#ifndef DEF_RDMAVT_INCQP_H #define DEF_RDMAVT_INCQP_H /* * Copyright(c) 2016, 2017 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include /* * Atomic bit definitions for r_aflags. */ #define RVT_R_WRID_VALID 0 #define RVT_R_REWIND_SGE 1 /* * Bit definitions for r_flags. */ #define RVT_R_REUSE_SGE 0x01 #define RVT_R_RDMAR_SEQ 0x02 #define RVT_R_RSP_NAK 0x04 #define RVT_R_RSP_SEND 0x08 #define RVT_R_COMM_EST 0x10 /* * Bit definitions for s_flags. * * RVT_S_SIGNAL_REQ_WR - set if QP send WRs contain completion signaled * RVT_S_BUSY - send tasklet is processing the QP * RVT_S_TIMER - the RC retry timer is active * RVT_S_ACK_PENDING - an ACK is waiting to be sent after RDMA read/atomics * RVT_S_WAIT_FENCE - waiting for all prior RDMA read or atomic SWQEs * before processing the next SWQE * RVT_S_WAIT_RDMAR - waiting for a RDMA read or atomic SWQE to complete * before processing the next SWQE * RVT_S_WAIT_RNR - waiting for RNR timeout * RVT_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE * RVT_S_WAIT_DMA - waiting for send DMA queue to drain before generating * next send completion entry not via send DMA * RVT_S_WAIT_PIO - waiting for a send buffer to be available * RVT_S_WAIT_PIO_DRAIN - waiting for a qp to drain pio packets * RVT_S_WAIT_TX - waiting for a struct verbs_txreq to be available * RVT_S_WAIT_DMA_DESC - waiting for DMA descriptors to be available * RVT_S_WAIT_KMEM - waiting for kernel memory to be available * RVT_S_WAIT_PSN - waiting for a packet to exit the send DMA queue * RVT_S_WAIT_ACK - waiting for an ACK packet before sending more requests * RVT_S_SEND_ONE - send one packet, request ACK, then wait for ACK * RVT_S_ECN - a BECN was queued to the send engine */ #define RVT_S_SIGNAL_REQ_WR 0x0001 #define RVT_S_BUSY 0x0002 #define RVT_S_TIMER 0x0004 #define RVT_S_RESP_PENDING 0x0008 #define RVT_S_ACK_PENDING 0x0010 #define RVT_S_WAIT_FENCE 0x0020 #define RVT_S_WAIT_RDMAR 0x0040 #define RVT_S_WAIT_RNR 0x0080 #define RVT_S_WAIT_SSN_CREDIT 0x0100 #define RVT_S_WAIT_DMA 0x0200 #define RVT_S_WAIT_PIO 0x0400 #define RVT_S_WAIT_PIO_DRAIN 0x0800 #define RVT_S_WAIT_TX 0x1000 #define RVT_S_WAIT_DMA_DESC 0x2000 #define RVT_S_WAIT_KMEM 0x4000 #define RVT_S_WAIT_PSN 0x8000 #define RVT_S_WAIT_ACK 0x10000 #define RVT_S_SEND_ONE 0x20000 #define RVT_S_UNLIMITED_CREDIT 0x40000 #define RVT_S_AHG_VALID 0x80000 #define RVT_S_AHG_CLEAR 0x100000 #define RVT_S_ECN 0x200000 /* * Wait flags that would prevent any packet type from being sent. */ #define RVT_S_ANY_WAIT_IO \ (RVT_S_WAIT_PIO | RVT_S_WAIT_PIO_DRAIN | RVT_S_WAIT_TX | \ RVT_S_WAIT_DMA_DESC | RVT_S_WAIT_KMEM) /* * Wait flags that would prevent send work requests from making progress. */ #define RVT_S_ANY_WAIT_SEND (RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR | \ RVT_S_WAIT_RNR | RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_DMA | \ RVT_S_WAIT_PSN | RVT_S_WAIT_ACK) #define RVT_S_ANY_WAIT (RVT_S_ANY_WAIT_IO | RVT_S_ANY_WAIT_SEND) /* Number of bits to pay attention to in the opcode for checking qp type */ #define RVT_OPCODE_QP_MASK 0xE0 /* Flags for checking QP state (see ib_rvt_state_ops[]) */ #define RVT_POST_SEND_OK 0x01 #define RVT_POST_RECV_OK 0x02 #define RVT_PROCESS_RECV_OK 0x04 #define RVT_PROCESS_SEND_OK 0x08 #define RVT_PROCESS_NEXT_SEND_OK 0x10 #define RVT_FLUSH_SEND 0x20 #define RVT_FLUSH_RECV 0x40 #define RVT_PROCESS_OR_FLUSH_SEND \ (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND) #define RVT_SEND_OR_FLUSH_OR_RECV_OK \ (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND | RVT_PROCESS_RECV_OK) /* * Internal send flags */ #define RVT_SEND_RESERVE_USED IB_SEND_RESERVED_START #define RVT_SEND_COMPLETION_ONLY (IB_SEND_RESERVED_START << 1) /* * Send work request queue entry. * The size of the sg_list is determined when the QP is created and stored * in qp->s_max_sge. */ struct rvt_swqe { union { struct ib_send_wr wr; /* don't use wr.sg_list */ struct ib_ud_wr ud_wr; struct ib_reg_wr reg_wr; struct ib_rdma_wr rdma_wr; struct ib_atomic_wr atomic_wr; }; u32 psn; /* first packet sequence number */ u32 lpsn; /* last packet sequence number */ u32 ssn; /* send sequence number */ u32 length; /* total length of data in sg_list */ struct rvt_sge sg_list[0]; }; /* * Receive work request queue entry. * The size of the sg_list is determined when the QP (or SRQ) is created * and stored in qp->r_rq.max_sge (or srq->rq.max_sge). */ struct rvt_rwqe { u64 wr_id; u8 num_sge; struct ib_sge sg_list[0]; }; /* * This structure is used to contain the head pointer, tail pointer, * and receive work queue entries as a single memory allocation so * it can be mmap'ed into user space. * Note that the wq array elements are variable size so you can't * just index into the array to get the N'th element; * use get_rwqe_ptr() instead. */ struct rvt_rwq { u32 head; /* new work requests posted to the head */ u32 tail; /* receives pull requests from here. */ struct rvt_rwqe wq[0]; }; struct rvt_rq { struct rvt_rwq *wq; u32 size; /* size of RWQE array */ u8 max_sge; /* protect changes in this struct */ spinlock_t lock ____cacheline_aligned_in_smp; }; /* * This structure is used by rvt_mmap() to validate an offset * when an mmap() request is made. The vm_area_struct then uses * this as its vm_private_data. */ struct rvt_mmap_info { struct list_head pending_mmaps; struct ib_ucontext *context; void *obj; __u64 offset; struct kref ref; unsigned size; }; /* * This structure holds the information that the send tasklet needs * to send a RDMA read response or atomic operation. */ struct rvt_ack_entry { struct rvt_sge rdma_sge; u64 atomic_data; u32 psn; u32 lpsn; u8 opcode; u8 sent; }; #define RC_QP_SCALING_INTERVAL 5 #define RVT_OPERATION_PRIV 0x00000001 #define RVT_OPERATION_ATOMIC 0x00000002 #define RVT_OPERATION_ATOMIC_SGE 0x00000004 #define RVT_OPERATION_LOCAL 0x00000008 #define RVT_OPERATION_USE_RESERVE 0x00000010 #define RVT_OPERATION_MAX (IB_WR_RESERVED10 + 1) /** * rvt_operation_params - op table entry * @length - the length to copy into the swqe entry * @qpt_support - a bit mask indicating QP type support * @flags - RVT_OPERATION flags (see above) * * This supports table driven post send so that * the driver can have differing an potentially * different sets of operations. * **/ struct rvt_operation_params { size_t length; u32 qpt_support; u32 flags; }; /* * Common variables are protected by both r_rq.lock and s_lock in that order * which only happens in modify_qp() or changing the QP 'state'. */ struct rvt_qp { struct ib_qp ibqp; void *priv; /* Driver private data */ /* read mostly fields above and below */ struct rdma_ah_attr remote_ah_attr; struct rdma_ah_attr alt_ah_attr; struct rvt_qp __rcu *next; /* link list for QPN hash table */ struct rvt_swqe *s_wq; /* send work queue */ struct rvt_mmap_info *ip; unsigned long timeout_jiffies; /* computed from timeout */ int srate_mbps; /* s_srate (below) converted to Mbit/s */ pid_t pid; /* pid for user mode QPs */ u32 remote_qpn; u32 qkey; /* QKEY for this QP (for UD or RD) */ u32 s_size; /* send work queue size */ u16 pmtu; /* decoded from path_mtu */ u8 log_pmtu; /* shift for pmtu */ u8 state; /* QP state */ u8 allowed_ops; /* high order bits of allowed opcodes */ u8 qp_access_flags; u8 alt_timeout; /* Alternate path timeout for this QP */ u8 timeout; /* Timeout for this QP */ u8 s_srate; u8 s_mig_state; u8 port_num; u8 s_pkey_index; /* PKEY index to use */ u8 s_alt_pkey_index; /* Alternate path PKEY index to use */ u8 r_max_rd_atomic; /* max number of RDMA read/atomic to receive */ u8 s_max_rd_atomic; /* max number of RDMA read/atomic to send */ u8 s_retry_cnt; /* number of times to retry */ u8 s_rnr_retry_cnt; u8 r_min_rnr_timer; /* retry timeout value for RNR NAKs */ u8 s_max_sge; /* size of s_wq->sg_list */ u8 s_draining; /* start of read/write fields */ atomic_t refcount ____cacheline_aligned_in_smp; wait_queue_head_t wait; struct rvt_ack_entry *s_ack_queue; struct rvt_sge_state s_rdma_read_sge; spinlock_t r_lock ____cacheline_aligned_in_smp; /* used for APM */ u32 r_psn; /* expected rcv packet sequence number */ unsigned long r_aflags; u64 r_wr_id; /* ID for current receive WQE */ u32 r_ack_psn; /* PSN for next ACK or atomic ACK */ u32 r_len; /* total length of r_sge */ u32 r_rcv_len; /* receive data len processed */ u32 r_msn; /* message sequence number */ u8 r_state; /* opcode of last packet received */ u8 r_flags; u8 r_head_ack_queue; /* index into s_ack_queue[] */ u8 r_adefered; /* defered ack count */ struct list_head rspwait; /* link for waiting to respond */ struct rvt_sge_state r_sge; /* current receive data */ struct rvt_rq r_rq; /* receive work queue */ /* post send line */ spinlock_t s_hlock ____cacheline_aligned_in_smp; u32 s_head; /* new entries added here */ u32 s_next_psn; /* PSN for next request */ u32 s_avail; /* number of entries avail */ u32 s_ssn; /* SSN of tail entry */ atomic_t s_reserved_used; /* reserved entries in use */ spinlock_t s_lock ____cacheline_aligned_in_smp; u32 s_flags; struct rvt_sge_state *s_cur_sge; struct rvt_swqe *s_wqe; struct rvt_sge_state s_sge; /* current send request data */ struct rvt_mregion *s_rdma_mr; u32 s_len; /* total length of s_sge */ u32 s_rdma_read_len; /* total length of s_rdma_read_sge */ u32 s_last_psn; /* last response PSN processed */ u32 s_sending_psn; /* lowest PSN that is being sent */ u32 s_sending_hpsn; /* highest PSN that is being sent */ u32 s_psn; /* current packet sequence number */ u32 s_ack_rdma_psn; /* PSN for sending RDMA read responses */ u32 s_ack_psn; /* PSN for acking sends and RDMA writes */ u32 s_tail; /* next entry to process */ u32 s_cur; /* current work queue entry */ u32 s_acked; /* last un-ACK'ed entry */ u32 s_last; /* last completed entry */ u32 s_lsn; /* limit sequence number (credit) */ u32 s_ahgpsn; /* set to the psn in the copy of the header */ u16 s_cur_size; /* size of send packet in bytes */ u16 s_rdma_ack_cnt; u8 s_hdrwords; /* size of s_hdr in 32 bit words */ s8 s_ahgidx; u8 s_state; /* opcode of last packet sent */ u8 s_ack_state; /* opcode of packet to ACK */ u8 s_nak_state; /* non-zero if NAK is pending */ u8 r_nak_state; /* non-zero if NAK is pending */ u8 s_retry; /* requester retry counter */ u8 s_rnr_retry; /* requester RNR retry counter */ u8 s_num_rd_atomic; /* number of RDMA read/atomic pending */ u8 s_tail_ack_queue; /* index into s_ack_queue[] */ struct rvt_sge_state s_ack_rdma_sge; struct timer_list s_timer; struct hrtimer s_rnr_timer; atomic_t local_ops_pending; /* number of fast_reg/local_inv reqs */ /* * This sge list MUST be last. Do not add anything below here. */ struct rvt_sge r_sg_list[0] /* verified SGEs */ ____cacheline_aligned_in_smp; }; struct rvt_srq { struct ib_srq ibsrq; struct rvt_rq rq; struct rvt_mmap_info *ip; /* send signal when number of RWQEs < limit */ u32 limit; }; #define RVT_QPN_MAX BIT(24) #define RVT_QPNMAP_ENTRIES (RVT_QPN_MAX / PAGE_SIZE / BITS_PER_BYTE) #define RVT_BITS_PER_PAGE (PAGE_SIZE * BITS_PER_BYTE) #define RVT_BITS_PER_PAGE_MASK (RVT_BITS_PER_PAGE - 1) #define RVT_QPN_MASK IB_QPN_MASK /* * QPN-map pages start out as NULL, they get allocated upon * first use and are never deallocated. This way, * large bitmaps are not allocated unless large numbers of QPs are used. */ struct rvt_qpn_map { void *page; }; struct rvt_qpn_table { spinlock_t lock; /* protect changes to the qp table */ unsigned flags; /* flags for QP0/1 allocated for each port */ u32 last; /* last QP number allocated */ u32 nmaps; /* size of the map table */ u16 limit; u8 incr; /* bit map of free QP numbers other than 0/1 */ struct rvt_qpn_map map[RVT_QPNMAP_ENTRIES]; }; struct rvt_qp_ibdev { u32 qp_table_size; u32 qp_table_bits; struct rvt_qp __rcu **qp_table; spinlock_t qpt_lock; /* qptable lock */ struct rvt_qpn_table qpn_table; }; /* * There is one struct rvt_mcast for each multicast GID. * All attached QPs are then stored as a list of * struct rvt_mcast_qp. */ struct rvt_mcast_qp { struct list_head list; struct rvt_qp *qp; }; struct rvt_mcast_addr { union ib_gid mgid; u16 lid; }; struct rvt_mcast { struct rb_node rb_node; struct rvt_mcast_addr mcast_addr; struct list_head qp_list; wait_queue_head_t wait; atomic_t refcount; int n_attached; }; /* * Since struct rvt_swqe is not a fixed size, we can't simply index into * struct rvt_qp.s_wq. This function does the array index computation. */ static inline struct rvt_swqe *rvt_get_swqe_ptr(struct rvt_qp *qp, unsigned n) { return (struct rvt_swqe *)((char *)qp->s_wq + (sizeof(struct rvt_swqe) + qp->s_max_sge * sizeof(struct rvt_sge)) * n); } /* * Since struct rvt_rwqe is not a fixed size, we can't simply index into * struct rvt_rwq.wq. This function does the array index computation. */ static inline struct rvt_rwqe *rvt_get_rwqe_ptr(struct rvt_rq *rq, unsigned n) { return (struct rvt_rwqe *) ((char *)rq->wq->wq + (sizeof(struct rvt_rwqe) + rq->max_sge * sizeof(struct ib_sge)) * n); } /** * rvt_is_user_qp - return if this is user mode QP * @qp - the target QP */ static inline bool rvt_is_user_qp(struct rvt_qp *qp) { return !!qp->pid; } /** * rvt_get_qp - get a QP reference * @qp - the QP to hold */ static inline void rvt_get_qp(struct rvt_qp *qp) { atomic_inc(&qp->refcount); } /** * rvt_put_qp - release a QP reference * @qp - the QP to release */ static inline void rvt_put_qp(struct rvt_qp *qp) { if (qp && atomic_dec_and_test(&qp->refcount)) wake_up(&qp->wait); } /** * rvt_put_swqe - drop mr refs held by swqe * @wqe - the send wqe * * This drops any mr references held by the swqe */ static inline void rvt_put_swqe(struct rvt_swqe *wqe) { int i; for (i = 0; i < wqe->wr.num_sge; i++) { struct rvt_sge *sge = &wqe->sg_list[i]; rvt_put_mr(sge->mr); } } /** * rvt_qp_wqe_reserve - reserve operation * @qp - the rvt qp * @wqe - the send wqe * * This routine used in post send to record * a wqe relative reserved operation use. */ static inline void rvt_qp_wqe_reserve( struct rvt_qp *qp, struct rvt_swqe *wqe) { atomic_inc(&qp->s_reserved_used); } /** * rvt_qp_wqe_unreserve - clean reserved operation * @qp - the rvt qp * @wqe - the send wqe * * This decrements the reserve use count. * * This call MUST precede the change to * s_last to insure that post send sees a stable * s_avail. * * An smp_mp__after_atomic() is used to insure * the compiler does not juggle the order of the s_last * ring index and the decrementing of s_reserved_used. */ static inline void rvt_qp_wqe_unreserve( struct rvt_qp *qp, struct rvt_swqe *wqe) { if (unlikely(wqe->wr.send_flags & RVT_SEND_RESERVE_USED)) { atomic_dec(&qp->s_reserved_used); /* insure no compiler re-order up to s_last change */ smp_mb__after_atomic(); } } extern const enum ib_wc_opcode ib_rvt_wc_opcode[]; /** * rvt_qp_swqe_complete() - insert send completion * @qp - the qp * @wqe - the send wqe * @status - completion status * * Insert a send completion into the completion * queue if the qp indicates it should be done. * * See IBTA 10.7.3.1 for info on completion * control. */ static inline void rvt_qp_swqe_complete( struct rvt_qp *qp, struct rvt_swqe *wqe, enum ib_wc_opcode opcode, enum ib_wc_status status) { if (unlikely(wqe->wr.send_flags & RVT_SEND_RESERVE_USED)) return; if (!(qp->s_flags & RVT_S_SIGNAL_REQ_WR) || (wqe->wr.send_flags & IB_SEND_SIGNALED) || status != IB_WC_SUCCESS) { struct ib_wc wc; memset(&wc, 0, sizeof(wc)); wc.wr_id = wqe->wr.wr_id; wc.status = status; wc.opcode = opcode; wc.qp = &qp->ibqp; wc.byte_len = wqe->length; rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.send_cq), &wc, status != IB_WC_SUCCESS); } } /* * Compare the lower 24 bits of the msn values. * Returns an integer <, ==, or > than zero. */ static inline int rvt_cmp_msn(u32 a, u32 b) { return (((int)a) - ((int)b)) << 8; } /** * rvt_compute_aeth - compute the AETH (syndrome + MSN) * @qp: the queue pair to compute the AETH for * * Returns the AETH. */ __be32 rvt_compute_aeth(struct rvt_qp *qp); /** * rvt_get_credit - flush the send work queue of a QP * @qp: the qp who's send work queue to flush * @aeth: the Acknowledge Extended Transport Header * * The QP s_lock should be held. */ void rvt_get_credit(struct rvt_qp *qp, u32 aeth); /** * @qp - the qp pair * @len - the length * * Perform a shift based mtu round up divide */ static inline u32 rvt_div_round_up_mtu(struct rvt_qp *qp, u32 len) { return (len + qp->pmtu - 1) >> qp->log_pmtu; } /** * @qp - the qp pair * @len - the length * * Perform a shift based mtu divide */ static inline u32 rvt_div_mtu(struct rvt_qp *qp, u32 len) { return len >> qp->log_pmtu; } /** * rvt_timeout_to_jiffies - Convert a ULP timeout input into jiffies * @timeout - timeout input(0 - 31). * * Return a timeout value in jiffies. */ static inline unsigned long rvt_timeout_to_jiffies(u8 timeout) { if (timeout > 31) timeout = 31; return usecs_to_jiffies(1U << timeout) * 4096UL / 1000UL; } extern const int ib_rvt_state_ops[]; struct rvt_dev_info; void rvt_comm_est(struct rvt_qp *qp); int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err); void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err); unsigned long rvt_rnr_tbl_to_usec(u32 index); enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t); void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth); void rvt_del_timers_sync(struct rvt_qp *qp); void rvt_stop_rc_timers(struct rvt_qp *qp); void rvt_add_retry_timer(struct rvt_qp *qp); /** * struct rvt_qp_iter - the iterator for QPs * @qp - the current QP * * This structure defines the current iterator * state for sequenced access to all QPs relative * to an rvt_dev_info. */ struct rvt_qp_iter { struct rvt_qp *qp; /* private: backpointer */ struct rvt_dev_info *rdi; /* private: callback routine */ void (*cb)(struct rvt_qp *qp, u64 v); /* private: for arg to callback routine */ u64 v; /* private: number of SMI,GSI QPs for device */ int specials; /* private: current iterator index */ int n; }; struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, u64 v, void (*cb)(struct rvt_qp *qp, u64 v)); int rvt_qp_iter_next(struct rvt_qp_iter *iter); void rvt_qp_iter(struct rvt_dev_info *rdi, u64 v, void (*cb)(struct rvt_qp *qp, u64 v)); void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey); #endif /* DEF_RDMAVT_INCQP_H */