// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_ialloc.h" #include "xfs_alloc.h" #include "xfs_error.h" #include "xfs_trace.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_log.h" #include "xfs_rmap_btree.h" #include "xfs_refcount_btree.h" #include "xfs_da_format.h" #include "xfs_health.h" /* * Physical superblock buffer manipulations. Shared with libxfs in userspace. */ /* * Reference counting access wrappers to the perag structures. * Because we never free per-ag structures, the only thing we * have to protect against changes is the tree structure itself. */ struct xfs_perag * xfs_perag_get( struct xfs_mount *mp, xfs_agnumber_t agno) { struct xfs_perag *pag; int ref = 0; rcu_read_lock(); pag = radix_tree_lookup(&mp->m_perag_tree, agno); if (pag) { ASSERT(atomic_read(&pag->pag_ref) >= 0); ref = atomic_inc_return(&pag->pag_ref); } rcu_read_unlock(); trace_xfs_perag_get(mp, agno, ref, _RET_IP_); return pag; } /* * search from @first to find the next perag with the given tag set. */ struct xfs_perag * xfs_perag_get_tag( struct xfs_mount *mp, xfs_agnumber_t first, int tag) { struct xfs_perag *pag; int found; int ref; rcu_read_lock(); found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, (void **)&pag, first, 1, tag); if (found <= 0) { rcu_read_unlock(); return NULL; } ref = atomic_inc_return(&pag->pag_ref); rcu_read_unlock(); trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); return pag; } void xfs_perag_put( struct xfs_perag *pag) { int ref; ASSERT(atomic_read(&pag->pag_ref) > 0); ref = atomic_dec_return(&pag->pag_ref); trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); } /* Check all the superblock fields we care about when reading one in. */ STATIC int xfs_validate_sb_read( struct xfs_mount *mp, struct xfs_sb *sbp) { if (XFS_SB_VERSION_NUM(sbp) != XFS_SB_VERSION_5) return 0; /* * Version 5 superblock feature mask validation. Reject combinations * the kernel cannot support up front before checking anything else. */ if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { xfs_warn(mp, "Superblock has unknown compatible features (0x%x) enabled.", (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); xfs_warn(mp, "Using a more recent kernel is recommended."); } if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { xfs_alert(mp, "Superblock has unknown read-only compatible features (0x%x) enabled.", (sbp->sb_features_ro_compat & XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { xfs_warn(mp, "Attempted to mount read-only compatible filesystem read-write."); xfs_warn(mp, "Filesystem can only be safely mounted read only."); return -EINVAL; } } if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { xfs_warn(mp, "Superblock has unknown incompatible features (0x%x) enabled.", (sbp->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_UNKNOWN)); xfs_warn(mp, "Filesystem cannot be safely mounted by this kernel."); return -EINVAL; } return 0; } /* Check all the superblock fields we care about when writing one out. */ STATIC int xfs_validate_sb_write( struct xfs_mount *mp, struct xfs_buf *bp, struct xfs_sb *sbp) { /* * Carry out additional sb summary counter sanity checks when we write * the superblock. We skip this in the read validator because there * could be newer superblocks in the log and if the values are garbage * even after replay we'll recalculate them at the end of log mount. * * mkfs has traditionally written zeroed counters to inprogress and * secondary superblocks, so allow this usage to continue because * we never read counters from such superblocks. */ if (XFS_BUF_ADDR(bp) == XFS_SB_DADDR && !sbp->sb_inprogress && (sbp->sb_fdblocks > sbp->sb_dblocks || !xfs_verify_icount(mp, sbp->sb_icount) || sbp->sb_ifree > sbp->sb_icount)) { xfs_warn(mp, "SB summary counter sanity check failed"); return -EFSCORRUPTED; } if (XFS_SB_VERSION_NUM(sbp) != XFS_SB_VERSION_5) return 0; /* * Version 5 superblock feature mask validation. Reject combinations * the kernel cannot support since we checked for unsupported bits in * the read verifier, which means that memory is corrupt. */ if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { xfs_warn(mp, "Corruption detected in superblock compatible features (0x%x)!", (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); return -EFSCORRUPTED; } if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { xfs_alert(mp, "Corruption detected in superblock read-only compatible features (0x%x)!", (sbp->sb_features_ro_compat & XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); return -EFSCORRUPTED; } if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { xfs_warn(mp, "Corruption detected in superblock incompatible features (0x%x)!", (sbp->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_UNKNOWN)); return -EFSCORRUPTED; } if (xfs_sb_has_incompat_log_feature(sbp, XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { xfs_warn(mp, "Corruption detected in superblock incompatible log features (0x%x)!", (sbp->sb_features_log_incompat & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); return -EFSCORRUPTED; } /* * We can't read verify the sb LSN because the read verifier is called * before the log is allocated and processed. We know the log is set up * before write verifier calls, so check it here. */ if (!xfs_log_check_lsn(mp, sbp->sb_lsn)) return -EFSCORRUPTED; return 0; } /* Check the validity of the SB. */ STATIC int xfs_validate_sb_common( struct xfs_mount *mp, struct xfs_buf *bp, struct xfs_sb *sbp) { struct xfs_dsb *dsb = bp->b_addr; uint32_t agcount = 0; uint32_t rem; if (!xfs_verify_magic(bp, dsb->sb_magicnum)) { xfs_warn(mp, "bad magic number"); return -EWRONGFS; } if (!xfs_sb_good_version(sbp)) { xfs_warn(mp, "bad version"); return -EWRONGFS; } if (xfs_sb_version_has_pquotino(sbp)) { if (sbp->sb_qflags & (XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD)) { xfs_notice(mp, "Version 5 of Super block has XFS_OQUOTA bits."); return -EFSCORRUPTED; } } else if (sbp->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD | XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) { xfs_notice(mp, "Superblock earlier than Version 5 has XFS_{P|G}QUOTA_{ENFD|CHKD} bits."); return -EFSCORRUPTED; } /* * Full inode chunks must be aligned to inode chunk size when * sparse inodes are enabled to support the sparse chunk * allocation algorithm and prevent overlapping inode records. */ if (xfs_sb_version_hassparseinodes(sbp)) { uint32_t align; align = XFS_INODES_PER_CHUNK * sbp->sb_inodesize >> sbp->sb_blocklog; if (sbp->sb_inoalignmt != align) { xfs_warn(mp, "Inode block alignment (%u) must match chunk size (%u) for sparse inodes.", sbp->sb_inoalignmt, align); return -EINVAL; } } if (unlikely( sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { xfs_warn(mp, "filesystem is marked as having an external log; " "specify logdev on the mount command line."); return -EINVAL; } if (unlikely( sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { xfs_warn(mp, "filesystem is marked as having an internal log; " "do not specify logdev on the mount command line."); return -EINVAL; } /* Compute agcount for this number of dblocks and agblocks */ if (sbp->sb_agblocks) { agcount = div_u64_rem(sbp->sb_dblocks, sbp->sb_agblocks, &rem); if (rem) agcount++; } /* * More sanity checking. Most of these were stolen directly from * xfs_repair. */ if (unlikely( sbp->sb_agcount <= 0 || sbp->sb_sectsize < XFS_MIN_SECTORSIZE || sbp->sb_sectsize > XFS_MAX_SECTORSIZE || sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || sbp->sb_sectsize != (1 << sbp->sb_sectlog) || sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || sbp->sb_blocksize != (1 << sbp->sb_blocklog) || sbp->sb_dirblklog + sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || sbp->sb_inodelog < XFS_DINODE_MIN_LOG || sbp->sb_inodelog > XFS_DINODE_MAX_LOG || sbp->sb_inodesize != (1 << sbp->sb_inodelog) || sbp->sb_logsunit > XLOG_MAX_RECORD_BSIZE || sbp->sb_inopblock != howmany(sbp->sb_blocksize,sbp->sb_inodesize) || XFS_FSB_TO_B(mp, sbp->sb_agblocks) < XFS_MIN_AG_BYTES || XFS_FSB_TO_B(mp, sbp->sb_agblocks) > XFS_MAX_AG_BYTES || sbp->sb_agblklog != xfs_highbit32(sbp->sb_agblocks - 1) + 1 || agcount == 0 || agcount != sbp->sb_agcount || (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || sbp->sb_dblocks == 0 || sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp) || sbp->sb_shared_vn != 0)) { xfs_notice(mp, "SB sanity check failed"); return -EFSCORRUPTED; } /* Validate the realtime geometry; stolen from xfs_repair */ if (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE || sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) { xfs_notice(mp, "realtime extent sanity check failed"); return -EFSCORRUPTED; } if (sbp->sb_rblocks == 0) { if (sbp->sb_rextents != 0 || sbp->sb_rbmblocks != 0 || sbp->sb_rextslog != 0 || sbp->sb_frextents != 0) { xfs_notice(mp, "realtime zeroed geometry check failed"); return -EFSCORRUPTED; } } else { uint64_t rexts; uint64_t rbmblocks; rexts = div_u64(sbp->sb_rblocks, sbp->sb_rextsize); rbmblocks = howmany_64(sbp->sb_rextents, NBBY * sbp->sb_blocksize); if (sbp->sb_rextents != rexts || sbp->sb_rextslog != xfs_highbit32(sbp->sb_rextents) || sbp->sb_rbmblocks != rbmblocks) { xfs_notice(mp, "realtime geometry sanity check failed"); return -EFSCORRUPTED; } } /* * Either (sb_unit and !hasdalign) or (!sb_unit and hasdalign) * would imply the image is corrupted. */ if (!!sbp->sb_unit ^ xfs_sb_version_hasdalign(sbp)) { xfs_notice(mp, "SB stripe alignment sanity check failed"); return -EFSCORRUPTED; } if (!xfs_validate_stripe_geometry(mp, XFS_FSB_TO_B(mp, sbp->sb_unit), XFS_FSB_TO_B(mp, sbp->sb_width), 0, false)) return -EFSCORRUPTED; if (xfs_sb_version_hascrc(&mp->m_sb) && sbp->sb_blocksize < XFS_MIN_CRC_BLOCKSIZE) { xfs_notice(mp, "v5 SB sanity check failed"); return -EFSCORRUPTED; } /* * Currently only very few inode sizes are supported. */ switch (sbp->sb_inodesize) { case 256: case 512: case 1024: case 2048: break; default: xfs_warn(mp, "inode size of %d bytes not supported", sbp->sb_inodesize); return -ENOSYS; } return 0; } void xfs_sb_quota_from_disk(struct xfs_sb *sbp) { /* * older mkfs doesn't initialize quota inodes to NULLFSINO. This * leads to in-core values having two different values for a quota * inode to be invalid: 0 and NULLFSINO. Change it to a single value * NULLFSINO. * * Note that this change affect only the in-core values. These * values are not written back to disk unless any quota information * is written to the disk. Even in that case, sb_pquotino field is * not written to disk unless the superblock supports pquotino. */ if (sbp->sb_uquotino == 0) sbp->sb_uquotino = NULLFSINO; if (sbp->sb_gquotino == 0) sbp->sb_gquotino = NULLFSINO; if (sbp->sb_pquotino == 0) sbp->sb_pquotino = NULLFSINO; /* * We need to do these manipilations only if we are working * with an older version of on-disk superblock. */ if (xfs_sb_version_has_pquotino(sbp)) return; if (sbp->sb_qflags & XFS_OQUOTA_ENFD) sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? XFS_PQUOTA_ENFD : XFS_GQUOTA_ENFD; if (sbp->sb_qflags & XFS_OQUOTA_CHKD) sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? XFS_PQUOTA_CHKD : XFS_GQUOTA_CHKD; sbp->sb_qflags &= ~(XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD); if (sbp->sb_qflags & XFS_PQUOTA_ACCT && sbp->sb_gquotino != NULLFSINO) { /* * In older version of superblock, on-disk superblock only * has sb_gquotino, and in-core superblock has both sb_gquotino * and sb_pquotino. But, only one of them is supported at any * point of time. So, if PQUOTA is set in disk superblock, * copy over sb_gquotino to sb_pquotino. The NULLFSINO test * above is to make sure we don't do this twice and wipe them * both out! */ sbp->sb_pquotino = sbp->sb_gquotino; sbp->sb_gquotino = NULLFSINO; } } static void __xfs_sb_from_disk( struct xfs_sb *to, xfs_dsb_t *from, bool convert_xquota) { to->sb_magicnum = be32_to_cpu(from->sb_magicnum); to->sb_blocksize = be32_to_cpu(from->sb_blocksize); to->sb_dblocks = be64_to_cpu(from->sb_dblocks); to->sb_rblocks = be64_to_cpu(from->sb_rblocks); to->sb_rextents = be64_to_cpu(from->sb_rextents); memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); to->sb_logstart = be64_to_cpu(from->sb_logstart); to->sb_rootino = be64_to_cpu(from->sb_rootino); to->sb_rbmino = be64_to_cpu(from->sb_rbmino); to->sb_rsumino = be64_to_cpu(from->sb_rsumino); to->sb_rextsize = be32_to_cpu(from->sb_rextsize); to->sb_agblocks = be32_to_cpu(from->sb_agblocks); to->sb_agcount = be32_to_cpu(from->sb_agcount); to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); to->sb_logblocks = be32_to_cpu(from->sb_logblocks); to->sb_versionnum = be16_to_cpu(from->sb_versionnum); to->sb_sectsize = be16_to_cpu(from->sb_sectsize); to->sb_inodesize = be16_to_cpu(from->sb_inodesize); to->sb_inopblock = be16_to_cpu(from->sb_inopblock); memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); to->sb_blocklog = from->sb_blocklog; to->sb_sectlog = from->sb_sectlog; to->sb_inodelog = from->sb_inodelog; to->sb_inopblog = from->sb_inopblog; to->sb_agblklog = from->sb_agblklog; to->sb_rextslog = from->sb_rextslog; to->sb_inprogress = from->sb_inprogress; to->sb_imax_pct = from->sb_imax_pct; to->sb_icount = be64_to_cpu(from->sb_icount); to->sb_ifree = be64_to_cpu(from->sb_ifree); to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); to->sb_frextents = be64_to_cpu(from->sb_frextents); to->sb_uquotino = be64_to_cpu(from->sb_uquotino); to->sb_gquotino = be64_to_cpu(from->sb_gquotino); to->sb_qflags = be16_to_cpu(from->sb_qflags); to->sb_flags = from->sb_flags; to->sb_shared_vn = from->sb_shared_vn; to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); to->sb_unit = be32_to_cpu(from->sb_unit); to->sb_width = be32_to_cpu(from->sb_width); to->sb_dirblklog = from->sb_dirblklog; to->sb_logsectlog = from->sb_logsectlog; to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); to->sb_logsunit = be32_to_cpu(from->sb_logsunit); to->sb_features2 = be32_to_cpu(from->sb_features2); to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); to->sb_features_compat = be32_to_cpu(from->sb_features_compat); to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat); to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat); to->sb_features_log_incompat = be32_to_cpu(from->sb_features_log_incompat); /* crc is only used on disk, not in memory; just init to 0 here. */ to->sb_crc = 0; to->sb_spino_align = be32_to_cpu(from->sb_spino_align); to->sb_pquotino = be64_to_cpu(from->sb_pquotino); to->sb_lsn = be64_to_cpu(from->sb_lsn); /* * sb_meta_uuid is only on disk if it differs from sb_uuid and the * feature flag is set; if not set we keep it only in memory. */ if (xfs_sb_version_hasmetauuid(to)) uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid); else uuid_copy(&to->sb_meta_uuid, &from->sb_uuid); /* Convert on-disk flags to in-memory flags? */ if (convert_xquota) xfs_sb_quota_from_disk(to); } void xfs_sb_from_disk( struct xfs_sb *to, xfs_dsb_t *from) { __xfs_sb_from_disk(to, from, true); } static void xfs_sb_quota_to_disk( struct xfs_dsb *to, struct xfs_sb *from) { uint16_t qflags = from->sb_qflags; to->sb_uquotino = cpu_to_be64(from->sb_uquotino); if (xfs_sb_version_has_pquotino(from)) { to->sb_qflags = cpu_to_be16(from->sb_qflags); to->sb_gquotino = cpu_to_be64(from->sb_gquotino); to->sb_pquotino = cpu_to_be64(from->sb_pquotino); return; } /* * The in-core version of sb_qflags do not have XFS_OQUOTA_* * flags, whereas the on-disk version does. So, convert incore * XFS_{PG}QUOTA_* flags to on-disk XFS_OQUOTA_* flags. */ qflags &= ~(XFS_PQUOTA_ENFD | XFS_PQUOTA_CHKD | XFS_GQUOTA_ENFD | XFS_GQUOTA_CHKD); if (from->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD)) qflags |= XFS_OQUOTA_ENFD; if (from->sb_qflags & (XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) qflags |= XFS_OQUOTA_CHKD; to->sb_qflags = cpu_to_be16(qflags); /* * GQUOTINO and PQUOTINO cannot be used together in versions * of superblock that do not have pquotino. from->sb_flags * tells us which quota is active and should be copied to * disk. If neither are active, we should NULL the inode. * * In all cases, the separate pquotino must remain 0 because it * is beyond the "end" of the valid non-pquotino superblock. */ if (from->sb_qflags & XFS_GQUOTA_ACCT) to->sb_gquotino = cpu_to_be64(from->sb_gquotino); else if (from->sb_qflags & XFS_PQUOTA_ACCT) to->sb_gquotino = cpu_to_be64(from->sb_pquotino); else { /* * We can't rely on just the fields being logged to tell us * that it is safe to write NULLFSINO - we should only do that * if quotas are not actually enabled. Hence only write * NULLFSINO if both in-core quota inodes are NULL. */ if (from->sb_gquotino == NULLFSINO && from->sb_pquotino == NULLFSINO) to->sb_gquotino = cpu_to_be64(NULLFSINO); } to->sb_pquotino = 0; } void xfs_sb_to_disk( struct xfs_dsb *to, struct xfs_sb *from) { xfs_sb_quota_to_disk(to, from); to->sb_magicnum = cpu_to_be32(from->sb_magicnum); to->sb_blocksize = cpu_to_be32(from->sb_blocksize); to->sb_dblocks = cpu_to_be64(from->sb_dblocks); to->sb_rblocks = cpu_to_be64(from->sb_rblocks); to->sb_rextents = cpu_to_be64(from->sb_rextents); memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); to->sb_logstart = cpu_to_be64(from->sb_logstart); to->sb_rootino = cpu_to_be64(from->sb_rootino); to->sb_rbmino = cpu_to_be64(from->sb_rbmino); to->sb_rsumino = cpu_to_be64(from->sb_rsumino); to->sb_rextsize = cpu_to_be32(from->sb_rextsize); to->sb_agblocks = cpu_to_be32(from->sb_agblocks); to->sb_agcount = cpu_to_be32(from->sb_agcount); to->sb_rbmblocks = cpu_to_be32(from->sb_rbmblocks); to->sb_logblocks = cpu_to_be32(from->sb_logblocks); to->sb_versionnum = cpu_to_be16(from->sb_versionnum); to->sb_sectsize = cpu_to_be16(from->sb_sectsize); to->sb_inodesize = cpu_to_be16(from->sb_inodesize); to->sb_inopblock = cpu_to_be16(from->sb_inopblock); memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); to->sb_blocklog = from->sb_blocklog; to->sb_sectlog = from->sb_sectlog; to->sb_inodelog = from->sb_inodelog; to->sb_inopblog = from->sb_inopblog; to->sb_agblklog = from->sb_agblklog; to->sb_rextslog = from->sb_rextslog; to->sb_inprogress = from->sb_inprogress; to->sb_imax_pct = from->sb_imax_pct; to->sb_icount = cpu_to_be64(from->sb_icount); to->sb_ifree = cpu_to_be64(from->sb_ifree); to->sb_fdblocks = cpu_to_be64(from->sb_fdblocks); to->sb_frextents = cpu_to_be64(from->sb_frextents); to->sb_flags = from->sb_flags; to->sb_shared_vn = from->sb_shared_vn; to->sb_inoalignmt = cpu_to_be32(from->sb_inoalignmt); to->sb_unit = cpu_to_be32(from->sb_unit); to->sb_width = cpu_to_be32(from->sb_width); to->sb_dirblklog = from->sb_dirblklog; to->sb_logsectlog = from->sb_logsectlog; to->sb_logsectsize = cpu_to_be16(from->sb_logsectsize); to->sb_logsunit = cpu_to_be32(from->sb_logsunit); /* * We need to ensure that bad_features2 always matches features2. * Hence we enforce that here rather than having to remember to do it * everywhere else that updates features2. */ from->sb_bad_features2 = from->sb_features2; to->sb_features2 = cpu_to_be32(from->sb_features2); to->sb_bad_features2 = cpu_to_be32(from->sb_bad_features2); if (xfs_sb_version_hascrc(from)) { to->sb_features_compat = cpu_to_be32(from->sb_features_compat); to->sb_features_ro_compat = cpu_to_be32(from->sb_features_ro_compat); to->sb_features_incompat = cpu_to_be32(from->sb_features_incompat); to->sb_features_log_incompat = cpu_to_be32(from->sb_features_log_incompat); to->sb_spino_align = cpu_to_be32(from->sb_spino_align); to->sb_lsn = cpu_to_be64(from->sb_lsn); if (xfs_sb_version_hasmetauuid(from)) uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid); } } /* * If the superblock has the CRC feature bit set or the CRC field is non-null, * check that the CRC is valid. We check the CRC field is non-null because a * single bit error could clear the feature bit and unused parts of the * superblock are supposed to be zero. Hence a non-null crc field indicates that * we've potentially lost a feature bit and we should check it anyway. * * However, past bugs (i.e. in growfs) left non-zeroed regions beyond the * last field in V4 secondary superblocks. So for secondary superblocks, * we are more forgiving, and ignore CRC failures if the primary doesn't * indicate that the fs version is V5. */ static void xfs_sb_read_verify( struct xfs_buf *bp) { struct xfs_sb sb; struct xfs_mount *mp = bp->b_mount; struct xfs_dsb *dsb = bp->b_addr; int error; /* * open code the version check to avoid needing to convert the entire * superblock from disk order just to check the version number */ if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) && (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) == XFS_SB_VERSION_5) || dsb->sb_crc != 0)) { if (!xfs_buf_verify_cksum(bp, XFS_SB_CRC_OFF)) { /* Only fail bad secondaries on a known V5 filesystem */ if (bp->b_bn == XFS_SB_DADDR || xfs_sb_version_hascrc(&mp->m_sb)) { error = -EFSBADCRC; goto out_error; } } } /* * Check all the superblock fields. Don't byteswap the xquota flags * because _verify_common checks the on-disk values. */ __xfs_sb_from_disk(&sb, dsb, false); error = xfs_validate_sb_common(mp, bp, &sb); if (error) goto out_error; error = xfs_validate_sb_read(mp, &sb); out_error: if (error == -EFSCORRUPTED || error == -EFSBADCRC) xfs_verifier_error(bp, error, __this_address); else if (error) xfs_buf_ioerror(bp, error); } /* * We may be probed for a filesystem match, so we may not want to emit * messages when the superblock buffer is not actually an XFS superblock. * If we find an XFS superblock, then run a normal, noisy mount because we are * really going to mount it and want to know about errors. */ static void xfs_sb_quiet_read_verify( struct xfs_buf *bp) { struct xfs_dsb *dsb = bp->b_addr; if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) { /* XFS filesystem, verify noisily! */ xfs_sb_read_verify(bp); return; } /* quietly fail */ xfs_buf_ioerror(bp, -EWRONGFS); } static void xfs_sb_write_verify( struct xfs_buf *bp) { struct xfs_sb sb; struct xfs_mount *mp = bp->b_mount; struct xfs_buf_log_item *bip = bp->b_log_item; struct xfs_dsb *dsb = bp->b_addr; int error; /* * Check all the superblock fields. Don't byteswap the xquota flags * because _verify_common checks the on-disk values. */ __xfs_sb_from_disk(&sb, dsb, false); error = xfs_validate_sb_common(mp, bp, &sb); if (error) goto out_error; error = xfs_validate_sb_write(mp, bp, &sb); if (error) goto out_error; if (!xfs_sb_version_hascrc(&mp->m_sb)) return; if (bip) dsb->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn); xfs_buf_update_cksum(bp, XFS_SB_CRC_OFF); return; out_error: xfs_verifier_error(bp, error, __this_address); } const struct xfs_buf_ops xfs_sb_buf_ops = { .name = "xfs_sb", .magic = { cpu_to_be32(XFS_SB_MAGIC), cpu_to_be32(XFS_SB_MAGIC) }, .verify_read = xfs_sb_read_verify, .verify_write = xfs_sb_write_verify, }; const struct xfs_buf_ops xfs_sb_quiet_buf_ops = { .name = "xfs_sb_quiet", .magic = { cpu_to_be32(XFS_SB_MAGIC), cpu_to_be32(XFS_SB_MAGIC) }, .verify_read = xfs_sb_quiet_read_verify, .verify_write = xfs_sb_write_verify, }; /* * xfs_mount_common * * Mount initialization code establishing various mount * fields from the superblock associated with the given * mount structure. * * Inode geometry are calculated in xfs_ialloc_setup_geometry. */ void xfs_sb_mount_common( struct xfs_mount *mp, struct xfs_sb *sbp) { mp->m_agfrotor = mp->m_agirotor = 0; mp->m_maxagi = mp->m_sb.sb_agcount; mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; mp->m_blockmask = sbp->sb_blocksize - 1; mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; mp->m_blockwmask = mp->m_blockwsize - 1; mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; mp->m_rmap_mxr[0] = xfs_rmapbt_maxrecs(sbp->sb_blocksize, 1); mp->m_rmap_mxr[1] = xfs_rmapbt_maxrecs(sbp->sb_blocksize, 0); mp->m_rmap_mnr[0] = mp->m_rmap_mxr[0] / 2; mp->m_rmap_mnr[1] = mp->m_rmap_mxr[1] / 2; mp->m_refc_mxr[0] = xfs_refcountbt_maxrecs(sbp->sb_blocksize, true); mp->m_refc_mxr[1] = xfs_refcountbt_maxrecs(sbp->sb_blocksize, false); mp->m_refc_mnr[0] = mp->m_refc_mxr[0] / 2; mp->m_refc_mnr[1] = mp->m_refc_mxr[1] / 2; mp->m_bsize = XFS_FSB_TO_BB(mp, 1); mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); mp->m_ag_max_usable = xfs_alloc_ag_max_usable(mp); } /* * xfs_initialize_perag_data * * Read in each per-ag structure so we can count up the number of * allocated inodes, free inodes and used filesystem blocks as this * information is no longer persistent in the superblock. Once we have * this information, write it into the in-core superblock structure. */ int xfs_initialize_perag_data( struct xfs_mount *mp, xfs_agnumber_t agcount) { xfs_agnumber_t index; xfs_perag_t *pag; xfs_sb_t *sbp = &mp->m_sb; uint64_t ifree = 0; uint64_t ialloc = 0; uint64_t bfree = 0; uint64_t bfreelst = 0; uint64_t btree = 0; uint64_t fdblocks; int error = 0; for (index = 0; index < agcount; index++) { /* * read the agf, then the agi. This gets us * all the information we need and populates the * per-ag structures for us. */ error = xfs_alloc_pagf_init(mp, NULL, index, 0); if (error) return error; error = xfs_ialloc_pagi_init(mp, NULL, index); if (error) return error; pag = xfs_perag_get(mp, index); ifree += pag->pagi_freecount; ialloc += pag->pagi_count; bfree += pag->pagf_freeblks; bfreelst += pag->pagf_flcount; btree += pag->pagf_btreeblks; xfs_perag_put(pag); } fdblocks = bfree + bfreelst + btree; /* * If the new summary counts are obviously incorrect, fail the * mount operation because that implies the AGFs are also corrupt. * Clear FS_COUNTERS so that we don't unmount with a dirty log, which * will prevent xfs_repair from fixing anything. */ if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { xfs_alert(mp, "AGF corruption. Please run xfs_repair."); error = -EFSCORRUPTED; goto out; } /* Overwrite incore superblock counters with just-read data */ spin_lock(&mp->m_sb_lock); sbp->sb_ifree = ifree; sbp->sb_icount = ialloc; sbp->sb_fdblocks = fdblocks; spin_unlock(&mp->m_sb_lock); xfs_reinit_percpu_counters(mp); out: xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS); return error; } /* * xfs_log_sb() can be used to copy arbitrary changes to the in-core superblock * into the superblock buffer to be logged. It does not provide the higher * level of locking that is needed to protect the in-core superblock from * concurrent access. */ void xfs_log_sb( struct xfs_trans *tp) { struct xfs_mount *mp = tp->t_mountp; struct xfs_buf *bp = xfs_trans_getsb(tp); /* * Lazy sb counters don't update the in-core superblock so do that now. * If this is at unmount, the counters will be exactly correct, but at * any other time they will only be ballpark correct because of * reservations that have been taken out percpu counters. If we have an * unclean shutdown, this will be corrected by log recovery rebuilding * the counters from the AGF block counts. */ if (xfs_sb_version_haslazysbcount(&mp->m_sb)) { mp->m_sb.sb_icount = percpu_counter_sum(&mp->m_icount); mp->m_sb.sb_ifree = percpu_counter_sum(&mp->m_ifree); mp->m_sb.sb_fdblocks = percpu_counter_sum(&mp->m_fdblocks); } xfs_sb_to_disk(bp->b_addr, &mp->m_sb); xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1); } /* * xfs_sync_sb * * Sync the superblock to disk. * * Note that the caller is responsible for checking the frozen state of the * filesystem. This procedure uses the non-blocking transaction allocator and * thus will allow modifications to a frozen fs. This is required because this * code can be called during the process of freezing where use of the high-level * allocator would deadlock. */ int xfs_sync_sb( struct xfs_mount *mp, bool wait) { struct xfs_trans *tp; int error; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0, XFS_TRANS_NO_WRITECOUNT, &tp); if (error) return error; xfs_log_sb(tp); if (wait) xfs_trans_set_sync(tp); return xfs_trans_commit(tp); } /* * Update all the secondary superblocks to match the new state of the primary. * Because we are completely overwriting all the existing fields in the * secondary superblock buffers, there is no need to read them in from disk. * Just get a new buffer, stamp it and write it. * * The sb buffers need to be cached here so that we serialise against other * operations that access the secondary superblocks, but we don't want to keep * them in memory once it is written so we mark it as a one-shot buffer. */ int xfs_update_secondary_sbs( struct xfs_mount *mp) { xfs_agnumber_t agno; int saved_error = 0; int error = 0; LIST_HEAD (buffer_list); /* update secondary superblocks. */ for (agno = 1; agno < mp->m_sb.sb_agcount; agno++) { struct xfs_buf *bp; error = xfs_buf_get(mp->m_ddev_targp, XFS_AG_DADDR(mp, agno, XFS_SB_DADDR), XFS_FSS_TO_BB(mp, 1), &bp); /* * If we get an error reading or writing alternate superblocks, * continue. xfs_repair chooses the "best" superblock based * on most matches; if we break early, we'll leave more * superblocks un-updated than updated, and xfs_repair may * pick them over the properly-updated primary. */ if (error) { xfs_warn(mp, "error allocating secondary superblock for ag %d", agno); if (!saved_error) saved_error = error; continue; } bp->b_ops = &xfs_sb_buf_ops; xfs_buf_oneshot(bp); xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); xfs_sb_to_disk(bp->b_addr, &mp->m_sb); xfs_buf_delwri_queue(bp, &buffer_list); xfs_buf_relse(bp); /* don't hold too many buffers at once */ if (agno % 16) continue; error = xfs_buf_delwri_submit(&buffer_list); if (error) { xfs_warn(mp, "write error %d updating a secondary superblock near ag %d", error, agno); if (!saved_error) saved_error = error; continue; } } error = xfs_buf_delwri_submit(&buffer_list); if (error) { xfs_warn(mp, "write error %d updating a secondary superblock near ag %d", error, agno); } return saved_error ? saved_error : error; } /* * Same behavior as xfs_sync_sb, except that it is always synchronous and it * also writes the superblock buffer to disk sector 0 immediately. */ int xfs_sync_sb_buf( struct xfs_mount *mp) { struct xfs_trans *tp; struct xfs_buf *bp; int error; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0, 0, &tp); if (error) return error; bp = xfs_trans_getsb(tp); xfs_log_sb(tp); xfs_trans_bhold(tp, bp); xfs_trans_set_sync(tp); error = xfs_trans_commit(tp); if (error) goto out; /* * write out the sb buffer to get the changes to disk */ error = xfs_bwrite(bp); out: xfs_buf_relse(bp); return error; } void xfs_fs_geometry( struct xfs_sb *sbp, struct xfs_fsop_geom *geo, int struct_version) { memset(geo, 0, sizeof(struct xfs_fsop_geom)); geo->blocksize = sbp->sb_blocksize; geo->rtextsize = sbp->sb_rextsize; geo->agblocks = sbp->sb_agblocks; geo->agcount = sbp->sb_agcount; geo->logblocks = sbp->sb_logblocks; geo->sectsize = sbp->sb_sectsize; geo->inodesize = sbp->sb_inodesize; geo->imaxpct = sbp->sb_imax_pct; geo->datablocks = sbp->sb_dblocks; geo->rtblocks = sbp->sb_rblocks; geo->rtextents = sbp->sb_rextents; geo->logstart = sbp->sb_logstart; BUILD_BUG_ON(sizeof(geo->uuid) != sizeof(sbp->sb_uuid)); memcpy(geo->uuid, &sbp->sb_uuid, sizeof(sbp->sb_uuid)); if (struct_version < 2) return; geo->sunit = sbp->sb_unit; geo->swidth = sbp->sb_width; if (struct_version < 3) return; geo->version = XFS_FSOP_GEOM_VERSION; geo->flags = XFS_FSOP_GEOM_FLAGS_NLINK | XFS_FSOP_GEOM_FLAGS_DIRV2 | XFS_FSOP_GEOM_FLAGS_EXTFLG; if (xfs_sb_version_hasattr(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_ATTR; if (xfs_sb_version_hasquota(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_QUOTA; if (xfs_sb_version_hasalign(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_IALIGN; if (xfs_sb_version_hasdalign(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_DALIGN; if (xfs_sb_version_hassector(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_SECTOR; if (xfs_sb_version_hasasciici(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_DIRV2CI; if (xfs_sb_version_haslazysbcount(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_LAZYSB; if (xfs_sb_version_hasattr2(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_ATTR2; if (xfs_sb_version_hasprojid32bit(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_PROJID32; if (xfs_sb_version_hascrc(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_V5SB; if (xfs_sb_version_hasftype(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_FTYPE; if (xfs_sb_version_hasfinobt(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_FINOBT; if (xfs_sb_version_hassparseinodes(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_SPINODES; if (xfs_sb_version_hasrmapbt(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_RMAPBT; if (xfs_sb_version_hasreflink(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_REFLINK; if (xfs_sb_version_hasbigtime(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_BIGTIME; if (xfs_sb_version_hasinobtcounts(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_INOBTCNT; if (xfs_sb_version_hassector(sbp)) geo->logsectsize = sbp->sb_logsectsize; else geo->logsectsize = BBSIZE; geo->rtsectsize = sbp->sb_blocksize; geo->dirblocksize = xfs_dir2_dirblock_bytes(sbp); if (struct_version < 4) return; if (xfs_sb_version_haslogv2(sbp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_LOGV2; geo->logsunit = sbp->sb_logsunit; if (struct_version < 5) return; geo->version = XFS_FSOP_GEOM_VERSION_V5; } /* Read a secondary superblock. */ int xfs_sb_read_secondary( struct xfs_mount *mp, struct xfs_trans *tp, xfs_agnumber_t agno, struct xfs_buf **bpp) { struct xfs_buf *bp; int error; ASSERT(agno != 0 && agno != NULLAGNUMBER); error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, XFS_AG_DADDR(mp, agno, XFS_SB_BLOCK(mp)), XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_sb_buf_ops); if (error) return error; xfs_buf_set_ref(bp, XFS_SSB_REF); *bpp = bp; return 0; } /* Get an uninitialised secondary superblock buffer. */ int xfs_sb_get_secondary( struct xfs_mount *mp, struct xfs_trans *tp, xfs_agnumber_t agno, struct xfs_buf **bpp) { struct xfs_buf *bp; int error; ASSERT(agno != 0 && agno != NULLAGNUMBER); error = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_AG_DADDR(mp, agno, XFS_SB_BLOCK(mp)), XFS_FSS_TO_BB(mp, 1), 0, &bp); if (error) return error; bp->b_ops = &xfs_sb_buf_ops; xfs_buf_oneshot(bp); *bpp = bp; return 0; } /* * sunit, swidth, sectorsize(optional with 0) should be all in bytes, * so users won't be confused by values in error messages. */ bool xfs_validate_stripe_geometry( struct xfs_mount *mp, __s64 sunit, __s64 swidth, int sectorsize, bool silent) { if (swidth > INT_MAX) { if (!silent) xfs_notice(mp, "stripe width (%lld) is too large", swidth); return false; } if (sunit > swidth) { if (!silent) xfs_notice(mp, "stripe unit (%lld) is larger than the stripe width (%lld)", sunit, swidth); return false; } if (sectorsize && (int)sunit % sectorsize) { if (!silent) xfs_notice(mp, "stripe unit (%lld) must be a multiple of the sector size (%d)", sunit, sectorsize); return false; } if (sunit && !swidth) { if (!silent) xfs_notice(mp, "invalid stripe unit (%lld) and stripe width of 0", sunit); return false; } if (!sunit && swidth) { if (!silent) xfs_notice(mp, "invalid stripe width (%lld) and stripe unit of 0", swidth); return false; } if (sunit && (int)swidth % (int)sunit) { if (!silent) xfs_notice(mp, "stripe width (%lld) must be a multiple of the stripe unit (%lld)", swidth, sunit); return false; } return true; }