/* * linux/mm/process_vm_access.c * * Copyright (C) 2010-2011 Christopher Yeoh <cyeoh@au1.ibm.com>, IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/mm.h> #include <linux/uio.h> #include <linux/sched.h> #include <linux/highmem.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/syscalls.h> #ifdef CONFIG_COMPAT #include <linux/compat.h> #endif /** * process_vm_rw_pages - read/write pages from task specified * @pages: array of pointers to pages we want to copy * @start_offset: offset in page to start copying from/to * @len: number of bytes to copy * @iter: where to copy to/from locally * @vm_write: 0 means copy from, 1 means copy to * Returns 0 on success, error code otherwise */ static int process_vm_rw_pages(struct page **pages, unsigned offset, size_t len, struct iov_iter *iter, int vm_write) { /* Do the copy for each page */ while (len && iov_iter_count(iter)) { struct page *page = *pages++; size_t copy = PAGE_SIZE - offset; size_t copied; if (copy > len) copy = len; if (vm_write) { copied = copy_page_from_iter(page, offset, copy, iter); set_page_dirty_lock(page); } else { copied = copy_page_to_iter(page, offset, copy, iter); } len -= copied; if (copied < copy && iov_iter_count(iter)) return -EFAULT; offset = 0; } return 0; } /* Maximum number of pages kmalloc'd to hold struct page's during copy */ #define PVM_MAX_KMALLOC_PAGES (PAGE_SIZE * 2) /** * process_vm_rw_single_vec - read/write pages from task specified * @addr: start memory address of target process * @len: size of area to copy to/from * @iter: where to copy to/from locally * @process_pages: struct pages area that can store at least * nr_pages_to_copy struct page pointers * @mm: mm for task * @task: task to read/write from * @vm_write: 0 means copy from, 1 means copy to * Returns 0 on success or on failure error code */ static int process_vm_rw_single_vec(unsigned long addr, unsigned long len, struct iov_iter *iter, struct page **process_pages, struct mm_struct *mm, struct task_struct *task, int vm_write) { unsigned long pa = addr & PAGE_MASK; unsigned long start_offset = addr - pa; unsigned long nr_pages; ssize_t rc = 0; unsigned long max_pages_per_loop = PVM_MAX_KMALLOC_PAGES / sizeof(struct pages *); /* Work out address and page range required */ if (len == 0) return 0; nr_pages = (addr + len - 1) / PAGE_SIZE - addr / PAGE_SIZE + 1; while (!rc && nr_pages && iov_iter_count(iter)) { int pages = min(nr_pages, max_pages_per_loop); size_t bytes; /* * Get the pages we're interested in. We must * add FOLL_REMOTE because task/mm might not * current/current->mm */ pages = __get_user_pages_unlocked(task, mm, pa, pages, vm_write, 0, process_pages, FOLL_REMOTE); if (pages <= 0) return -EFAULT; bytes = pages * PAGE_SIZE - start_offset; if (bytes > len) bytes = len; rc = process_vm_rw_pages(process_pages, start_offset, bytes, iter, vm_write); len -= bytes; start_offset = 0; nr_pages -= pages; pa += pages * PAGE_SIZE; while (pages) put_page(process_pages[--pages]); } return rc; } /* Maximum number of entries for process pages array which lives on stack */ #define PVM_MAX_PP_ARRAY_COUNT 16 /** * process_vm_rw_core - core of reading/writing pages from task specified * @pid: PID of process to read/write from/to * @iter: where to copy to/from locally * @rvec: iovec array specifying where to copy to/from in the other process * @riovcnt: size of rvec array * @flags: currently unused * @vm_write: 0 if reading from other process, 1 if writing to other process * Returns the number of bytes read/written or error code. May * return less bytes than expected if an error occurs during the copying * process. */ static ssize_t process_vm_rw_core(pid_t pid, struct iov_iter *iter, const struct iovec *rvec, unsigned long riovcnt, unsigned long flags, int vm_write) { struct task_struct *task; struct page *pp_stack[PVM_MAX_PP_ARRAY_COUNT]; struct page **process_pages = pp_stack; struct mm_struct *mm; unsigned long i; ssize_t rc = 0; unsigned long nr_pages = 0; unsigned long nr_pages_iov; ssize_t iov_len; size_t total_len = iov_iter_count(iter); /* * Work out how many pages of struct pages we're going to need * when eventually calling get_user_pages */ for (i = 0; i < riovcnt; i++) { iov_len = rvec[i].iov_len; if (iov_len > 0) { nr_pages_iov = ((unsigned long)rvec[i].iov_base + iov_len) / PAGE_SIZE - (unsigned long)rvec[i].iov_base / PAGE_SIZE + 1; nr_pages = max(nr_pages, nr_pages_iov); } } if (nr_pages == 0) return 0; if (nr_pages > PVM_MAX_PP_ARRAY_COUNT) { /* For reliability don't try to kmalloc more than 2 pages worth */ process_pages = kmalloc(min_t(size_t, PVM_MAX_KMALLOC_PAGES, sizeof(struct pages *)*nr_pages), GFP_KERNEL); if (!process_pages) return -ENOMEM; } /* Get process information */ rcu_read_lock(); task = find_task_by_vpid(pid); if (task) get_task_struct(task); rcu_read_unlock(); if (!task) { rc = -ESRCH; goto free_proc_pages; } mm = mm_access(task, PTRACE_MODE_ATTACH_REALCREDS); if (!mm || IS_ERR(mm)) { rc = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH; /* * Explicitly map EACCES to EPERM as EPERM is a more a * appropriate error code for process_vw_readv/writev */ if (rc == -EACCES) rc = -EPERM; goto put_task_struct; } for (i = 0; i < riovcnt && iov_iter_count(iter) && !rc; i++) rc = process_vm_rw_single_vec( (unsigned long)rvec[i].iov_base, rvec[i].iov_len, iter, process_pages, mm, task, vm_write); /* copied = space before - space after */ total_len -= iov_iter_count(iter); /* If we have managed to copy any data at all then we return the number of bytes copied. Otherwise we return the error code */ if (total_len) rc = total_len; mmput(mm); put_task_struct: put_task_struct(task); free_proc_pages: if (process_pages != pp_stack) kfree(process_pages); return rc; } /** * process_vm_rw - check iovecs before calling core routine * @pid: PID of process to read/write from/to * @lvec: iovec array specifying where to copy to/from locally * @liovcnt: size of lvec array * @rvec: iovec array specifying where to copy to/from in the other process * @riovcnt: size of rvec array * @flags: currently unused * @vm_write: 0 if reading from other process, 1 if writing to other process * Returns the number of bytes read/written or error code. May * return less bytes than expected if an error occurs during the copying * process. */ static ssize_t process_vm_rw(pid_t pid, const struct iovec __user *lvec, unsigned long liovcnt, const struct iovec __user *rvec, unsigned long riovcnt, unsigned long flags, int vm_write) { struct iovec iovstack_l[UIO_FASTIOV]; struct iovec iovstack_r[UIO_FASTIOV]; struct iovec *iov_l = iovstack_l; struct iovec *iov_r = iovstack_r; struct iov_iter iter; ssize_t rc; int dir = vm_write ? WRITE : READ; if (flags != 0) return -EINVAL; /* Check iovecs */ rc = import_iovec(dir, lvec, liovcnt, UIO_FASTIOV, &iov_l, &iter); if (rc < 0) return rc; if (!iov_iter_count(&iter)) goto free_iovecs; rc = rw_copy_check_uvector(CHECK_IOVEC_ONLY, rvec, riovcnt, UIO_FASTIOV, iovstack_r, &iov_r); if (rc <= 0) goto free_iovecs; rc = process_vm_rw_core(pid, &iter, iov_r, riovcnt, flags, vm_write); free_iovecs: if (iov_r != iovstack_r) kfree(iov_r); kfree(iov_l); return rc; } SYSCALL_DEFINE6(process_vm_readv, pid_t, pid, const struct iovec __user *, lvec, unsigned long, liovcnt, const struct iovec __user *, rvec, unsigned long, riovcnt, unsigned long, flags) { return process_vm_rw(pid, lvec, liovcnt, rvec, riovcnt, flags, 0); } SYSCALL_DEFINE6(process_vm_writev, pid_t, pid, const struct iovec __user *, lvec, unsigned long, liovcnt, const struct iovec __user *, rvec, unsigned long, riovcnt, unsigned long, flags) { return process_vm_rw(pid, lvec, liovcnt, rvec, riovcnt, flags, 1); } #ifdef CONFIG_COMPAT static ssize_t compat_process_vm_rw(compat_pid_t pid, const struct compat_iovec __user *lvec, unsigned long liovcnt, const struct compat_iovec __user *rvec, unsigned long riovcnt, unsigned long flags, int vm_write) { struct iovec iovstack_l[UIO_FASTIOV]; struct iovec iovstack_r[UIO_FASTIOV]; struct iovec *iov_l = iovstack_l; struct iovec *iov_r = iovstack_r; struct iov_iter iter; ssize_t rc = -EFAULT; int dir = vm_write ? WRITE : READ; if (flags != 0) return -EINVAL; rc = compat_import_iovec(dir, lvec, liovcnt, UIO_FASTIOV, &iov_l, &iter); if (rc < 0) return rc; if (!iov_iter_count(&iter)) goto free_iovecs; rc = compat_rw_copy_check_uvector(CHECK_IOVEC_ONLY, rvec, riovcnt, UIO_FASTIOV, iovstack_r, &iov_r); if (rc <= 0) goto free_iovecs; rc = process_vm_rw_core(pid, &iter, iov_r, riovcnt, flags, vm_write); free_iovecs: if (iov_r != iovstack_r) kfree(iov_r); kfree(iov_l); return rc; } COMPAT_SYSCALL_DEFINE6(process_vm_readv, compat_pid_t, pid, const struct compat_iovec __user *, lvec, compat_ulong_t, liovcnt, const struct compat_iovec __user *, rvec, compat_ulong_t, riovcnt, compat_ulong_t, flags) { return compat_process_vm_rw(pid, lvec, liovcnt, rvec, riovcnt, flags, 0); } COMPAT_SYSCALL_DEFINE6(process_vm_writev, compat_pid_t, pid, const struct compat_iovec __user *, lvec, compat_ulong_t, liovcnt, const struct compat_iovec __user *, rvec, compat_ulong_t, riovcnt, compat_ulong_t, flags) { return compat_process_vm_rw(pid, lvec, liovcnt, rvec, riovcnt, flags, 1); } #endif