// SPDX-License-Identifier: GPL-2.0 /* * OS Noise Tracer: computes the OS Noise suffered by a running thread. * Timerlat Tracer: measures the wakeup latency of a timer triggered IRQ and thread. * * Based on "hwlat_detector" tracer by: * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. * With feedback from Clark Williams * * And also based on the rtsl tracer presented on: * DE OLIVEIRA, Daniel Bristot, et al. Demystifying the real-time linux * scheduling latency. In: 32nd Euromicro Conference on Real-Time Systems * (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, 2020. * * Copyright (C) 2021 Daniel Bristot de Oliveira, Red Hat, Inc. */ #include #include #include #include #include #include #include #include #include "trace.h" #ifdef CONFIG_X86_LOCAL_APIC #include #undef TRACE_INCLUDE_PATH #undef TRACE_INCLUDE_FILE #endif /* CONFIG_X86_LOCAL_APIC */ #include #include #define CREATE_TRACE_POINTS #include static struct trace_array *osnoise_trace; /* * Default values. */ #define BANNER "osnoise: " #define DEFAULT_SAMPLE_PERIOD 1000000 /* 1s */ #define DEFAULT_SAMPLE_RUNTIME 1000000 /* 1s */ #define DEFAULT_TIMERLAT_PERIOD 1000 /* 1ms */ #define DEFAULT_TIMERLAT_PRIO 95 /* FIFO 95 */ /* * NMI runtime info. */ struct osn_nmi { u64 count; u64 delta_start; }; /* * IRQ runtime info. */ struct osn_irq { u64 count; u64 arrival_time; u64 delta_start; }; #define IRQ_CONTEXT 0 #define THREAD_CONTEXT 1 /* * sofirq runtime info. */ struct osn_softirq { u64 count; u64 arrival_time; u64 delta_start; }; /* * thread runtime info. */ struct osn_thread { u64 count; u64 arrival_time; u64 delta_start; }; /* * Runtime information: this structure saves the runtime information used by * one sampling thread. */ struct osnoise_variables { struct task_struct *kthread; bool sampling; pid_t pid; struct osn_nmi nmi; struct osn_irq irq; struct osn_softirq softirq; struct osn_thread thread; local_t int_counter; }; /* * Per-cpu runtime information. */ DEFINE_PER_CPU(struct osnoise_variables, per_cpu_osnoise_var); /* * this_cpu_osn_var - Return the per-cpu osnoise_variables on its relative CPU */ static inline struct osnoise_variables *this_cpu_osn_var(void) { return this_cpu_ptr(&per_cpu_osnoise_var); } #ifdef CONFIG_TIMERLAT_TRACER /* * Runtime information for the timer mode. */ struct timerlat_variables { struct task_struct *kthread; struct hrtimer timer; u64 rel_period; u64 abs_period; bool tracing_thread; u64 count; }; DEFINE_PER_CPU(struct timerlat_variables, per_cpu_timerlat_var); /* * this_cpu_tmr_var - Return the per-cpu timerlat_variables on its relative CPU */ static inline struct timerlat_variables *this_cpu_tmr_var(void) { return this_cpu_ptr(&per_cpu_timerlat_var); } /* * tlat_var_reset - Reset the values of the given timerlat_variables */ static inline void tlat_var_reset(void) { struct timerlat_variables *tlat_var; int cpu; /* * So far, all the values are initialized as 0, so * zeroing the structure is perfect. */ for_each_cpu(cpu, cpu_online_mask) { tlat_var = per_cpu_ptr(&per_cpu_timerlat_var, cpu); memset(tlat_var, 0, sizeof(*tlat_var)); } } #else /* CONFIG_TIMERLAT_TRACER */ #define tlat_var_reset() do {} while (0) #endif /* CONFIG_TIMERLAT_TRACER */ /* * osn_var_reset - Reset the values of the given osnoise_variables */ static inline void osn_var_reset(void) { struct osnoise_variables *osn_var; int cpu; /* * So far, all the values are initialized as 0, so * zeroing the structure is perfect. */ for_each_cpu(cpu, cpu_online_mask) { osn_var = per_cpu_ptr(&per_cpu_osnoise_var, cpu); memset(osn_var, 0, sizeof(*osn_var)); } } /* * osn_var_reset_all - Reset the value of all per-cpu osnoise_variables */ static inline void osn_var_reset_all(void) { osn_var_reset(); tlat_var_reset(); } /* * Tells NMIs to call back to the osnoise tracer to record timestamps. */ bool trace_osnoise_callback_enabled; /* * osnoise sample structure definition. Used to store the statistics of a * sample run. */ struct osnoise_sample { u64 runtime; /* runtime */ u64 noise; /* noise */ u64 max_sample; /* max single noise sample */ int hw_count; /* # HW (incl. hypervisor) interference */ int nmi_count; /* # NMIs during this sample */ int irq_count; /* # IRQs during this sample */ int softirq_count; /* # softirqs during this sample */ int thread_count; /* # threads during this sample */ }; #ifdef CONFIG_TIMERLAT_TRACER /* * timerlat sample structure definition. Used to store the statistics of * a sample run. */ struct timerlat_sample { u64 timer_latency; /* timer_latency */ unsigned int seqnum; /* unique sequence */ int context; /* timer context */ }; #endif /* * Protect the interface. */ struct mutex interface_lock; /* * Tracer data. */ static struct osnoise_data { u64 sample_period; /* total sampling period */ u64 sample_runtime; /* active sampling portion of period */ u64 stop_tracing; /* stop trace in the internal operation (loop/irq) */ u64 stop_tracing_total; /* stop trace in the final operation (report/thread) */ #ifdef CONFIG_TIMERLAT_TRACER u64 timerlat_period; /* timerlat period */ u64 print_stack; /* print IRQ stack if total > */ int timerlat_tracer; /* timerlat tracer */ #endif bool tainted; /* infor users and developers about a problem */ } osnoise_data = { .sample_period = DEFAULT_SAMPLE_PERIOD, .sample_runtime = DEFAULT_SAMPLE_RUNTIME, .stop_tracing = 0, .stop_tracing_total = 0, #ifdef CONFIG_TIMERLAT_TRACER .print_stack = 0, .timerlat_period = DEFAULT_TIMERLAT_PERIOD, .timerlat_tracer = 0, #endif }; /* * Boolean variable used to inform that the tracer is currently sampling. */ static bool osnoise_busy; /* * Print the osnoise header info. */ static void print_osnoise_headers(struct seq_file *s) { if (osnoise_data.tainted) seq_puts(s, "# osnoise is tainted!\n"); seq_puts(s, "# _-----=> irqs-off\n"); seq_puts(s, "# / _----=> need-resched\n"); seq_puts(s, "# | / _---=> hardirq/softirq\n"); seq_puts(s, "# || / _--=> preempt-depth "); seq_puts(s, " MAX\n"); seq_puts(s, "# || / "); seq_puts(s, " SINGLE Interference counters:\n"); seq_puts(s, "# |||| RUNTIME "); seq_puts(s, " NOISE %% OF CPU NOISE +-----------------------------+\n"); seq_puts(s, "# TASK-PID CPU# |||| TIMESTAMP IN US "); seq_puts(s, " IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD\n"); seq_puts(s, "# | | | |||| | | "); seq_puts(s, " | | | | | | | |\n"); } /* * osnoise_taint - report an osnoise error. */ #define osnoise_taint(msg) ({ \ struct trace_array *tr = osnoise_trace; \ \ trace_array_printk_buf(tr->array_buffer.buffer, _THIS_IP_, msg); \ osnoise_data.tainted = true; \ }) /* * Record an osnoise_sample into the tracer buffer. */ static void trace_osnoise_sample(struct osnoise_sample *sample) { struct trace_array *tr = osnoise_trace; struct trace_buffer *buffer = tr->array_buffer.buffer; struct trace_event_call *call = &event_osnoise; struct ring_buffer_event *event; struct osnoise_entry *entry; event = trace_buffer_lock_reserve(buffer, TRACE_OSNOISE, sizeof(*entry), tracing_gen_ctx()); if (!event) return; entry = ring_buffer_event_data(event); entry->runtime = sample->runtime; entry->noise = sample->noise; entry->max_sample = sample->max_sample; entry->hw_count = sample->hw_count; entry->nmi_count = sample->nmi_count; entry->irq_count = sample->irq_count; entry->softirq_count = sample->softirq_count; entry->thread_count = sample->thread_count; if (!call_filter_check_discard(call, entry, buffer, event)) trace_buffer_unlock_commit_nostack(buffer, event); } #ifdef CONFIG_TIMERLAT_TRACER /* * Print the timerlat header info. */ static void print_timerlat_headers(struct seq_file *s) { seq_puts(s, "# _-----=> irqs-off\n"); seq_puts(s, "# / _----=> need-resched\n"); seq_puts(s, "# | / _---=> hardirq/softirq\n"); seq_puts(s, "# || / _--=> preempt-depth\n"); seq_puts(s, "# || /\n"); seq_puts(s, "# |||| ACTIVATION\n"); seq_puts(s, "# TASK-PID CPU# |||| TIMESTAMP ID "); seq_puts(s, " CONTEXT LATENCY\n"); seq_puts(s, "# | | | |||| | | "); seq_puts(s, " | |\n"); } /* * Record an timerlat_sample into the tracer buffer. */ static void trace_timerlat_sample(struct timerlat_sample *sample) { struct trace_array *tr = osnoise_trace; struct trace_event_call *call = &event_osnoise; struct trace_buffer *buffer = tr->array_buffer.buffer; struct ring_buffer_event *event; struct timerlat_entry *entry; event = trace_buffer_lock_reserve(buffer, TRACE_TIMERLAT, sizeof(*entry), tracing_gen_ctx()); if (!event) return; entry = ring_buffer_event_data(event); entry->seqnum = sample->seqnum; entry->context = sample->context; entry->timer_latency = sample->timer_latency; if (!call_filter_check_discard(call, entry, buffer, event)) trace_buffer_unlock_commit_nostack(buffer, event); } #ifdef CONFIG_STACKTRACE #define MAX_CALLS 256 /* * Stack trace will take place only at IRQ level, so, no need * to control nesting here. */ struct trace_stack { int stack_size; int nr_entries; unsigned long calls[MAX_CALLS]; }; static DEFINE_PER_CPU(struct trace_stack, trace_stack); /* * timerlat_save_stack - save a stack trace without printing * * Save the current stack trace without printing. The * stack will be printed later, after the end of the measurement. */ static void timerlat_save_stack(int skip) { unsigned int size, nr_entries; struct trace_stack *fstack; fstack = this_cpu_ptr(&trace_stack); size = ARRAY_SIZE(fstack->calls); nr_entries = stack_trace_save(fstack->calls, size, skip); fstack->stack_size = nr_entries * sizeof(unsigned long); fstack->nr_entries = nr_entries; return; } /* * timerlat_dump_stack - dump a stack trace previously saved * * Dump a saved stack trace into the trace buffer. */ static void timerlat_dump_stack(void) { struct trace_event_call *call = &event_osnoise; struct trace_array *tr = osnoise_trace; struct trace_buffer *buffer = tr->array_buffer.buffer; struct ring_buffer_event *event; struct trace_stack *fstack; struct stack_entry *entry; unsigned int size; preempt_disable_notrace(); fstack = this_cpu_ptr(&trace_stack); size = fstack->stack_size; event = trace_buffer_lock_reserve(buffer, TRACE_STACK, sizeof(*entry) + size, tracing_gen_ctx()); if (!event) goto out; entry = ring_buffer_event_data(event); memcpy(&entry->caller, fstack->calls, size); entry->size = fstack->nr_entries; if (!call_filter_check_discard(call, entry, buffer, event)) trace_buffer_unlock_commit_nostack(buffer, event); out: preempt_enable_notrace(); } #else #define timerlat_dump_stack() do {} while (0) #define timerlat_save_stack(a) do {} while (0) #endif /* CONFIG_STACKTRACE */ #endif /* CONFIG_TIMERLAT_TRACER */ /* * Macros to encapsulate the time capturing infrastructure. */ #define time_get() trace_clock_local() #define time_to_us(x) div_u64(x, 1000) #define time_sub(a, b) ((a) - (b)) /* * cond_move_irq_delta_start - Forward the delta_start of a running IRQ * * If an IRQ is preempted by an NMI, its delta_start is pushed forward * to discount the NMI interference. * * See get_int_safe_duration(). */ static inline void cond_move_irq_delta_start(struct osnoise_variables *osn_var, u64 duration) { if (osn_var->irq.delta_start) osn_var->irq.delta_start += duration; } #ifndef CONFIG_PREEMPT_RT /* * cond_move_softirq_delta_start - Forward the delta_start of a running softirq. * * If a softirq is preempted by an IRQ or NMI, its delta_start is pushed * forward to discount the interference. * * See get_int_safe_duration(). */ static inline void cond_move_softirq_delta_start(struct osnoise_variables *osn_var, u64 duration) { if (osn_var->softirq.delta_start) osn_var->softirq.delta_start += duration; } #else /* CONFIG_PREEMPT_RT */ #define cond_move_softirq_delta_start(osn_var, duration) do {} while (0) #endif /* * cond_move_thread_delta_start - Forward the delta_start of a running thread * * If a noisy thread is preempted by an softirq, IRQ or NMI, its delta_start * is pushed forward to discount the interference. * * See get_int_safe_duration(). */ static inline void cond_move_thread_delta_start(struct osnoise_variables *osn_var, u64 duration) { if (osn_var->thread.delta_start) osn_var->thread.delta_start += duration; } /* * get_int_safe_duration - Get the duration of a window * * The irq, softirq and thread varaibles need to have its duration without * the interference from higher priority interrupts. Instead of keeping a * variable to discount the interrupt interference from these variables, the * starting time of these variables are pushed forward with the interrupt's * duration. In this way, a single variable is used to: * * - Know if a given window is being measured. * - Account its duration. * - Discount the interference. * * To avoid getting inconsistent values, e.g.,: * * now = time_get() * ---> interrupt! * delta_start -= int duration; * <--- * duration = now - delta_start; * * result: negative duration if the variable duration before the * interrupt was smaller than the interrupt execution. * * A counter of interrupts is used. If the counter increased, try * to capture an interference safe duration. */ static inline s64 get_int_safe_duration(struct osnoise_variables *osn_var, u64 *delta_start) { u64 int_counter, now; s64 duration; do { int_counter = local_read(&osn_var->int_counter); /* synchronize with interrupts */ barrier(); now = time_get(); duration = (now - *delta_start); /* synchronize with interrupts */ barrier(); } while (int_counter != local_read(&osn_var->int_counter)); /* * This is an evidence of race conditions that cause * a value to be "discounted" too much. */ if (duration < 0) osnoise_taint("Negative duration!\n"); *delta_start = 0; return duration; } /* * * set_int_safe_time - Save the current time on *time, aware of interference * * Get the time, taking into consideration a possible interference from * higher priority interrupts. * * See get_int_safe_duration() for an explanation. */ static u64 set_int_safe_time(struct osnoise_variables *osn_var, u64 *time) { u64 int_counter; do { int_counter = local_read(&osn_var->int_counter); /* synchronize with interrupts */ barrier(); *time = time_get(); /* synchronize with interrupts */ barrier(); } while (int_counter != local_read(&osn_var->int_counter)); return int_counter; } #ifdef CONFIG_TIMERLAT_TRACER /* * copy_int_safe_time - Copy *src into *desc aware of interference */ static u64 copy_int_safe_time(struct osnoise_variables *osn_var, u64 *dst, u64 *src) { u64 int_counter; do { int_counter = local_read(&osn_var->int_counter); /* synchronize with interrupts */ barrier(); *dst = *src; /* synchronize with interrupts */ barrier(); } while (int_counter != local_read(&osn_var->int_counter)); return int_counter; } #endif /* CONFIG_TIMERLAT_TRACER */ /* * trace_osnoise_callback - NMI entry/exit callback * * This function is called at the entry and exit NMI code. The bool enter * distinguishes between either case. This function is used to note a NMI * occurrence, compute the noise caused by the NMI, and to remove the noise * it is potentially causing on other interference variables. */ void trace_osnoise_callback(bool enter) { struct osnoise_variables *osn_var = this_cpu_osn_var(); u64 duration; if (!osn_var->sampling) return; /* * Currently trace_clock_local() calls sched_clock() and the * generic version is not NMI safe. */ if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) { if (enter) { osn_var->nmi.delta_start = time_get(); local_inc(&osn_var->int_counter); } else { duration = time_get() - osn_var->nmi.delta_start; trace_nmi_noise(osn_var->nmi.delta_start, duration); cond_move_irq_delta_start(osn_var, duration); cond_move_softirq_delta_start(osn_var, duration); cond_move_thread_delta_start(osn_var, duration); } } if (enter) osn_var->nmi.count++; } /* * osnoise_trace_irq_entry - Note the starting of an IRQ * * Save the starting time of an IRQ. As IRQs are non-preemptive to other IRQs, * it is safe to use a single variable (ons_var->irq) to save the statistics. * The arrival_time is used to report... the arrival time. The delta_start * is used to compute the duration at the IRQ exit handler. See * cond_move_irq_delta_start(). */ void osnoise_trace_irq_entry(int id) { struct osnoise_variables *osn_var = this_cpu_osn_var(); if (!osn_var->sampling) return; /* * This value will be used in the report, but not to compute * the execution time, so it is safe to get it unsafe. */ osn_var->irq.arrival_time = time_get(); set_int_safe_time(osn_var, &osn_var->irq.delta_start); osn_var->irq.count++; local_inc(&osn_var->int_counter); } /* * osnoise_irq_exit - Note the end of an IRQ, sava data and trace * * Computes the duration of the IRQ noise, and trace it. Also discounts the * interference from other sources of noise could be currently being accounted. */ void osnoise_trace_irq_exit(int id, const char *desc) { struct osnoise_variables *osn_var = this_cpu_osn_var(); int duration; if (!osn_var->sampling) return; duration = get_int_safe_duration(osn_var, &osn_var->irq.delta_start); trace_irq_noise(id, desc, osn_var->irq.arrival_time, duration); osn_var->irq.arrival_time = 0; cond_move_softirq_delta_start(osn_var, duration); cond_move_thread_delta_start(osn_var, duration); } /* * trace_irqentry_callback - Callback to the irq:irq_entry traceevent * * Used to note the starting of an IRQ occurece. */ static void trace_irqentry_callback(void *data, int irq, struct irqaction *action) { osnoise_trace_irq_entry(irq); } /* * trace_irqexit_callback - Callback to the irq:irq_exit traceevent * * Used to note the end of an IRQ occurece. */ static void trace_irqexit_callback(void *data, int irq, struct irqaction *action, int ret) { osnoise_trace_irq_exit(irq, action->name); } /* * arch specific register function. */ int __weak osnoise_arch_register(void) { return 0; } /* * arch specific unregister function. */ void __weak osnoise_arch_unregister(void) { return; } /* * hook_irq_events - Hook IRQ handling events * * This function hooks the IRQ related callbacks to the respective trace * events. */ static int hook_irq_events(void) { int ret; ret = register_trace_irq_handler_entry(trace_irqentry_callback, NULL); if (ret) goto out_err; ret = register_trace_irq_handler_exit(trace_irqexit_callback, NULL); if (ret) goto out_unregister_entry; ret = osnoise_arch_register(); if (ret) goto out_irq_exit; return 0; out_irq_exit: unregister_trace_irq_handler_exit(trace_irqexit_callback, NULL); out_unregister_entry: unregister_trace_irq_handler_entry(trace_irqentry_callback, NULL); out_err: return -EINVAL; } /* * unhook_irq_events - Unhook IRQ handling events * * This function unhooks the IRQ related callbacks to the respective trace * events. */ static void unhook_irq_events(void) { osnoise_arch_unregister(); unregister_trace_irq_handler_exit(trace_irqexit_callback, NULL); unregister_trace_irq_handler_entry(trace_irqentry_callback, NULL); } #ifndef CONFIG_PREEMPT_RT /* * trace_softirq_entry_callback - Note the starting of a softirq * * Save the starting time of a softirq. As softirqs are non-preemptive to * other softirqs, it is safe to use a single variable (ons_var->softirq) * to save the statistics. The arrival_time is used to report... the * arrival time. The delta_start is used to compute the duration at the * softirq exit handler. See cond_move_softirq_delta_start(). */ static void trace_softirq_entry_callback(void *data, unsigned int vec_nr) { struct osnoise_variables *osn_var = this_cpu_osn_var(); if (!osn_var->sampling) return; /* * This value will be used in the report, but not to compute * the execution time, so it is safe to get it unsafe. */ osn_var->softirq.arrival_time = time_get(); set_int_safe_time(osn_var, &osn_var->softirq.delta_start); osn_var->softirq.count++; local_inc(&osn_var->int_counter); } /* * trace_softirq_exit_callback - Note the end of an softirq * * Computes the duration of the softirq noise, and trace it. Also discounts the * interference from other sources of noise could be currently being accounted. */ static void trace_softirq_exit_callback(void *data, unsigned int vec_nr) { struct osnoise_variables *osn_var = this_cpu_osn_var(); int duration; if (!osn_var->sampling) return; #ifdef CONFIG_TIMERLAT_TRACER /* * If the timerlat is enabled, but the irq handler did * not run yet enabling timerlat_tracer, do not trace. */ if (unlikely(osnoise_data.timerlat_tracer)) { struct timerlat_variables *tlat_var; tlat_var = this_cpu_tmr_var(); if (!tlat_var->tracing_thread) { osn_var->softirq.arrival_time = 0; osn_var->softirq.delta_start = 0; return; } } #endif duration = get_int_safe_duration(osn_var, &osn_var->softirq.delta_start); trace_softirq_noise(vec_nr, osn_var->softirq.arrival_time, duration); cond_move_thread_delta_start(osn_var, duration); osn_var->softirq.arrival_time = 0; } /* * hook_softirq_events - Hook softirq handling events * * This function hooks the softirq related callbacks to the respective trace * events. */ static int hook_softirq_events(void) { int ret; ret = register_trace_softirq_entry(trace_softirq_entry_callback, NULL); if (ret) goto out_err; ret = register_trace_softirq_exit(trace_softirq_exit_callback, NULL); if (ret) goto out_unreg_entry; return 0; out_unreg_entry: unregister_trace_softirq_entry(trace_softirq_entry_callback, NULL); out_err: return -EINVAL; } /* * unhook_softirq_events - Unhook softirq handling events * * This function hooks the softirq related callbacks to the respective trace * events. */ static void unhook_softirq_events(void) { unregister_trace_softirq_entry(trace_softirq_entry_callback, NULL); unregister_trace_softirq_exit(trace_softirq_exit_callback, NULL); } #else /* CONFIG_PREEMPT_RT */ /* * softirq are threads on the PREEMPT_RT mode. */ static int hook_softirq_events(void) { return 0; } static void unhook_softirq_events(void) { } #endif /* * thread_entry - Record the starting of a thread noise window * * It saves the context switch time for a noisy thread, and increments * the interference counters. */ static void thread_entry(struct osnoise_variables *osn_var, struct task_struct *t) { if (!osn_var->sampling) return; /* * The arrival time will be used in the report, but not to compute * the execution time, so it is safe to get it unsafe. */ osn_var->thread.arrival_time = time_get(); set_int_safe_time(osn_var, &osn_var->thread.delta_start); osn_var->thread.count++; local_inc(&osn_var->int_counter); } /* * thread_exit - Report the end of a thread noise window * * It computes the total noise from a thread, tracing if needed. */ static void thread_exit(struct osnoise_variables *osn_var, struct task_struct *t) { int duration; if (!osn_var->sampling) return; #ifdef CONFIG_TIMERLAT_TRACER if (osnoise_data.timerlat_tracer) { struct timerlat_variables *tlat_var; tlat_var = this_cpu_tmr_var(); if (!tlat_var->tracing_thread) { osn_var->thread.delta_start = 0; osn_var->thread.arrival_time = 0; return; } } #endif duration = get_int_safe_duration(osn_var, &osn_var->thread.delta_start); trace_thread_noise(t, osn_var->thread.arrival_time, duration); osn_var->thread.arrival_time = 0; } /* * trace_sched_switch - sched:sched_switch trace event handler * * This function is hooked to the sched:sched_switch trace event, and it is * used to record the beginning and to report the end of a thread noise window. */ static void trace_sched_switch_callback(void *data, bool preempt, struct task_struct *p, struct task_struct *n) { struct osnoise_variables *osn_var = this_cpu_osn_var(); if (p->pid != osn_var->pid) thread_exit(osn_var, p); if (n->pid != osn_var->pid) thread_entry(osn_var, n); } /* * hook_thread_events - Hook the insturmentation for thread noise * * Hook the osnoise tracer callbacks to handle the noise from other * threads on the necessary kernel events. */ static int hook_thread_events(void) { int ret; ret = register_trace_sched_switch(trace_sched_switch_callback, NULL); if (ret) return -EINVAL; return 0; } /* * unhook_thread_events - *nhook the insturmentation for thread noise * * Unook the osnoise tracer callbacks to handle the noise from other * threads on the necessary kernel events. */ static void unhook_thread_events(void) { unregister_trace_sched_switch(trace_sched_switch_callback, NULL); } /* * save_osn_sample_stats - Save the osnoise_sample statistics * * Save the osnoise_sample statistics before the sampling phase. These * values will be used later to compute the diff betwneen the statistics * before and after the osnoise sampling. */ static void save_osn_sample_stats(struct osnoise_variables *osn_var, struct osnoise_sample *s) { s->nmi_count = osn_var->nmi.count; s->irq_count = osn_var->irq.count; s->softirq_count = osn_var->softirq.count; s->thread_count = osn_var->thread.count; } /* * diff_osn_sample_stats - Compute the osnoise_sample statistics * * After a sample period, compute the difference on the osnoise_sample * statistics. The struct osnoise_sample *s contains the statistics saved via * save_osn_sample_stats() before the osnoise sampling. */ static void diff_osn_sample_stats(struct osnoise_variables *osn_var, struct osnoise_sample *s) { s->nmi_count = osn_var->nmi.count - s->nmi_count; s->irq_count = osn_var->irq.count - s->irq_count; s->softirq_count = osn_var->softirq.count - s->softirq_count; s->thread_count = osn_var->thread.count - s->thread_count; } /* * osnoise_stop_tracing - Stop tracing and the tracer. */ static void osnoise_stop_tracing(void) { struct trace_array *tr = osnoise_trace; tracer_tracing_off(tr); } /* * run_osnoise - Sample the time and look for osnoise * * Used to capture the time, looking for potential osnoise latency repeatedly. * Different from hwlat_detector, it is called with preemption and interrupts * enabled. This allows irqs, softirqs and threads to run, interfering on the * osnoise sampling thread, as they would do with a regular thread. */ static int run_osnoise(void) { struct osnoise_variables *osn_var = this_cpu_osn_var(); u64 noise = 0, sum_noise = 0, max_noise = 0; struct trace_array *tr = osnoise_trace; u64 start, sample, last_sample; u64 last_int_count, int_count; s64 total, last_total = 0; struct osnoise_sample s; unsigned int threshold; int hw_count = 0; u64 runtime, stop_in; int ret = -1; /* * Considers the current thread as the workload. */ osn_var->pid = current->pid; /* * Save the current stats for the diff */ save_osn_sample_stats(osn_var, &s); /* * if threshold is 0, use the default value of 5 us. */ threshold = tracing_thresh ? : 5000; /* * Make sure NMIs see sampling first */ osn_var->sampling = true; barrier(); /* * Transform the *_us config to nanoseconds to avoid the * division on the main loop. */ runtime = osnoise_data.sample_runtime * NSEC_PER_USEC; stop_in = osnoise_data.stop_tracing * NSEC_PER_USEC; /* * Start timestemp */ start = time_get(); /* * "previous" loop. */ last_int_count = set_int_safe_time(osn_var, &last_sample); do { /* * Get sample! */ int_count = set_int_safe_time(osn_var, &sample); noise = time_sub(sample, last_sample); /* * This shouldn't happen. */ if (noise < 0) { osnoise_taint("negative noise!"); goto out; } /* * Sample runtime. */ total = time_sub(sample, start); /* * Check for possible overflows. */ if (total < last_total) { osnoise_taint("total overflow!"); break; } last_total = total; if (noise >= threshold) { int interference = int_count - last_int_count; if (noise > max_noise) max_noise = noise; if (!interference) hw_count++; sum_noise += noise; trace_sample_threshold(last_sample, noise, interference); if (osnoise_data.stop_tracing) if (noise > stop_in) osnoise_stop_tracing(); } /* * For the non-preemptive kernel config: let threads runs, if * they so wish. */ cond_resched(); last_sample = sample; last_int_count = int_count; } while (total < runtime && !kthread_should_stop()); /* * Finish the above in the view for interrupts. */ barrier(); osn_var->sampling = false; /* * Make sure sampling data is no longer updated. */ barrier(); /* * Save noise info. */ s.noise = time_to_us(sum_noise); s.runtime = time_to_us(total); s.max_sample = time_to_us(max_noise); s.hw_count = hw_count; /* Save interference stats info */ diff_osn_sample_stats(osn_var, &s); trace_osnoise_sample(&s); /* Keep a running maximum ever recorded osnoise "latency" */ if (max_noise > tr->max_latency) { tr->max_latency = max_noise; latency_fsnotify(tr); } if (osnoise_data.stop_tracing_total) if (s.noise > osnoise_data.stop_tracing_total) osnoise_stop_tracing(); return 0; out: return ret; } static struct cpumask osnoise_cpumask; static struct cpumask save_cpumask; /* * osnoise_main - The osnoise detection kernel thread * * Calls run_osnoise() function to measure the osnoise for the configured runtime, * every period. */ static int osnoise_main(void *data) { u64 interval; while (!kthread_should_stop()) { run_osnoise(); mutex_lock(&interface_lock); interval = osnoise_data.sample_period - osnoise_data.sample_runtime; mutex_unlock(&interface_lock); do_div(interval, USEC_PER_MSEC); /* * differently from hwlat_detector, the osnoise tracer can run * without a pause because preemption is on. */ if (interval < 1) { /* Let synchronize_rcu_tasks() make progress */ cond_resched_tasks_rcu_qs(); continue; } if (msleep_interruptible(interval)) break; } return 0; } #ifdef CONFIG_TIMERLAT_TRACER /* * timerlat_irq - hrtimer handler for timerlat. */ static enum hrtimer_restart timerlat_irq(struct hrtimer *timer) { struct osnoise_variables *osn_var = this_cpu_osn_var(); struct trace_array *tr = osnoise_trace; struct timerlat_variables *tlat; struct timerlat_sample s; u64 now; u64 diff; /* * I am not sure if the timer was armed for this CPU. So, get * the timerlat struct from the timer itself, not from this * CPU. */ tlat = container_of(timer, struct timerlat_variables, timer); now = ktime_to_ns(hrtimer_cb_get_time(&tlat->timer)); /* * Enable the osnoise: events for thread an softirq. */ tlat->tracing_thread = true; osn_var->thread.arrival_time = time_get(); /* * A hardirq is running: the timer IRQ. It is for sure preempting * a thread, and potentially preempting a softirq. * * At this point, it is not interesting to know the duration of the * preempted thread (and maybe softirq), but how much time they will * delay the beginning of the execution of the timer thread. * * To get the correct (net) delay added by the softirq, its delta_start * is set as the IRQ one. In this way, at the return of the IRQ, the delta * start of the sofitrq will be zeroed, accounting then only the time * after that. * * The thread follows the same principle. However, if a softirq is * running, the thread needs to receive the softirq delta_start. The * reason being is that the softirq will be the last to be unfolded, * resseting the thread delay to zero. */ #ifndef CONFIG_PREEMPT_RT if (osn_var->softirq.delta_start) { copy_int_safe_time(osn_var, &osn_var->thread.delta_start, &osn_var->softirq.delta_start); copy_int_safe_time(osn_var, &osn_var->softirq.delta_start, &osn_var->irq.delta_start); } else { copy_int_safe_time(osn_var, &osn_var->thread.delta_start, &osn_var->irq.delta_start); } #else /* CONFIG_PREEMPT_RT */ /* * The sofirqs run as threads on RT, so there is not need * to keep track of it. */ copy_int_safe_time(osn_var, &osn_var->thread.delta_start, &osn_var->irq.delta_start); #endif /* CONFIG_PREEMPT_RT */ /* * Compute the current time with the expected time. */ diff = now - tlat->abs_period; tlat->count++; s.seqnum = tlat->count; s.timer_latency = diff; s.context = IRQ_CONTEXT; trace_timerlat_sample(&s); /* Keep a running maximum ever recorded os noise "latency" */ if (diff > tr->max_latency) { tr->max_latency = diff; latency_fsnotify(tr); } if (osnoise_data.stop_tracing) if (time_to_us(diff) >= osnoise_data.stop_tracing) osnoise_stop_tracing(); wake_up_process(tlat->kthread); if (osnoise_data.print_stack) timerlat_save_stack(0); return HRTIMER_NORESTART; } /* * wait_next_period - Wait for the next period for timerlat */ static int wait_next_period(struct timerlat_variables *tlat) { ktime_t next_abs_period, now; u64 rel_period = osnoise_data.timerlat_period * 1000; now = hrtimer_cb_get_time(&tlat->timer); next_abs_period = ns_to_ktime(tlat->abs_period + rel_period); /* * Save the next abs_period. */ tlat->abs_period = (u64) ktime_to_ns(next_abs_period); /* * If the new abs_period is in the past, skip the activation. */ while (ktime_compare(now, next_abs_period) > 0) { next_abs_period = ns_to_ktime(tlat->abs_period + rel_period); tlat->abs_period = (u64) ktime_to_ns(next_abs_period); } set_current_state(TASK_INTERRUPTIBLE); hrtimer_start(&tlat->timer, next_abs_period, HRTIMER_MODE_ABS_PINNED_HARD); schedule(); return 1; } /* * timerlat_main- Timerlat main */ static int timerlat_main(void *data) { struct osnoise_variables *osn_var = this_cpu_osn_var(); struct timerlat_variables *tlat = this_cpu_tmr_var(); struct timerlat_sample s; struct sched_param sp; u64 now, diff; /* * Make the thread RT, that is how cyclictest is usually used. */ sp.sched_priority = DEFAULT_TIMERLAT_PRIO; sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); tlat->count = 0; tlat->tracing_thread = false; hrtimer_init(&tlat->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); tlat->timer.function = timerlat_irq; tlat->kthread = current; osn_var->pid = current->pid; /* * Anotate the arrival time. */ tlat->abs_period = hrtimer_cb_get_time(&tlat->timer); wait_next_period(tlat); osn_var->sampling = 1; while (!kthread_should_stop()) { now = ktime_to_ns(hrtimer_cb_get_time(&tlat->timer)); diff = now - tlat->abs_period; s.seqnum = tlat->count; s.timer_latency = diff; s.context = THREAD_CONTEXT; trace_timerlat_sample(&s); #ifdef CONFIG_STACKTRACE if (osnoise_data.print_stack) if (osnoise_data.print_stack <= time_to_us(diff)) timerlat_dump_stack(); #endif /* CONFIG_STACKTRACE */ tlat->tracing_thread = false; if (osnoise_data.stop_tracing_total) if (time_to_us(diff) >= osnoise_data.stop_tracing_total) osnoise_stop_tracing(); wait_next_period(tlat); } hrtimer_cancel(&tlat->timer); return 0; } #endif /* CONFIG_TIMERLAT_TRACER */ /* * stop_kthread - stop a workload thread */ static void stop_kthread(unsigned int cpu) { struct task_struct *kthread; kthread = per_cpu(per_cpu_osnoise_var, cpu).kthread; if (kthread) kthread_stop(kthread); per_cpu(per_cpu_osnoise_var, cpu).kthread = NULL; } /* * stop_per_cpu_kthread - Stop per-cpu threads * * Stop the osnoise sampling htread. Use this on unload and at system * shutdown. */ static void stop_per_cpu_kthreads(void) { int cpu; get_online_cpus(); for_each_online_cpu(cpu) stop_kthread(cpu); put_online_cpus(); } /* * start_kthread - Start a workload tread */ static int start_kthread(unsigned int cpu) { struct task_struct *kthread; void *main = osnoise_main; char comm[24]; #ifdef CONFIG_TIMERLAT_TRACER if (osnoise_data.timerlat_tracer) { snprintf(comm, 24, "timerlat/%d", cpu); main = timerlat_main; } else { snprintf(comm, 24, "osnoise/%d", cpu); } #else snprintf(comm, 24, "osnoise/%d", cpu); #endif kthread = kthread_create_on_cpu(main, NULL, cpu, comm); if (IS_ERR(kthread)) { pr_err(BANNER "could not start sampling thread\n"); stop_per_cpu_kthreads(); return -ENOMEM; } per_cpu(per_cpu_osnoise_var, cpu).kthread = kthread; wake_up_process(kthread); return 0; } /* * start_per_cpu_kthread - Kick off per-cpu osnoise sampling kthreads * * This starts the kernel thread that will look for osnoise on many * cpus. */ static int start_per_cpu_kthreads(struct trace_array *tr) { struct cpumask *current_mask = &save_cpumask; int retval; int cpu; get_online_cpus(); /* * Run only on CPUs in which trace and osnoise are allowed to run. */ cpumask_and(current_mask, tr->tracing_cpumask, &osnoise_cpumask); /* * And the CPU is online. */ cpumask_and(current_mask, cpu_online_mask, current_mask); for_each_possible_cpu(cpu) per_cpu(per_cpu_osnoise_var, cpu).kthread = NULL; for_each_cpu(cpu, current_mask) { retval = start_kthread(cpu); if (retval) { stop_per_cpu_kthreads(); return retval; } } put_online_cpus(); return 0; } #ifdef CONFIG_HOTPLUG_CPU static void osnoise_hotplug_workfn(struct work_struct *dummy) { struct trace_array *tr = osnoise_trace; unsigned int cpu = smp_processor_id(); mutex_lock(&trace_types_lock); if (!osnoise_busy) goto out_unlock_trace; mutex_lock(&interface_lock); get_online_cpus(); if (!cpumask_test_cpu(cpu, &osnoise_cpumask)) goto out_unlock; if (!cpumask_test_cpu(cpu, tr->tracing_cpumask)) goto out_unlock; start_kthread(cpu); out_unlock: put_online_cpus(); mutex_unlock(&interface_lock); out_unlock_trace: mutex_unlock(&trace_types_lock); } static DECLARE_WORK(osnoise_hotplug_work, osnoise_hotplug_workfn); /* * osnoise_cpu_init - CPU hotplug online callback function */ static int osnoise_cpu_init(unsigned int cpu) { schedule_work_on(cpu, &osnoise_hotplug_work); return 0; } /* * osnoise_cpu_die - CPU hotplug offline callback function */ static int osnoise_cpu_die(unsigned int cpu) { stop_kthread(cpu); return 0; } static void osnoise_init_hotplug_support(void) { int ret; ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "trace/osnoise:online", osnoise_cpu_init, osnoise_cpu_die); if (ret < 0) pr_warn(BANNER "Error to init cpu hotplug support\n"); return; } #else /* CONFIG_HOTPLUG_CPU */ static void osnoise_init_hotplug_support(void) { return; } #endif /* CONFIG_HOTPLUG_CPU */ /* * osnoise_cpus_read - Read function for reading the "cpus" file * @filp: The active open file structure * @ubuf: The userspace provided buffer to read value into * @cnt: The maximum number of bytes to read * @ppos: The current "file" position * * Prints the "cpus" output into the user-provided buffer. */ static ssize_t osnoise_cpus_read(struct file *filp, char __user *ubuf, size_t count, loff_t *ppos) { char *mask_str; int len; mutex_lock(&interface_lock); len = snprintf(NULL, 0, "%*pbl\n", cpumask_pr_args(&osnoise_cpumask)) + 1; mask_str = kmalloc(len, GFP_KERNEL); if (!mask_str) { count = -ENOMEM; goto out_unlock; } len = snprintf(mask_str, len, "%*pbl\n", cpumask_pr_args(&osnoise_cpumask)); if (len >= count) { count = -EINVAL; goto out_free; } count = simple_read_from_buffer(ubuf, count, ppos, mask_str, len); out_free: kfree(mask_str); out_unlock: mutex_unlock(&interface_lock); return count; } static void osnoise_tracer_start(struct trace_array *tr); static void osnoise_tracer_stop(struct trace_array *tr); /* * osnoise_cpus_write - Write function for "cpus" entry * @filp: The active open file structure * @ubuf: The user buffer that contains the value to write * @cnt: The maximum number of bytes to write to "file" * @ppos: The current position in @file * * This function provides a write implementation for the "cpus" * interface to the osnoise trace. By default, it lists all CPUs, * in this way, allowing osnoise threads to run on any online CPU * of the system. It serves to restrict the execution of osnoise to the * set of CPUs writing via this interface. Note that osnoise also * respects the "tracing_cpumask." Hence, osnoise threads will run only * on the set of CPUs allowed here AND on "tracing_cpumask." Why not * have just "tracing_cpumask?" Because the user might be interested * in tracing what is running on other CPUs. For instance, one might * run osnoise in one HT CPU while observing what is running on the * sibling HT CPU. */ static ssize_t osnoise_cpus_write(struct file *filp, const char __user *ubuf, size_t count, loff_t *ppos) { struct trace_array *tr = osnoise_trace; cpumask_var_t osnoise_cpumask_new; int running, err; char buf[256]; if (count >= 256) return -EINVAL; if (copy_from_user(buf, ubuf, count)) return -EFAULT; if (!zalloc_cpumask_var(&osnoise_cpumask_new, GFP_KERNEL)) return -ENOMEM; err = cpulist_parse(buf, osnoise_cpumask_new); if (err) goto err_free; /* * trace_types_lock is taken to avoid concurrency on start/stop * and osnoise_busy. */ mutex_lock(&trace_types_lock); running = osnoise_busy; if (running) osnoise_tracer_stop(tr); mutex_lock(&interface_lock); /* * osnoise_cpumask is read by CPU hotplug operations. */ get_online_cpus(); cpumask_copy(&osnoise_cpumask, osnoise_cpumask_new); put_online_cpus(); mutex_unlock(&interface_lock); if (running) osnoise_tracer_start(tr); mutex_unlock(&trace_types_lock); free_cpumask_var(osnoise_cpumask_new); return count; err_free: free_cpumask_var(osnoise_cpumask_new); return err; } /* * osnoise/runtime_us: cannot be greater than the period. */ static struct trace_min_max_param osnoise_runtime = { .lock = &interface_lock, .val = &osnoise_data.sample_runtime, .max = &osnoise_data.sample_period, .min = NULL, }; /* * osnoise/period_us: cannot be smaller than the runtime. */ static struct trace_min_max_param osnoise_period = { .lock = &interface_lock, .val = &osnoise_data.sample_period, .max = NULL, .min = &osnoise_data.sample_runtime, }; /* * osnoise/stop_tracing_us: no limit. */ static struct trace_min_max_param osnoise_stop_tracing_in = { .lock = &interface_lock, .val = &osnoise_data.stop_tracing, .max = NULL, .min = NULL, }; /* * osnoise/stop_tracing_total_us: no limit. */ static struct trace_min_max_param osnoise_stop_tracing_total = { .lock = &interface_lock, .val = &osnoise_data.stop_tracing_total, .max = NULL, .min = NULL, }; #ifdef CONFIG_TIMERLAT_TRACER /* * osnoise/print_stack: print the stacktrace of the IRQ handler if the total * latency is higher than val. */ static struct trace_min_max_param osnoise_print_stack = { .lock = &interface_lock, .val = &osnoise_data.print_stack, .max = NULL, .min = NULL, }; /* * osnoise/timerlat_period: min 100 us, max 1 s */ u64 timerlat_min_period = 100; u64 timerlat_max_period = 1000000; static struct trace_min_max_param timerlat_period = { .lock = &interface_lock, .val = &osnoise_data.timerlat_period, .max = &timerlat_max_period, .min = &timerlat_min_period, }; #endif static const struct file_operations cpus_fops = { .open = tracing_open_generic, .read = osnoise_cpus_read, .write = osnoise_cpus_write, .llseek = generic_file_llseek, }; /* * init_tracefs - A function to initialize the tracefs interface files * * This function creates entries in tracefs for "osnoise" and "timerlat". * It creates these directories in the tracing directory, and within that * directory the use can change and view the configs. */ static int init_tracefs(void) { struct dentry *top_dir; struct dentry *tmp; int ret; ret = tracing_init_dentry(); if (ret) return -ENOMEM; top_dir = tracefs_create_dir("osnoise", NULL); if (!top_dir) return 0; tmp = tracefs_create_file("period_us", 0640, top_dir, &osnoise_period, &trace_min_max_fops); if (!tmp) goto err; tmp = tracefs_create_file("runtime_us", 0644, top_dir, &osnoise_runtime, &trace_min_max_fops); if (!tmp) goto err; tmp = tracefs_create_file("stop_tracing_us", 0640, top_dir, &osnoise_stop_tracing_in, &trace_min_max_fops); if (!tmp) goto err; tmp = tracefs_create_file("stop_tracing_total_us", 0640, top_dir, &osnoise_stop_tracing_total, &trace_min_max_fops); if (!tmp) goto err; tmp = trace_create_file("cpus", 0644, top_dir, NULL, &cpus_fops); if (!tmp) goto err; #ifdef CONFIG_TIMERLAT_TRACER #ifdef CONFIG_STACKTRACE tmp = tracefs_create_file("print_stack", 0640, top_dir, &osnoise_print_stack, &trace_min_max_fops); if (!tmp) goto err; #endif tmp = tracefs_create_file("timerlat_period_us", 0640, top_dir, &timerlat_period, &trace_min_max_fops); if (!tmp) goto err; #endif return 0; err: tracefs_remove(top_dir); return -ENOMEM; } static int osnoise_hook_events(void) { int retval; /* * Trace is already hooked, we are re-enabling from * a stop_tracing_*. */ if (trace_osnoise_callback_enabled) return 0; retval = hook_irq_events(); if (retval) return -EINVAL; retval = hook_softirq_events(); if (retval) goto out_unhook_irq; retval = hook_thread_events(); /* * All fine! */ if (!retval) return 0; unhook_softirq_events(); out_unhook_irq: unhook_irq_events(); return -EINVAL; } static int __osnoise_tracer_start(struct trace_array *tr) { int retval; osn_var_reset_all(); retval = osnoise_hook_events(); if (retval) return retval; /* * Make sure NMIs see reseted values. */ barrier(); trace_osnoise_callback_enabled = true; retval = start_per_cpu_kthreads(tr); if (retval) { unhook_irq_events(); return retval; } osnoise_busy = true; return 0; } static void osnoise_tracer_start(struct trace_array *tr) { int retval; if (osnoise_busy) return; retval = __osnoise_tracer_start(tr); if (retval) pr_err(BANNER "Error starting osnoise tracer\n"); } static void osnoise_tracer_stop(struct trace_array *tr) { if (!osnoise_busy) return; trace_osnoise_callback_enabled = false; barrier(); stop_per_cpu_kthreads(); unhook_irq_events(); unhook_softirq_events(); unhook_thread_events(); osnoise_busy = false; } static int osnoise_tracer_init(struct trace_array *tr) { /* Only allow one instance to enable this */ if (osnoise_busy) return -EBUSY; osnoise_trace = tr; tr->max_latency = 0; osnoise_tracer_start(tr); return 0; } static void osnoise_tracer_reset(struct trace_array *tr) { osnoise_tracer_stop(tr); } static struct tracer osnoise_tracer __read_mostly = { .name = "osnoise", .init = osnoise_tracer_init, .reset = osnoise_tracer_reset, .start = osnoise_tracer_start, .stop = osnoise_tracer_stop, .print_header = print_osnoise_headers, .allow_instances = true, }; #ifdef CONFIG_TIMERLAT_TRACER static void timerlat_tracer_start(struct trace_array *tr) { int retval; if (osnoise_busy) return; osnoise_data.timerlat_tracer = 1; retval = __osnoise_tracer_start(tr); if (retval) goto out_err; return; out_err: pr_err(BANNER "Error starting timerlat tracer\n"); } static void timerlat_tracer_stop(struct trace_array *tr) { int cpu; if (!osnoise_busy) return; for_each_online_cpu(cpu) per_cpu(per_cpu_osnoise_var, cpu).sampling = 0; osnoise_tracer_stop(tr); osnoise_data.timerlat_tracer = 0; } static int timerlat_tracer_init(struct trace_array *tr) { /* Only allow one instance to enable this */ if (osnoise_busy) return -EBUSY; osnoise_trace = tr; tr->max_latency = 0; timerlat_tracer_start(tr); return 0; } static void timerlat_tracer_reset(struct trace_array *tr) { timerlat_tracer_stop(tr); } static struct tracer timerlat_tracer __read_mostly = { .name = "timerlat", .init = timerlat_tracer_init, .reset = timerlat_tracer_reset, .start = timerlat_tracer_start, .stop = timerlat_tracer_stop, .print_header = print_timerlat_headers, .allow_instances = true, }; #endif /* CONFIG_TIMERLAT_TRACER */ __init static int init_osnoise_tracer(void) { int ret; mutex_init(&interface_lock); cpumask_copy(&osnoise_cpumask, cpu_all_mask); ret = register_tracer(&osnoise_tracer); if (ret) { pr_err(BANNER "Error registering osnoise!\n"); return ret; } #ifdef CONFIG_TIMERLAT_TRACER ret = register_tracer(&timerlat_tracer); if (ret) { pr_err(BANNER "Error registering timerlat\n"); return ret; } #endif osnoise_init_hotplug_support(); init_tracefs(); return 0; } late_initcall(init_osnoise_tracer);