// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Christoph Hellwig. * * DMA operations that map physical memory directly without using an IOMMU. */ #include /* for max_pfn */ #include #include #include #include #include #include #include #include /* * Most architectures use ZONE_DMA for the first 16 Megabytes, but * some use it for entirely different regions: */ #ifndef ARCH_ZONE_DMA_BITS #define ARCH_ZONE_DMA_BITS 24 #endif /* * For AMD SEV all DMA must be to unencrypted addresses. */ static inline bool force_dma_unencrypted(void) { return sev_active(); } static bool check_addr(struct device *dev, dma_addr_t dma_addr, size_t size, const char *caller) { if (unlikely(dev && !dma_capable(dev, dma_addr, size))) { if (!dev->dma_mask) { dev_err(dev, "%s: call on device without dma_mask\n", caller); return false; } if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) { dev_err(dev, "%s: overflow %pad+%zu of device mask %llx bus mask %llx\n", caller, &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask); } return false; } return true; } static inline dma_addr_t phys_to_dma_direct(struct device *dev, phys_addr_t phys) { if (force_dma_unencrypted()) return __phys_to_dma(dev, phys); return phys_to_dma(dev, phys); } u64 dma_direct_get_required_mask(struct device *dev) { u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT); if (dev->bus_dma_mask && dev->bus_dma_mask < max_dma) max_dma = dev->bus_dma_mask; return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; } static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, u64 *phys_mask) { if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask) dma_mask = dev->bus_dma_mask; if (force_dma_unencrypted()) *phys_mask = __dma_to_phys(dev, dma_mask); else *phys_mask = dma_to_phys(dev, dma_mask); /* * Optimistically try the zone that the physical address mask falls * into first. If that returns memory that isn't actually addressable * we will fallback to the next lower zone and try again. * * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding * zones. */ if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) return GFP_DMA; if (*phys_mask <= DMA_BIT_MASK(32)) return GFP_DMA32; return 0; } static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) { return phys_to_dma_direct(dev, phys) + size - 1 <= min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask); } struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; int page_order = get_order(size); struct page *page = NULL; u64 phys_mask; if (attrs & DMA_ATTR_NO_WARN) gfp |= __GFP_NOWARN; /* we always manually zero the memory once we are done: */ gfp &= ~__GFP_ZERO; gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, &phys_mask); again: /* CMA can be used only in the context which permits sleeping */ if (gfpflags_allow_blocking(gfp)) { page = dma_alloc_from_contiguous(dev, count, page_order, gfp & __GFP_NOWARN); if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { dma_release_from_contiguous(dev, page, count); page = NULL; } } if (!page) page = alloc_pages_node(dev_to_node(dev), gfp, page_order); if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { __free_pages(page, page_order); page = NULL; if (IS_ENABLED(CONFIG_ZONE_DMA32) && phys_mask < DMA_BIT_MASK(64) && !(gfp & (GFP_DMA32 | GFP_DMA))) { gfp |= GFP_DMA32; goto again; } if (IS_ENABLED(CONFIG_ZONE_DMA) && phys_mask < DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) { gfp = (gfp & ~GFP_DMA32) | GFP_DMA; goto again; } } return page; } void *dma_direct_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { struct page *page; void *ret; page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); if (!page) return NULL; if (PageHighMem(page)) { /* * Depending on the cma= arguments and per-arch setup * dma_alloc_from_contiguous could return highmem pages. * Without remapping there is no way to return them here, * so log an error and fail. */ dev_info(dev, "Rejecting highmem page from CMA.\n"); __dma_direct_free_pages(dev, size, page); return NULL; } ret = page_address(page); if (force_dma_unencrypted()) { set_memory_decrypted((unsigned long)ret, 1 << get_order(size)); *dma_handle = __phys_to_dma(dev, page_to_phys(page)); } else { *dma_handle = phys_to_dma(dev, page_to_phys(page)); } memset(ret, 0, size); return ret; } void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page) { unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; if (!dma_release_from_contiguous(dev, page, count)) __free_pages(page, get_order(size)); } void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { unsigned int page_order = get_order(size); if (force_dma_unencrypted()) set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr)); } void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { if (!dev_is_dma_coherent(dev)) return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); } void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { if (!dev_is_dma_coherent(dev)) arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); else dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs); } static void dma_direct_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { if (dev_is_dma_coherent(dev)) return; arch_sync_dma_for_device(dev, dma_to_phys(dev, addr), size, dir); } static void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (dev_is_dma_coherent(dev)) return; for_each_sg(sgl, sg, nents, i) arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir); } #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) static void dma_direct_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { if (dev_is_dma_coherent(dev)) return; arch_sync_dma_for_cpu(dev, dma_to_phys(dev, addr), size, dir); arch_sync_dma_for_cpu_all(dev); } static void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (dev_is_dma_coherent(dev)) return; for_each_sg(sgl, sg, nents, i) arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir); arch_sync_dma_for_cpu_all(dev); } static void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) dma_direct_sync_single_for_cpu(dev, addr, size, dir); } static void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) dma_direct_sync_sg_for_cpu(dev, sgl, nents, dir); } #endif dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = page_to_phys(page) + offset; dma_addr_t dma_addr = phys_to_dma(dev, phys); if (!check_addr(dev, dma_addr, size, __func__)) return DIRECT_MAPPING_ERROR; if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) dma_direct_sync_single_for_device(dev, dma_addr, size, dir); return dma_addr; } int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { int i; struct scatterlist *sg; for_each_sg(sgl, sg, nents, i) { BUG_ON(!sg_page(sg)); sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg)); if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__)) return 0; sg_dma_len(sg) = sg->length; } if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) dma_direct_sync_sg_for_device(dev, sgl, nents, dir); return nents; } /* * Because 32-bit DMA masks are so common we expect every architecture to be * able to satisfy them - either by not supporting more physical memory, or by * providing a ZONE_DMA32. If neither is the case, the architecture needs to * use an IOMMU instead of the direct mapping. */ int dma_direct_supported(struct device *dev, u64 mask) { u64 min_mask; if (IS_ENABLED(CONFIG_ZONE_DMA)) min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS); else min_mask = DMA_BIT_MASK(32); min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT); return mask >= phys_to_dma(dev, min_mask); } int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr) { return dma_addr == DIRECT_MAPPING_ERROR; } const struct dma_map_ops dma_direct_ops = { .alloc = dma_direct_alloc, .free = dma_direct_free, .map_page = dma_direct_map_page, .map_sg = dma_direct_map_sg, #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) .sync_single_for_device = dma_direct_sync_single_for_device, .sync_sg_for_device = dma_direct_sync_sg_for_device, #endif #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) .sync_single_for_cpu = dma_direct_sync_single_for_cpu, .sync_sg_for_cpu = dma_direct_sync_sg_for_cpu, .unmap_page = dma_direct_unmap_page, .unmap_sg = dma_direct_unmap_sg, #endif .get_required_mask = dma_direct_get_required_mask, .dma_supported = dma_direct_supported, .mapping_error = dma_direct_mapping_error, .cache_sync = arch_dma_cache_sync, }; EXPORT_SYMBOL(dma_direct_ops);