// SPDX-License-Identifier: GPL-2.0 #include <linux/mm.h> #include <linux/rmap.h> #include <linux/hugetlb.h> #include <linux/swap.h> #include <linux/swapops.h> #include "internal.h" static inline bool not_found(struct page_vma_mapped_walk *pvmw) { page_vma_mapped_walk_done(pvmw); return false; } static bool map_pte(struct page_vma_mapped_walk *pvmw) { pvmw->pte = pte_offset_map(pvmw->pmd, pvmw->address); if (!(pvmw->flags & PVMW_SYNC)) { if (pvmw->flags & PVMW_MIGRATION) { if (!is_swap_pte(*pvmw->pte)) return false; } else { /* * We get here when we are trying to unmap a private * device page from the process address space. Such * page is not CPU accessible and thus is mapped as * a special swap entry, nonetheless it still does * count as a valid regular mapping for the page (and * is accounted as such in page maps count). * * So handle this special case as if it was a normal * page mapping ie lock CPU page table and returns * true. * * For more details on device private memory see HMM * (include/linux/hmm.h or mm/hmm.c). */ if (is_swap_pte(*pvmw->pte)) { swp_entry_t entry; /* Handle un-addressable ZONE_DEVICE memory */ entry = pte_to_swp_entry(*pvmw->pte); if (!is_device_private_entry(entry)) return false; } else if (!pte_present(*pvmw->pte)) return false; } } pvmw->ptl = pte_lockptr(pvmw->vma->vm_mm, pvmw->pmd); spin_lock(pvmw->ptl); return true; } static inline bool pfn_is_match(struct page *page, unsigned long pfn) { unsigned long page_pfn = page_to_pfn(page); /* normal page and hugetlbfs page */ if (!PageTransCompound(page) || PageHuge(page)) return page_pfn == pfn; /* THP can be referenced by any subpage */ return pfn >= page_pfn && pfn - page_pfn < thp_nr_pages(page); } /** * check_pte - check if @pvmw->page is mapped at the @pvmw->pte * @pvmw: page_vma_mapped_walk struct, includes a pair pte and page for checking * * page_vma_mapped_walk() found a place where @pvmw->page is *potentially* * mapped. check_pte() has to validate this. * * pvmw->pte may point to empty PTE, swap PTE or PTE pointing to * arbitrary page. * * If PVMW_MIGRATION flag is set, returns true if @pvmw->pte contains migration * entry that points to @pvmw->page or any subpage in case of THP. * * If PVMW_MIGRATION flag is not set, returns true if pvmw->pte points to * pvmw->page or any subpage in case of THP. * * Otherwise, return false. * */ static bool check_pte(struct page_vma_mapped_walk *pvmw) { unsigned long pfn; if (pvmw->flags & PVMW_MIGRATION) { swp_entry_t entry; if (!is_swap_pte(*pvmw->pte)) return false; entry = pte_to_swp_entry(*pvmw->pte); if (!is_migration_entry(entry)) return false; pfn = migration_entry_to_pfn(entry); } else if (is_swap_pte(*pvmw->pte)) { swp_entry_t entry; /* Handle un-addressable ZONE_DEVICE memory */ entry = pte_to_swp_entry(*pvmw->pte); if (!is_device_private_entry(entry)) return false; pfn = device_private_entry_to_pfn(entry); } else { if (!pte_present(*pvmw->pte)) return false; pfn = pte_pfn(*pvmw->pte); } return pfn_is_match(pvmw->page, pfn); } /** * page_vma_mapped_walk - check if @pvmw->page is mapped in @pvmw->vma at * @pvmw->address * @pvmw: pointer to struct page_vma_mapped_walk. page, vma, address and flags * must be set. pmd, pte and ptl must be NULL. * * Returns true if the page is mapped in the vma. @pvmw->pmd and @pvmw->pte point * to relevant page table entries. @pvmw->ptl is locked. @pvmw->address is * adjusted if needed (for PTE-mapped THPs). * * If @pvmw->pmd is set but @pvmw->pte is not, you have found PMD-mapped page * (usually THP). For PTE-mapped THP, you should run page_vma_mapped_walk() in * a loop to find all PTEs that map the THP. * * For HugeTLB pages, @pvmw->pte is set to the relevant page table entry * regardless of which page table level the page is mapped at. @pvmw->pmd is * NULL. * * Returns false if there are no more page table entries for the page in * the vma. @pvmw->ptl is unlocked and @pvmw->pte is unmapped. * * If you need to stop the walk before page_vma_mapped_walk() returned false, * use page_vma_mapped_walk_done(). It will do the housekeeping. */ bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw) { struct mm_struct *mm = pvmw->vma->vm_mm; struct page *page = pvmw->page; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t pmde; /* The only possible pmd mapping has been handled on last iteration */ if (pvmw->pmd && !pvmw->pte) return not_found(pvmw); if (pvmw->pte) goto next_pte; if (unlikely(PageHuge(pvmw->page))) { /* when pud is not present, pte will be NULL */ pvmw->pte = huge_pte_offset(mm, pvmw->address, page_size(page)); if (!pvmw->pte) return false; pvmw->ptl = huge_pte_lockptr(page_hstate(page), mm, pvmw->pte); spin_lock(pvmw->ptl); if (!check_pte(pvmw)) return not_found(pvmw); return true; } restart: pgd = pgd_offset(mm, pvmw->address); if (!pgd_present(*pgd)) return false; p4d = p4d_offset(pgd, pvmw->address); if (!p4d_present(*p4d)) return false; pud = pud_offset(p4d, pvmw->address); if (!pud_present(*pud)) return false; pvmw->pmd = pmd_offset(pud, pvmw->address); /* * Make sure the pmd value isn't cached in a register by the * compiler and used as a stale value after we've observed a * subsequent update. */ pmde = READ_ONCE(*pvmw->pmd); if (pmd_trans_huge(pmde) || is_pmd_migration_entry(pmde)) { pvmw->ptl = pmd_lock(mm, pvmw->pmd); if (likely(pmd_trans_huge(*pvmw->pmd))) { if (pvmw->flags & PVMW_MIGRATION) return not_found(pvmw); if (pmd_page(*pvmw->pmd) != page) return not_found(pvmw); return true; } else if (!pmd_present(*pvmw->pmd)) { if (thp_migration_supported()) { if (!(pvmw->flags & PVMW_MIGRATION)) return not_found(pvmw); if (is_migration_entry(pmd_to_swp_entry(*pvmw->pmd))) { swp_entry_t entry = pmd_to_swp_entry(*pvmw->pmd); if (migration_entry_to_page(entry) != page) return not_found(pvmw); return true; } } return not_found(pvmw); } else { /* THP pmd was split under us: handle on pte level */ spin_unlock(pvmw->ptl); pvmw->ptl = NULL; } } else if (!pmd_present(pmde)) { return false; } if (!map_pte(pvmw)) goto next_pte; while (1) { if (check_pte(pvmw)) return true; next_pte: /* Seek to next pte only makes sense for THP */ if (!PageTransHuge(pvmw->page) || PageHuge(pvmw->page)) return not_found(pvmw); do { pvmw->address += PAGE_SIZE; if (pvmw->address >= pvmw->vma->vm_end || pvmw->address >= __vma_address(pvmw->page, pvmw->vma) + thp_size(pvmw->page)) return not_found(pvmw); /* Did we cross page table boundary? */ if (pvmw->address % PMD_SIZE == 0) { pte_unmap(pvmw->pte); if (pvmw->ptl) { spin_unlock(pvmw->ptl); pvmw->ptl = NULL; } goto restart; } else { pvmw->pte++; } } while (pte_none(*pvmw->pte)); if (!pvmw->ptl) { pvmw->ptl = pte_lockptr(mm, pvmw->pmd); spin_lock(pvmw->ptl); } } } /** * page_mapped_in_vma - check whether a page is really mapped in a VMA * @page: the page to test * @vma: the VMA to test * * Returns 1 if the page is mapped into the page tables of the VMA, 0 * if the page is not mapped into the page tables of this VMA. Only * valid for normal file or anonymous VMAs. */ int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) { struct page_vma_mapped_walk pvmw = { .page = page, .vma = vma, .flags = PVMW_SYNC, }; unsigned long start, end; start = __vma_address(page, vma); end = start + thp_size(page) - PAGE_SIZE; if (unlikely(end < vma->vm_start || start >= vma->vm_end)) return 0; pvmw.address = max(start, vma->vm_start); if (!page_vma_mapped_walk(&pvmw)) return 0; page_vma_mapped_walk_done(&pvmw); return 1; }