// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016 Thomas Gleixner. * Copyright (C) 2016-2017 Christoph Hellwig. */ #include #include #include #include static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk, int cpus_per_vec) { const struct cpumask *siblmsk; int cpu, sibl; for ( ; cpus_per_vec > 0; ) { cpu = cpumask_first(nmsk); /* Should not happen, but I'm too lazy to think about it */ if (cpu >= nr_cpu_ids) return; cpumask_clear_cpu(cpu, nmsk); cpumask_set_cpu(cpu, irqmsk); cpus_per_vec--; /* If the cpu has siblings, use them first */ siblmsk = topology_sibling_cpumask(cpu); for (sibl = -1; cpus_per_vec > 0; ) { sibl = cpumask_next(sibl, siblmsk); if (sibl >= nr_cpu_ids) break; if (!cpumask_test_and_clear_cpu(sibl, nmsk)) continue; cpumask_set_cpu(sibl, irqmsk); cpus_per_vec--; } } } static cpumask_var_t *alloc_node_to_cpumask(void) { cpumask_var_t *masks; int node; masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL); if (!masks) return NULL; for (node = 0; node < nr_node_ids; node++) { if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL)) goto out_unwind; } return masks; out_unwind: while (--node >= 0) free_cpumask_var(masks[node]); kfree(masks); return NULL; } static void free_node_to_cpumask(cpumask_var_t *masks) { int node; for (node = 0; node < nr_node_ids; node++) free_cpumask_var(masks[node]); kfree(masks); } static void build_node_to_cpumask(cpumask_var_t *masks) { int cpu; for_each_possible_cpu(cpu) cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]); } static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask, const struct cpumask *mask, nodemask_t *nodemsk) { int n, nodes = 0; /* Calculate the number of nodes in the supplied affinity mask */ for_each_node(n) { if (cpumask_intersects(mask, node_to_cpumask[n])) { node_set(n, *nodemsk); nodes++; } } return nodes; } static int __irq_build_affinity_masks(const struct irq_affinity *affd, int startvec, int numvecs, int firstvec, cpumask_var_t *node_to_cpumask, const struct cpumask *cpu_mask, struct cpumask *nmsk, struct cpumask *masks) { int n, nodes, cpus_per_vec, extra_vecs, done = 0; int last_affv = firstvec + numvecs; int curvec = startvec; nodemask_t nodemsk = NODE_MASK_NONE; if (!cpumask_weight(cpu_mask)) return 0; nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk); /* * If the number of nodes in the mask is greater than or equal the * number of vectors we just spread the vectors across the nodes. */ if (numvecs <= nodes) { for_each_node_mask(n, nodemsk) { cpumask_or(masks + curvec, masks + curvec, node_to_cpumask[n]); if (++curvec == last_affv) curvec = firstvec; } done = numvecs; goto out; } for_each_node_mask(n, nodemsk) { int ncpus, v, vecs_to_assign, vecs_per_node; /* Spread the vectors per node */ vecs_per_node = (numvecs - (curvec - firstvec)) / nodes; /* Get the cpus on this node which are in the mask */ cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); /* Calculate the number of cpus per vector */ ncpus = cpumask_weight(nmsk); vecs_to_assign = min(vecs_per_node, ncpus); /* Account for rounding errors */ extra_vecs = ncpus - vecs_to_assign * (ncpus / vecs_to_assign); for (v = 0; curvec < last_affv && v < vecs_to_assign; curvec++, v++) { cpus_per_vec = ncpus / vecs_to_assign; /* Account for extra vectors to compensate rounding errors */ if (extra_vecs) { cpus_per_vec++; --extra_vecs; } irq_spread_init_one(masks + curvec, nmsk, cpus_per_vec); } done += v; if (done >= numvecs) break; if (curvec >= last_affv) curvec = firstvec; --nodes; } out: return done; } /* * build affinity in two stages: * 1) spread present CPU on these vectors * 2) spread other possible CPUs on these vectors */ static int irq_build_affinity_masks(const struct irq_affinity *affd, int startvec, int numvecs, int firstvec, cpumask_var_t *node_to_cpumask, struct cpumask *masks) { int curvec = startvec, nr_present, nr_others; int ret = -ENOMEM; cpumask_var_t nmsk, npresmsk; if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL)) return ret; if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL)) goto fail; ret = 0; /* Stabilize the cpumasks */ get_online_cpus(); build_node_to_cpumask(node_to_cpumask); /* Spread on present CPUs starting from affd->pre_vectors */ nr_present = __irq_build_affinity_masks(affd, curvec, numvecs, firstvec, node_to_cpumask, cpu_present_mask, nmsk, masks); /* * Spread on non present CPUs starting from the next vector to be * handled. If the spreading of present CPUs already exhausted the * vector space, assign the non present CPUs to the already spread * out vectors. */ if (nr_present >= numvecs) curvec = firstvec; else curvec = firstvec + nr_present; cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask); nr_others = __irq_build_affinity_masks(affd, curvec, numvecs, firstvec, node_to_cpumask, npresmsk, nmsk, masks); put_online_cpus(); if (nr_present < numvecs) WARN_ON(nr_present + nr_others < numvecs); free_cpumask_var(npresmsk); fail: free_cpumask_var(nmsk); return ret; } /** * irq_create_affinity_masks - Create affinity masks for multiqueue spreading * @nvecs: The total number of vectors * @affd: Description of the affinity requirements * * Returns the masks pointer or NULL if allocation failed. */ struct cpumask * irq_create_affinity_masks(int nvecs, const struct irq_affinity *affd) { int affvecs = nvecs - affd->pre_vectors - affd->post_vectors; int curvec, usedvecs; cpumask_var_t *node_to_cpumask; struct cpumask *masks = NULL; int i, nr_sets; /* * If there aren't any vectors left after applying the pre/post * vectors don't bother with assigning affinity. */ if (nvecs == affd->pre_vectors + affd->post_vectors) return NULL; node_to_cpumask = alloc_node_to_cpumask(); if (!node_to_cpumask) return NULL; masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL); if (!masks) goto outnodemsk; /* Fill out vectors at the beginning that don't need affinity */ for (curvec = 0; curvec < affd->pre_vectors; curvec++) cpumask_copy(masks + curvec, irq_default_affinity); /* * Spread on present CPUs starting from affd->pre_vectors. If we * have multiple sets, build each sets affinity mask separately. */ nr_sets = affd->nr_sets; if (!nr_sets) nr_sets = 1; for (i = 0, usedvecs = 0; i < nr_sets; i++) { int this_vecs = affd->sets ? affd->sets[i] : affvecs; int ret; ret = irq_build_affinity_masks(affd, curvec, this_vecs, curvec, node_to_cpumask, masks); if (ret) { kfree(masks); masks = NULL; goto outnodemsk; } curvec += this_vecs; usedvecs += this_vecs; } /* Fill out vectors at the end that don't need affinity */ if (usedvecs >= affvecs) curvec = affd->pre_vectors + affvecs; else curvec = affd->pre_vectors + usedvecs; for (; curvec < nvecs; curvec++) cpumask_copy(masks + curvec, irq_default_affinity); outnodemsk: free_node_to_cpumask(node_to_cpumask); return masks; } /** * irq_calc_affinity_vectors - Calculate the optimal number of vectors * @minvec: The minimum number of vectors available * @maxvec: The maximum number of vectors available * @affd: Description of the affinity requirements */ int irq_calc_affinity_vectors(int minvec, int maxvec, const struct irq_affinity *affd) { int resv = affd->pre_vectors + affd->post_vectors; int vecs = maxvec - resv; int set_vecs; if (resv > minvec) return 0; if (affd->nr_sets) { int i; for (i = 0, set_vecs = 0; i < affd->nr_sets; i++) set_vecs += affd->sets[i]; } else { get_online_cpus(); set_vecs = cpumask_weight(cpu_possible_mask); put_online_cpus(); } return resv + min(set_vecs, vecs); }