmf->address; mask = swapin_nr_pages(offset) - 1; if (!mask) goto skip; /* Test swap type to make sure the dereference is safe */ if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) { struct inode *inode = si->swap_file->f_mapping->host; if (inode_read_congested(inode)) goto skip; } do_poll = false; /* Read a page_cluster sized and aligned cluster around offset. */ start_offset = offset & ~mask; end_offset = offset | mask; if (!start_offset) /* First page is swap header. */ start_offset++; if (end_offset >= si->max) end_offset = si->max - 1; blk_start_plug(&plug); for (offset = start_offset; offset <= end_offset ; offset++) { /* Ok, do the async read-ahead now */ page = __read_swap_cache_async( swp_entry(swp_type(entry), offset), gfp_mask, vma, addr, &page_allocated); if (!page) continue; if (page_allocated) { swap_readpage(page, false); if (offset != entry_offset) { SetPageReadahead(page); count_vm_event(SWAP_RA); } } put_page(page); } blk_finish_plug(&plug); lru_add_drain(); /* Push any new pages onto the LRU now */ skip: return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll); } int init_swap_address_space(unsigned int type, unsigned long nr_pages) { struct address_space *spaces, *space; unsigned int i, nr; nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); if (!spaces) return -ENOMEM; for (i = 0; i < nr; i++) { space = spaces + i; xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); atomic_set(&space->i_mmap_writable, 0); space->a_ops = &swap_aops; /* swap cache doesn't use writeback related tags */ mapping_set_no_writeback_tags(space); } nr_swapper_spaces[type] = nr; swapper_spaces[type] = spaces; return 0; } void exit_swap_address_space(unsigned int type) { kvfree(swapper_spaces[type]); nr_swapper_spaces[type] = 0; swapper_spaces[type] = NULL; } static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, unsigned long faddr, unsigned long lpfn, unsigned long rpfn, unsigned long *start, unsigned long *end) { *start = max3(lpfn, PFN_DOWN(vma->vm_start), PFN_DOWN(faddr & PMD_MASK)); *end = min3(rpfn, PFN_DOWN(vma->vm_end), PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); } static void swap_ra_info(struct vm_fault *vmf, struct vma_swap_readahead *ra_info) { struct vm_area_struct *vma = vmf->vma; unsigned long ra_val; swp_entry_t entry; unsigned long faddr, pfn, fpfn; unsigned long start, end; pte_t *pte, *orig_pte; unsigned int max_win, hits, prev_win, win, left; #ifndef CONFIG_64BIT pte_t *tpte; #endif max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING); if (max_win == 1) { ra_info->win = 1; return; } faddr = vmf->address; orig_pte = pte = pte_offset_map(vmf->pmd, faddr); entry = pte_to_swp_entry(*pte); if ((unlikely(non_swap_entry(entry)))) { pte_unmap(orig_pte); return; } fpfn = PFN_DOWN(faddr); ra_val = GET_SWAP_RA_VAL(vma); pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); prev_win = SWAP_RA_WIN(ra_val); hits = SWAP_RA_HITS(ra_val); ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, max_win, prev_win); atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0)); if (win == 1) { pte_unmap(orig_pte); return; } /* Copy the PTEs because the page table may be unmapped */ if (fpfn == pfn + 1) swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); else if (pfn == fpfn + 1) swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, &start, &end); else { left = (win - 1) / 2; swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, &start, &end); } ra_info->nr_pte = end - start; ra_info->offset = fpfn - start; pte -= ra_info->offset; #ifdef CONFIG_64BIT ra_info->ptes = pte; #else tpte = ra_info->ptes; for (pfn = start; pfn != end; pfn++) *tpte++ = *pte++; #endif pte_unmap(orig_pte); } /** * swap_vma_readahead - swap in pages in hope we need them soon * @entry: swap entry of this memory * @gfp_mask: memory allocation flags * @vmf: fault information * * Returns the struct page for entry and addr, after queueing swapin. * * Primitive swap readahead code. We simply read in a few pages whoes * virtual addresses are around the fault address in the same vma. * * Caller must hold read mmap_sem if vmf->vma is not NULL. * */ static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, struct vm_fault *vmf) { struct blk_plug plug; struct vm_area_struct *vma = vmf->vma; struct page *page; pte_t *pte, pentry; swp_entry_t entry; unsigned int i; bool page_allocated; struct vma_swap_readahead ra_info = {0,}; swap_ra_info(vmf, &ra_info); if (ra_info.win == 1) goto skip; blk_start_plug(&plug); for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; i++, pte++) { pentry = *pte; if (pte_none(pentry)) continue; if (pte_present(pentry)) continue; entry = pte_to_swp_entry(pentry); if (unlikely(non_swap_entry(entry))) continue; page = __read_swap_cache_async(entry, gfp_mask, vma, vmf->address, &page_allocated); if (!page) continue; if (page_allocated) { swap_readpage(page, false); if (i != ra_info.offset) { SetPageReadahead(page); count_vm_event(SWAP_RA); } } put_page(page); } blk_finish_plug(&plug); lru_add_drain(); skip: return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, ra_info.win == 1); } /** * swapin_readahead - swap in pages in hope we need them soon * @entry: swap entry of this memory * @gfp_mask: memory allocation flags * @vmf: fault information * * Returns the struct page for entry and addr, after queueing swapin. * * It's a main entry function for swap readahead. By the configuration, * it will read ahead blocks by cluster-based(ie, physical disk based) * or vma-based(ie, virtual address based on faulty address) readahead. */ struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, struct vm_fault *vmf) { return swap_use_vma_readahead() ? swap_vma_readahead(entry, gfp_mask, vmf) : swap_cluster_readahead(entry, gfp_mask, vmf); } #ifdef CONFIG_SYSFS static ssize_t vma_ra_enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false"); } static ssize_t vma_ra_enabled_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) enable_vma_readahead = true; else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) enable_vma_readahead = false; else return -EINVAL; return count; } static struct kobj_attribute vma_ra_enabled_attr = __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show, vma_ra_enabled_store); static struct attribute *swap_attrs[] = { &vma_ra_enabled_attr.attr, NULL, }; static struct attribute_group swap_attr_group = { .attrs = swap_attrs, }; static int __init swap_init_sysfs(void) { int err; struct kobject *swap_kobj; swap_kobj = kobject_create_and_add("swap", mm_kobj); if (!swap_kobj) { pr_err("failed to create swap kobject\n"); return -ENOMEM; } err = sysfs_create_group(swap_kobj, &swap_attr_group); if (err) { pr_err("failed to register swap group\n"); goto delete_obj; } return 0; delete_obj: kobject_put(swap_kobj); return err; } subsys_initcall(swap_init_sysfs); #endif