/* * Read-Copy Update mechanism for mutual exclusion * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you can access it online at * http://www.gnu.org/licenses/gpl-2.0.html. * * Copyright IBM Corporation, 2001 * * Authors: Dipankar Sarma * Manfred Spraul * * Based on the original work by Paul McKenney * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. * Papers: * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) * * For detailed explanation of Read-Copy Update mechanism see - * http://lse.sourceforge.net/locking/rcupdate.html * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include "rcu.h" MODULE_ALIAS("rcupdate"); #ifdef MODULE_PARAM_PREFIX #undef MODULE_PARAM_PREFIX #endif #define MODULE_PARAM_PREFIX "rcupdate." module_param(rcu_expedited, int, 0); #ifdef CONFIG_PREEMPT_RCU /* * Preemptible RCU implementation for rcu_read_lock(). * Just increment ->rcu_read_lock_nesting, shared state will be updated * if we block. */ void __rcu_read_lock(void) { current->rcu_read_lock_nesting++; barrier(); /* critical section after entry code. */ } EXPORT_SYMBOL_GPL(__rcu_read_lock); /* * Preemptible RCU implementation for rcu_read_unlock(). * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then * invoke rcu_read_unlock_special() to clean up after a context switch * in an RCU read-side critical section and other special cases. */ void __rcu_read_unlock(void) { struct task_struct *t = current; if (t->rcu_read_lock_nesting != 1) { --t->rcu_read_lock_nesting; } else { barrier(); /* critical section before exit code. */ t->rcu_read_lock_nesting = INT_MIN; barrier(); /* assign before ->rcu_read_unlock_special load */ if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special))) rcu_read_unlock_special(t); barrier(); /* ->rcu_read_unlock_special load before assign */ t->rcu_read_lock_nesting = 0; } #ifdef CONFIG_PROVE_LOCKING { int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting); WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); } #endif /* #ifdef CONFIG_PROVE_LOCKING */ } EXPORT_SYMBOL_GPL(__rcu_read_unlock); #endif /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_DEBUG_LOCK_ALLOC static struct lock_class_key rcu_lock_key; struct lockdep_map rcu_lock_map = STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); EXPORT_SYMBOL_GPL(rcu_lock_map); static struct lock_class_key rcu_bh_lock_key; struct lockdep_map rcu_bh_lock_map = STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); EXPORT_SYMBOL_GPL(rcu_bh_lock_map); static struct lock_class_key rcu_sched_lock_key; struct lockdep_map rcu_sched_lock_map = STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); EXPORT_SYMBOL_GPL(rcu_sched_lock_map); static struct lock_class_key rcu_callback_key; struct lockdep_map rcu_callback_map = STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); EXPORT_SYMBOL_GPL(rcu_callback_map); int notrace debug_lockdep_rcu_enabled(void) { return rcu_scheduler_active && debug_locks && current->lockdep_recursion == 0; } EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); /** * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? * * Check for bottom half being disabled, which covers both the * CONFIG_PROVE_RCU and not cases. Note that if someone uses * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) * will show the situation. This is useful for debug checks in functions * that require that they be called within an RCU read-side critical * section. * * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. * * Note that rcu_read_lock() is disallowed if the CPU is either idle or * offline from an RCU perspective, so check for those as well. */ int rcu_read_lock_bh_held(void) { if (!debug_lockdep_rcu_enabled()) return 1; if (!rcu_is_watching()) return 0; if (!rcu_lockdep_current_cpu_online()) return 0; return in_softirq() || irqs_disabled(); } EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ struct rcu_synchronize { struct rcu_head head; struct completion completion; }; /* * Awaken the corresponding synchronize_rcu() instance now that a * grace period has elapsed. */ static void wakeme_after_rcu(struct rcu_head *head) { struct rcu_synchronize *rcu; rcu = container_of(head, struct rcu_synchronize, head); complete(&rcu->completion); } void wait_rcu_gp(call_rcu_func_t crf) { struct rcu_synchronize rcu; init_rcu_head_on_stack(&rcu.head); init_completion(&rcu.completion); /* Will wake me after RCU finished. */ crf(&rcu.head, wakeme_after_rcu); /* Wait for it. */ wait_for_completion(&rcu.completion); destroy_rcu_head_on_stack(&rcu.head); } EXPORT_SYMBOL_GPL(wait_rcu_gp); #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD void init_rcu_head(struct rcu_head *head) { debug_object_init(head, &rcuhead_debug_descr); } void destroy_rcu_head(struct rcu_head *head) { debug_object_free(head, &rcuhead_debug_descr); } /* * fixup_activate is called when: * - an active object is activated * - an unknown object is activated (might be a statically initialized object) * Activation is performed internally by call_rcu(). */ static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state) { struct rcu_head *head = addr; switch (state) { case ODEBUG_STATE_NOTAVAILABLE: /* * This is not really a fixup. We just make sure that it is * tracked in the object tracker. */ debug_object_init(head, &rcuhead_debug_descr); debug_object_activate(head, &rcuhead_debug_descr); return 0; default: return 1; } } /** * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects * @head: pointer to rcu_head structure to be initialized * * This function informs debugobjects of a new rcu_head structure that * has been allocated as an auto variable on the stack. This function * is not required for rcu_head structures that are statically defined or * that are dynamically allocated on the heap. This function has no * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. */ void init_rcu_head_on_stack(struct rcu_head *head) { debug_object_init_on_stack(head, &rcuhead_debug_descr); } EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); /** * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects * @head: pointer to rcu_head structure to be initialized * * This function informs debugobjects that an on-stack rcu_head structure * is about to go out of scope. As with init_rcu_head_on_stack(), this * function is not required for rcu_head structures that are statically * defined or that are dynamically allocated on the heap. Also as with * init_rcu_head_on_stack(), this function has no effect for * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. */ void destroy_rcu_head_on_stack(struct rcu_head *head) { debug_object_free(head, &rcuhead_debug_descr); } EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); struct debug_obj_descr rcuhead_debug_descr = { .name = "rcu_head", .fixup_activate = rcuhead_fixup_activate, }; EXPORT_SYMBOL_GPL(rcuhead_debug_descr); #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, unsigned long secs, unsigned long c_old, unsigned long c) { trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); } EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); #else #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ do { } while (0) #endif #ifdef CONFIG_RCU_STALL_COMMON #ifdef CONFIG_PROVE_RCU #define RCU_STALL_DELAY_DELTA (5 * HZ) #else #define RCU_STALL_DELAY_DELTA 0 #endif int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; module_param(rcu_cpu_stall_suppress, int, 0644); module_param(rcu_cpu_stall_timeout, int, 0644); int rcu_jiffies_till_stall_check(void) { int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout); /* * Limit check must be consistent with the Kconfig limits * for CONFIG_RCU_CPU_STALL_TIMEOUT. */ if (till_stall_check < 3) { ACCESS_ONCE(rcu_cpu_stall_timeout) = 3; till_stall_check = 3; } else if (till_stall_check > 300) { ACCESS_ONCE(rcu_cpu_stall_timeout) = 300; till_stall_check = 300; } return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; } void rcu_sysrq_start(void) { if (!rcu_cpu_stall_suppress) rcu_cpu_stall_suppress = 2; } void rcu_sysrq_end(void) { if (rcu_cpu_stall_suppress == 2) rcu_cpu_stall_suppress = 0; } static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) { rcu_cpu_stall_suppress = 1; return NOTIFY_DONE; } static struct notifier_block rcu_panic_block = { .notifier_call = rcu_panic, }; static int __init check_cpu_stall_init(void) { atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); return 0; } early_initcall(check_cpu_stall_init); #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ #ifdef CONFIG_TASKS_RCU /* * Simple variant of RCU whose quiescent states are voluntary context switch, * user-space execution, and idle. As such, grace periods can take one good * long time. There are no read-side primitives similar to rcu_read_lock() * and rcu_read_unlock() because this implementation is intended to get * the system into a safe state for some of the manipulations involved in * tracing and the like. Finally, this implementation does not support * high call_rcu_tasks() rates from multiple CPUs. If this is required, * per-CPU callback lists will be needed. */ /* Global list of callbacks and associated lock. */ static struct rcu_head *rcu_tasks_cbs_head; static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); /* Track exiting tasks in order to allow them to be waited for. */ DEFINE_SRCU(tasks_rcu_exit_srcu); /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10; module_param(rcu_task_stall_timeout, int, 0644); static void rcu_spawn_tasks_kthread(void); /* * Post an RCU-tasks callback. First call must be from process context * after the scheduler if fully operational. */ void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp)) { unsigned long flags; bool needwake; rhp->next = NULL; rhp->func = func; raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); needwake = !rcu_tasks_cbs_head; *rcu_tasks_cbs_tail = rhp; rcu_tasks_cbs_tail = &rhp->next; raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); if (needwake) { rcu_spawn_tasks_kthread(); wake_up(&rcu_tasks_cbs_wq); } } EXPORT_SYMBOL_GPL(call_rcu_tasks); /** * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. * * Control will return to the caller some time after a full rcu-tasks * grace period has elapsed, in other words after all currently * executing rcu-tasks read-side critical sections have elapsed. These * read-side critical sections are delimited by calls to schedule(), * cond_resched_rcu_qs(), idle execution, userspace execution, calls * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). * * This is a very specialized primitive, intended only for a few uses in * tracing and other situations requiring manipulation of function * preambles and profiling hooks. The synchronize_rcu_tasks() function * is not (yet) intended for heavy use from multiple CPUs. * * Note that this guarantee implies further memory-ordering guarantees. * On systems with more than one CPU, when synchronize_rcu_tasks() returns, * each CPU is guaranteed to have executed a full memory barrier since the * end of its last RCU-tasks read-side critical section whose beginning * preceded the call to synchronize_rcu_tasks(). In addition, each CPU * having an RCU-tasks read-side critical section that extends beyond * the return from synchronize_rcu_tasks() is guaranteed to have executed * a full memory barrier after the beginning of synchronize_rcu_tasks() * and before the beginning of that RCU-tasks read-side critical section. * Note that these guarantees include CPUs that are offline, idle, or * executing in user mode, as well as CPUs that are executing in the kernel. * * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned * to its caller on CPU B, then both CPU A and CPU B are guaranteed * to have executed a full memory barrier during the execution of * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU * (but again only if the system has more than one CPU). */ void synchronize_rcu_tasks(void) { /* Complain if the scheduler has not started. */ rcu_lockdep_assert(!rcu_scheduler_active, "synchronize_rcu_tasks called too soon"); /* Wait for the grace period. */ wait_rcu_gp(call_rcu_tasks); } EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); /** * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. * * Although the current implementation is guaranteed to wait, it is not * obligated to, for example, if there are no pending callbacks. */ void rcu_barrier_tasks(void) { /* There is only one callback queue, so this is easy. ;-) */ synchronize_rcu_tasks(); } EXPORT_SYMBOL_GPL(rcu_barrier_tasks); /* See if tasks are still holding out, complain if so. */ static void check_holdout_task(struct task_struct *t, bool needreport, bool *firstreport) { int cpu; if (!ACCESS_ONCE(t->rcu_tasks_holdout) || t->rcu_tasks_nvcsw != ACCESS_ONCE(t->nvcsw) || !ACCESS_ONCE(t->on_rq) || (IS_ENABLED(CONFIG_NO_HZ_FULL) && !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { ACCESS_ONCE(t->rcu_tasks_holdout) = false; list_del_init(&t->rcu_tasks_holdout_list); put_task_struct(t); return; } if (!needreport) return; if (*firstreport) { pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); *firstreport = false; } cpu = task_cpu(t); pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", t, ".I"[is_idle_task(t)], "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, t->rcu_tasks_idle_cpu, cpu); sched_show_task(t); } /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ static int __noreturn rcu_tasks_kthread(void *arg) { unsigned long flags; struct task_struct *g, *t; unsigned long lastreport; struct rcu_head *list; struct rcu_head *next; LIST_HEAD(rcu_tasks_holdouts); /* FIXME: Add housekeeping affinity. */ /* * Each pass through the following loop makes one check for * newly arrived callbacks, and, if there are some, waits for * one RCU-tasks grace period and then invokes the callbacks. * This loop is terminated by the system going down. ;-) */ for (;;) { /* Pick up any new callbacks. */ raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); list = rcu_tasks_cbs_head; rcu_tasks_cbs_head = NULL; rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); /* If there were none, wait a bit and start over. */ if (!list) { wait_event_interruptible(rcu_tasks_cbs_wq, rcu_tasks_cbs_head); if (!rcu_tasks_cbs_head) { WARN_ON(signal_pending(current)); schedule_timeout_interruptible(HZ/10); } continue; } /* * Wait for all pre-existing t->on_rq and t->nvcsw * transitions to complete. Invoking synchronize_sched() * suffices because all these transitions occur with * interrupts disabled. Without this synchronize_sched(), * a read-side critical section that started before the * grace period might be incorrectly seen as having started * after the grace period. * * This synchronize_sched() also dispenses with the * need for a memory barrier on the first store to * ->rcu_tasks_holdout, as it forces the store to happen * after the beginning of the grace period. */ synchronize_sched(); /* * There were callbacks, so we need to wait for an * RCU-tasks grace period. Start off by scanning * the task list for tasks that are not already * voluntarily blocked. Mark these tasks and make * a list of them in rcu_tasks_holdouts. */ rcu_read_lock(); for_each_process_thread(g, t) { if (t != current && ACCESS_ONCE(t->on_rq) && !is_idle_task(t)) { get_task_struct(t); t->rcu_tasks_nvcsw = ACCESS_ONCE(t->nvcsw); ACCESS_ONCE(t->rcu_tasks_holdout) = true; list_add(&t->rcu_tasks_holdout_list, &rcu_tasks_holdouts); } } rcu_read_unlock(); /* * Wait for tasks that are in the process of exiting. * This does only part of the job, ensuring that all * tasks that were previously exiting reach the point * where they have disabled preemption, allowing the * later synchronize_sched() to finish the job. */ synchronize_srcu(&tasks_rcu_exit_srcu); /* * Each pass through the following loop scans the list * of holdout tasks, removing any that are no longer * holdouts. When the list is empty, we are done. */ lastreport = jiffies; while (!list_empty(&rcu_tasks_holdouts)) { bool firstreport; bool needreport; int rtst; struct task_struct *t1; schedule_timeout_interruptible(HZ); rtst = ACCESS_ONCE(rcu_task_stall_timeout); needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); if (needreport) lastreport = jiffies; firstreport = true; WARN_ON(signal_pending(current)); list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, rcu_tasks_holdout_list) { check_holdout_task(t, needreport, &firstreport); cond_resched(); } } /* * Because ->on_rq and ->nvcsw are not guaranteed * to have a full memory barriers prior to them in the * schedule() path, memory reordering on other CPUs could * cause their RCU-tasks read-side critical sections to * extend past the end of the grace period. However, * because these ->nvcsw updates are carried out with * interrupts disabled, we can use synchronize_sched() * to force the needed ordering on all such CPUs. * * This synchronize_sched() also confines all * ->rcu_tasks_holdout accesses to be within the grace * period, avoiding the need for memory barriers for * ->rcu_tasks_holdout accesses. * * In addition, this synchronize_sched() waits for exiting * tasks to complete their final preempt_disable() region * of execution, cleaning up after the synchronize_srcu() * above. */ synchronize_sched(); /* Invoke the callbacks. */ while (list) { next = list->next; local_bh_disable(); list->func(list); local_bh_enable(); list = next; cond_resched(); } schedule_timeout_uninterruptible(HZ/10); } } /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */ static void rcu_spawn_tasks_kthread(void) { static DEFINE_MUTEX(rcu_tasks_kthread_mutex); static struct task_struct *rcu_tasks_kthread_ptr; struct task_struct *t; if (ACCESS_ONCE(rcu_tasks_kthread_ptr)) { smp_mb(); /* Ensure caller sees full kthread. */ return; } mutex_lock(&rcu_tasks_kthread_mutex); if (rcu_tasks_kthread_ptr) { mutex_unlock(&rcu_tasks_kthread_mutex); return; } t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); BUG_ON(IS_ERR(t)); smp_mb(); /* Ensure others see full kthread. */ ACCESS_ONCE(rcu_tasks_kthread_ptr) = t; mutex_unlock(&rcu_tasks_kthread_mutex); } #endif /* #ifdef CONFIG_TASKS_RCU */