/* * This file is part of UBIFS. * * Copyright (C) 2006-2008 Nokia Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) */ /* * This file contains journal replay code. It runs when the file-system is being * mounted and requires no locking. * * The larger is the journal, the longer it takes to scan it, so the longer it * takes to mount UBIFS. This is why the journal has limited size which may be * changed depending on the system requirements. But a larger journal gives * faster I/O speed because it writes the index less frequently. So this is a * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the * larger is the journal, the more memory its index may consume. */ #include "ubifs.h" /* * Replay flags. * * REPLAY_DELETION: node was deleted * REPLAY_REF: node is a reference node */ enum { REPLAY_DELETION = 1, REPLAY_REF = 2, }; /** * struct replay_entry - replay tree entry. * @lnum: logical eraseblock number of the node * @offs: node offset * @len: node length * @sqnum: node sequence number * @flags: replay flags * @rb: links the replay tree * @key: node key * @nm: directory entry name * @old_size: truncation old size * @new_size: truncation new size * @free: amount of free space in a bud * @dirty: amount of dirty space in a bud from padding and deletion nodes * @jhead: journal head number of the bud * * UBIFS journal replay must compare node sequence numbers, which means it must * build a tree of node information to insert into the TNC. */ struct replay_entry { int lnum; int offs; int len; unsigned long long sqnum; int flags; struct rb_node rb; union ubifs_key key; union { struct qstr nm; struct { loff_t old_size; loff_t new_size; }; struct { int free; int dirty; int jhead; }; }; }; /** * struct bud_entry - entry in the list of buds to replay. * @list: next bud in the list * @bud: bud description object * @free: free bytes in the bud * @sqnum: reference node sequence number */ struct bud_entry { struct list_head list; struct ubifs_bud *bud; int free; unsigned long long sqnum; }; /** * set_bud_lprops - set free and dirty space used by a bud. * @c: UBIFS file-system description object * @r: replay entry of bud */ static int set_bud_lprops(struct ubifs_info *c, struct replay_entry *r) { const struct ubifs_lprops *lp; int err = 0, dirty; ubifs_get_lprops(c); lp = ubifs_lpt_lookup_dirty(c, r->lnum); if (IS_ERR(lp)) { err = PTR_ERR(lp); goto out; } dirty = lp->dirty; if (r->offs == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { /* * The LEB was added to the journal with a starting offset of * zero which means the LEB must have been empty. The LEB * property values should be lp->free == c->leb_size and * lp->dirty == 0, but that is not the case. The reason is that * the LEB was garbage collected. The garbage collector resets * the free and dirty space without recording it anywhere except * lprops, so if there is not a commit then lprops does not have * that information next time the file system is mounted. * * We do not need to adjust free space because the scan has told * us the exact value which is recorded in the replay entry as * r->free. * * However we do need to subtract from the dirty space the * amount of space that the garbage collector reclaimed, which * is the whole LEB minus the amount of space that was free. */ dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", r->lnum, lp->free, lp->dirty); dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", r->lnum, lp->free, lp->dirty); dirty -= c->leb_size - lp->free; /* * If the replay order was perfect the dirty space would now be * zero. The order is not perfect because the journal heads * race with each other. This is not a problem but is does mean * that the dirty space may temporarily exceed c->leb_size * during the replay. */ if (dirty != 0) dbg_msg("LEB %d lp: %d free %d dirty " "replay: %d free %d dirty", r->lnum, lp->free, lp->dirty, r->free, r->dirty); } lp = ubifs_change_lp(c, lp, r->free, dirty + r->dirty, lp->flags | LPROPS_TAKEN, 0); if (IS_ERR(lp)) { err = PTR_ERR(lp); goto out; } /* Make sure the journal head points to the latest bud */ err = ubifs_wbuf_seek_nolock(&c->jheads[r->jhead].wbuf, r->lnum, c->leb_size - r->free, UBI_SHORTTERM); out: ubifs_release_lprops(c); return err; } /** * trun_remove_range - apply a replay entry for a truncation to the TNC. * @c: UBIFS file-system description object * @r: replay entry of truncation */ static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r) { unsigned min_blk, max_blk; union ubifs_key min_key, max_key; ino_t ino; min_blk = r->new_size / UBIFS_BLOCK_SIZE; if (r->new_size & (UBIFS_BLOCK_SIZE - 1)) min_blk += 1; max_blk = r->old_size / UBIFS_BLOCK_SIZE; if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0) max_blk -= 1; ino = key_inum(c, &r->key); data_key_init(c, &min_key, ino, min_blk); data_key_init(c, &max_key, ino, max_blk); return ubifs_tnc_remove_range(c, &min_key, &max_key); } /** * apply_replay_entry - apply a replay entry to the TNC. * @c: UBIFS file-system description object * @r: replay entry to apply * * Apply a replay entry to the TNC. */ static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) { int err, deletion = ((r->flags & REPLAY_DELETION) != 0); dbg_mnt("LEB %d:%d len %d flgs %d sqnum %llu %s", r->lnum, r->offs, r->len, r->flags, r->sqnum, DBGKEY(&r->key)); /* Set c->replay_sqnum to help deal with dangling branches. */ c->replay_sqnum = r->sqnum; if (r->flags & REPLAY_REF) err = set_bud_lprops(c, r); else if (is_hash_key(c, &r->key)) { if (deletion) err = ubifs_tnc_remove_nm(c, &r->key, &r->nm); else err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs, r->len, &r->nm); } else { if (deletion) switch (key_type(c, &r->key)) { case UBIFS_INO_KEY: { ino_t inum = key_inum(c, &r->key); err = ubifs_tnc_remove_ino(c, inum); break; } case UBIFS_TRUN_KEY: err = trun_remove_range(c, r); break; default: err = ubifs_tnc_remove(c, &r->key); break; } else err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs, r->len); if (err) return err; if (c->need_recovery) err = ubifs_recover_size_accum(c, &r->key, deletion, r->new_size); } return err; } /** * destroy_replay_tree - destroy the replay. * @c: UBIFS file-system description object * * Destroy the replay tree. */ static void destroy_replay_tree(struct ubifs_info *c) { struct rb_node *this = c->replay_tree.rb_node; struct replay_entry *r; while (this) { if (this->rb_left) { this = this->rb_left; continue; } else if (this->rb_right) { this = this->rb_right; continue; } r = rb_entry(this, struct replay_entry, rb); this = rb_parent(this); if (this) { if (this->rb_left == &r->rb) this->rb_left = NULL; else this->rb_right = NULL; } if (is_hash_key(c, &r->key)) kfree(r->nm.name); kfree(r); } c->replay_tree = RB_ROOT; } /** * apply_replay_tree - apply the replay tree to the TNC. * @c: UBIFS file-system description object * * Apply the replay tree. * Returns zero in case of success and a negative error code in case of * failure. */ static int apply_replay_tree(struct ubifs_info *c) { struct rb_node *this = rb_first(&c->replay_tree); while (this) { struct replay_entry *r; int err; cond_resched(); r = rb_entry(this, struct replay_entry, rb); err = apply_replay_entry(c, r); if (err) return err; this = rb_next(this); } return 0; } /** * insert_node - insert a node to the replay tree. * @c: UBIFS file-system description object * @lnum: node logical eraseblock number * @offs: node offset * @len: node length * @key: node key * @sqnum: sequence number * @deletion: non-zero if this is a deletion * @used: number of bytes in use in a LEB * @old_size: truncation old size * @new_size: truncation new size * * This function inserts a scanned non-direntry node to the replay tree. The * replay tree is an RB-tree containing @struct replay_entry elements which are * indexed by the sequence number. The replay tree is applied at the very end * of the replay process. Since the tree is sorted in sequence number order, * the older modifications are applied first. This function returns zero in * case of success and a negative error code in case of failure. */ static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, union ubifs_key *key, unsigned long long sqnum, int deletion, int *used, loff_t old_size, loff_t new_size) { struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL; struct replay_entry *r; if (key_inum(c, key) >= c->highest_inum) c->highest_inum = key_inum(c, key); dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key)); while (*p) { parent = *p; r = rb_entry(parent, struct replay_entry, rb); if (sqnum < r->sqnum) { p = &(*p)->rb_left; continue; } else if (sqnum > r->sqnum) { p = &(*p)->rb_right; continue; } ubifs_err("duplicate sqnum in replay"); return -EINVAL; } r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); if (!r) return -ENOMEM; if (!deletion) *used += ALIGN(len, 8); r->lnum = lnum; r->offs = offs; r->len = len; r->sqnum = sqnum; r->flags = (deletion ? REPLAY_DELETION : 0); r->old_size = old_size; r->new_size = new_size; key_copy(c, key, &r->key); rb_link_node(&r->rb, parent, p); rb_insert_color(&r->rb, &c->replay_tree); return 0; } /** * insert_dent - insert a directory entry node into the replay tree. * @c: UBIFS file-system description object * @lnum: node logical eraseblock number * @offs: node offset * @len: node length * @key: node key * @name: directory entry name * @nlen: directory entry name length * @sqnum: sequence number * @deletion: non-zero if this is a deletion * @used: number of bytes in use in a LEB * * This function inserts a scanned directory entry node to the replay tree. * Returns zero in case of success and a negative error code in case of * failure. * * This function is also used for extended attribute entries because they are * implemented as directory entry nodes. */ static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, union ubifs_key *key, const char *name, int nlen, unsigned long long sqnum, int deletion, int *used) { struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL; struct replay_entry *r; char *nbuf; if (key_inum(c, key) >= c->highest_inum) c->highest_inum = key_inum(c, key); dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key)); while (*p) { parent = *p; r = rb_entry(parent, struct replay_entry, rb); if (sqnum < r->sqnum) { p = &(*p)->rb_left; continue; } if (sqnum > r->sqnum) { p = &(*p)->rb_right; continue; } ubifs_err("duplicate sqnum in replay"); return -EINVAL; } r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); if (!r) return -ENOMEM; nbuf = kmalloc(nlen + 1, GFP_KERNEL); if (!nbuf) { kfree(r); return -ENOMEM; } if (!deletion) *used += ALIGN(len, 8); r->lnum = lnum; r->offs = offs; r->len = len; r->sqnum = sqnum; r->nm.len = nlen; memcpy(nbuf, name, nlen); nbuf[nlen] = '\0'; r->nm.name = nbuf; r->flags = (deletion ? REPLAY_DELETION : 0); key_copy(c, key, &r->key); ubifs_assert(!*p); rb_link_node(&r->rb, parent, p); rb_insert_color(&r->rb, &c->replay_tree); return 0; } /** * ubifs_validate_entry - validate directory or extended attribute entry node. * @c: UBIFS file-system description object * @dent: the node to validate * * This function validates directory or extended attribute entry node @dent. * Returns zero if the node is all right and a %-EINVAL if not. */ int ubifs_validate_entry(struct ubifs_info *c, const struct ubifs_dent_node *dent) { int key_type = key_type_flash(c, dent->key); int nlen = le16_to_cpu(dent->nlen); if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 || dent->type >= UBIFS_ITYPES_CNT || nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 || strnlen(dent->name, nlen) != nlen || le64_to_cpu(dent->inum) > MAX_INUM) { ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ? "directory entry" : "extended attribute entry"); return -EINVAL; } if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) { ubifs_err("bad key type %d", key_type); return -EINVAL; } return 0; } /** * replay_bud - replay a bud logical eraseblock. * @c: UBIFS file-system description object * @lnum: bud logical eraseblock number to replay * @offs: bud start offset * @jhead: journal head to which this bud belongs * @free: amount of free space in the bud is returned here * @dirty: amount of dirty space from padding and deletion nodes is returned * here * * This function returns zero in case of success and a negative error code in * case of failure. */ static int replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, int *free, int *dirty) { int err = 0, used = 0; struct ubifs_scan_leb *sleb; struct ubifs_scan_node *snod; struct ubifs_bud *bud; dbg_mnt("replay bud LEB %d, head %d, offs %d", lnum, jhead, offs); if (c->need_recovery) sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, jhead != GCHD); else sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); if (IS_ERR(sleb)) return PTR_ERR(sleb); /* * The bud does not have to start from offset zero - the beginning of * the 'lnum' LEB may contain previously committed data. One of the * things we have to do in replay is to correctly update lprops with * newer information about this LEB. * * At this point lprops thinks that this LEB has 'c->leb_size - offs' * bytes of free space because it only contain information about * committed data. * * But we know that real amount of free space is 'c->leb_size - * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and * 'sleb->endpt' is used by bud data. We have to correctly calculate * how much of these data are dirty and update lprops with this * information. * * The dirt in that LEB region is comprised of padding nodes, deletion * nodes, truncation nodes and nodes which are obsoleted by subsequent * nodes in this LEB. So instead of calculating clean space, we * calculate used space ('used' variable). */ list_for_each_entry(snod, &sleb->nodes, list) { int deletion = 0; cond_resched(); if (snod->sqnum >= SQNUM_WATERMARK) { ubifs_err("file system's life ended"); goto out_dump; } if (snod->sqnum > c->max_sqnum) c->max_sqnum = snod->sqnum; switch (snod->type) { case UBIFS_INO_NODE: { struct ubifs_ino_node *ino = snod->node; loff_t new_size = le64_to_cpu(ino->size); if (le32_to_cpu(ino->nlink) == 0) deletion = 1; err = insert_node(c, lnum, snod->offs, snod->len, &snod->key, snod->sqnum, deletion, &used, 0, new_size); break; } case UBIFS_DATA_NODE: { struct ubifs_data_node *dn = snod->node; loff_t new_size = le32_to_cpu(dn->size) + key_block(c, &snod->key) * UBIFS_BLOCK_SIZE; err = insert_node(c, lnum, snod->offs, snod->len, &snod->key, snod->sqnum, deletion, &used, 0, new_size); break; } case UBIFS_DENT_NODE: case UBIFS_XENT_NODE: { struct ubifs_dent_node *dent = snod->node; err = ubifs_validate_entry(c, dent); if (err) goto out_dump; err = insert_dent(c, lnum, snod->offs, snod->len, &snod->key, dent->name, le16_to_cpu(dent->nlen), snod->sqnum, !le64_to_cpu(dent->inum), &used); break; } case UBIFS_TRUN_NODE: { struct ubifs_trun_node *trun = snod->node; loff_t old_size = le64_to_cpu(trun->old_size); loff_t new_size = le64_to_cpu(trun->new_size); union ubifs_key key; /* Validate truncation node */ if (old_size < 0 || old_size > c->max_inode_sz || new_size < 0 || new_size > c->max_inode_sz || old_size <= new_size) { ubifs_err("bad truncation node"); goto out_dump; } /* * Create a fake truncation key just to use the same * functions which expect nodes to have keys. */ trun_key_init(c, &key, le32_to_cpu(trun->inum)); err = insert_node(c, lnum, snod->offs, snod->len, &key, snod->sqnum, 1, &used, old_size, new_size); break; } default: ubifs_err("unexpected node type %d in bud LEB %d:%d", snod->type, lnum, snod->offs); err = -EINVAL; goto out_dump; } if (err) goto out; } bud = ubifs_search_bud(c, lnum); if (!bud) BUG(); ubifs_assert(sleb->endpt - offs >= used); ubifs_assert(sleb->endpt % c->min_io_size == 0); *dirty = sleb->endpt - offs - used; *free = c->leb_size - sleb->endpt; dbg_mnt("bud LEB %d replied: dirty %d, free %d", lnum, *dirty, *free); out: ubifs_scan_destroy(sleb); return err; out_dump: ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs); dbg_dump_node(c, snod->node); ubifs_scan_destroy(sleb); return -EINVAL; } /** * insert_ref_node - insert a reference node to the replay tree. * @c: UBIFS file-system description object * @lnum: node logical eraseblock number * @offs: node offset * @sqnum: sequence number * @free: amount of free space in bud * @dirty: amount of dirty space from padding and deletion nodes * @jhead: journal head number for the bud * * This function inserts a reference node to the replay tree and returns zero * in case of success or a negative error code in case of failure. */ static int insert_ref_node(struct ubifs_info *c, int lnum, int offs, unsigned long long sqnum, int free, int dirty, int jhead) { struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL; struct replay_entry *r; dbg_mnt("add ref LEB %d:%d", lnum, offs); while (*p) { parent = *p; r = rb_entry(parent, struct replay_entry, rb); if (sqnum < r->sqnum) { p = &(*p)->rb_left; continue; } else if (sqnum > r->sqnum) { p = &(*p)->rb_right; continue; } ubifs_err("duplicate sqnum in replay tree"); return -EINVAL; } r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); if (!r) return -ENOMEM; r->lnum = lnum; r->offs = offs; r->sqnum = sqnum; r->flags = REPLAY_REF; r->free = free; r->dirty = dirty; r->jhead = jhead; rb_link_node(&r->rb, parent, p); rb_insert_color(&r->rb, &c->replay_tree); return 0; } /** * replay_buds - replay all buds. * @c: UBIFS file-system description object * * This function returns zero in case of success and a negative error code in * case of failure. */ static int replay_buds(struct ubifs_info *c) { struct bud_entry *b; int err, uninitialized_var(free), uninitialized_var(dirty); list_for_each_entry(b, &c->replay_buds, list) { err = replay_bud(c, b->bud->lnum, b->bud->start, b->bud->jhead, &free, &dirty); if (err) return err; err = insert_ref_node(c, b->bud->lnum, b->bud->start, b->sqnum, free, dirty, b->bud->jhead); if (err) return err; } return 0; } /** * destroy_bud_list - destroy the list of buds to replay. * @c: UBIFS file-system description object */ static void destroy_bud_list(struct ubifs_info *c) { struct bud_entry *b; while (!list_empty(&c->replay_buds)) { b = list_entry(c->replay_buds.next, struct bud_entry, list); list_del(&b->list); kfree(b); } } /** * add_replay_bud - add a bud to the list of buds to replay. * @c: UBIFS file-system description object * @lnum: bud logical eraseblock number to replay * @offs: bud start offset * @jhead: journal head to which this bud belongs * @sqnum: reference node sequence number * * This function returns zero in case of success and a negative error code in * case of failure. */ static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, unsigned long long sqnum) { struct ubifs_bud *bud; struct bud_entry *b; dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead); bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL); if (!bud) return -ENOMEM; b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL); if (!b) { kfree(bud); return -ENOMEM; } bud->lnum = lnum; bud->start = offs; bud->jhead = jhead; ubifs_add_bud(c, bud); b->bud = bud; b->sqnum = sqnum; list_add_tail(&b->list, &c->replay_buds); return 0; } /** * validate_ref - validate a reference node. * @c: UBIFS file-system description object * @ref: the reference node to validate * @ref_lnum: LEB number of the reference node * @ref_offs: reference node offset * * This function returns %1 if a bud reference already exists for the LEB. %0 is * returned if the reference node is new, otherwise %-EINVAL is returned if * validation failed. */ static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref) { struct ubifs_bud *bud; int lnum = le32_to_cpu(ref->lnum); unsigned int offs = le32_to_cpu(ref->offs); unsigned int jhead = le32_to_cpu(ref->jhead); /* * ref->offs may point to the end of LEB when the journal head points * to the end of LEB and we write reference node for it during commit. * So this is why we require 'offs > c->leb_size'. */ if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt || lnum < c->main_first || offs > c->leb_size || offs & (c->min_io_size - 1)) return -EINVAL; /* Make sure we have not already looked at this bud */ bud = ubifs_search_bud(c, lnum); if (bud) { if (bud->jhead == jhead && bud->start <= offs) return 1; ubifs_err("bud at LEB %d:%d was already referred", lnum, offs); return -EINVAL; } return 0; } /** * replay_log_leb - replay a log logical eraseblock. * @c: UBIFS file-system description object * @lnum: log logical eraseblock to replay * @offs: offset to start replaying from * @sbuf: scan buffer * * This function replays a log LEB and returns zero in case of success, %1 if * this is the last LEB in the log, and a negative error code in case of * failure. */ static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) { int err; struct ubifs_scan_leb *sleb; struct ubifs_scan_node *snod; const struct ubifs_cs_node *node; dbg_mnt("replay log LEB %d:%d", lnum, offs); sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery); if (IS_ERR(sleb)) { if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery) return PTR_ERR(sleb); /* * Note, the below function will recover this log LEB only if * it is the last, because unclean reboots can possibly corrupt * only the tail of the log. */ sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); if (IS_ERR(sleb)) return PTR_ERR(sleb); } if (sleb->nodes_cnt == 0) { err = 1; goto out; } node = sleb->buf; snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); if (c->cs_sqnum == 0) { /* * This is the first log LEB we are looking at, make sure that * the first node is a commit start node. Also record its * sequence number so that UBIFS can determine where the log * ends, because all nodes which were have higher sequence * numbers. */ if (snod->type != UBIFS_CS_NODE) { dbg_err("first log node at LEB %d:%d is not CS node", lnum, offs); goto out_dump; } if (le64_to_cpu(node->cmt_no) != c->cmt_no) { dbg_err("first CS node at LEB %d:%d has wrong " "commit number %llu expected %llu", lnum, offs, (unsigned long long)le64_to_cpu(node->cmt_no), c->cmt_no); goto out_dump; } c->cs_sqnum = le64_to_cpu(node->ch.sqnum); dbg_mnt("commit start sqnum %llu", c->cs_sqnum); } if (snod->sqnum < c->cs_sqnum) { /* * This means that we reached end of log and now * look to the older log data, which was already * committed but the eraseblock was not erased (UBIFS * only un-maps it). So this basically means we have to * exit with "end of log" code. */ err = 1; goto out; } /* Make sure the first node sits at offset zero of the LEB */ if (snod->offs != 0) { dbg_err("first node is not at zero offset"); goto out_dump; } list_for_each_entry(snod, &sleb->nodes, list) { cond_resched(); if (snod->sqnum >= SQNUM_WATERMARK) { ubifs_err("file system's life ended"); goto out_dump; } if (snod->sqnum < c->cs_sqnum) { dbg_err("bad sqnum %llu, commit sqnum %llu", snod->sqnum, c->cs_sqnum); goto out_dump; } if (snod->sqnum > c->max_sqnum) c->max_sqnum = snod->sqnum; switch (snod->type) { case UBIFS_REF_NODE: { const struct ubifs_ref_node *ref = snod->node; err = validate_ref(c, ref); if (err == 1) break; /* Already have this bud */ if (err) goto out_dump; err = add_replay_bud(c, le32_to_cpu(ref->lnum), le32_to_cpu(ref->offs), le32_to_cpu(ref->jhead), snod->sqnum); if (err) goto out; break; } case UBIFS_CS_NODE: /* Make sure it sits at the beginning of LEB */ if (snod->offs != 0) { ubifs_err("unexpected node in log"); goto out_dump; } break; default: ubifs_err("unexpected node in log"); goto out_dump; } } if (sleb->endpt || c->lhead_offs >= c->leb_size) { c->lhead_lnum = lnum; c->lhead_offs = sleb->endpt; } err = !sleb->endpt; out: ubifs_scan_destroy(sleb); return err; out_dump: ubifs_err("log error detected while replaying the log at LEB %d:%d", lnum, offs + snod->offs); dbg_dump_node(c, snod->node); ubifs_scan_destroy(sleb); return -EINVAL; } /** * take_ihead - update the status of the index head in lprops to 'taken'. * @c: UBIFS file-system description object * * This function returns the amount of free space in the index head LEB or a * negative error code. */ static int take_ihead(struct ubifs_info *c) { const struct ubifs_lprops *lp; int err, free; ubifs_get_lprops(c); lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum); if (IS_ERR(lp)) { err = PTR_ERR(lp); goto out; } free = lp->free; lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, lp->flags | LPROPS_TAKEN, 0); if (IS_ERR(lp)) { err = PTR_ERR(lp); goto out; } err = free; out: ubifs_release_lprops(c); return err; } /** * ubifs_replay_journal - replay journal. * @c: UBIFS file-system description object * * This function scans the journal, replays and cleans it up. It makes sure all * memory data structures related to uncommitted journal are built (dirty TNC * tree, tree of buds, modified lprops, etc). */ int ubifs_replay_journal(struct ubifs_info *c) { int err, i, lnum, offs, free; BUILD_BUG_ON(UBIFS_TRUN_KEY > 5); /* Update the status of the index head in lprops to 'taken' */ free = take_ihead(c); if (free < 0) return free; /* Error code */ if (c->ihead_offs != c->leb_size - free) { ubifs_err("bad index head LEB %d:%d", c->ihead_lnum, c->ihead_offs); return -EINVAL; } dbg_mnt("start replaying the journal"); c->replaying = 1; lnum = c->ltail_lnum = c->lhead_lnum; offs = c->lhead_offs; for (i = 0; i < c->log_lebs; i++, lnum++) { if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) { /* * The log is logically circular, we reached the last * LEB, switch to the first one. */ lnum = UBIFS_LOG_LNUM; offs = 0; } err = replay_log_leb(c, lnum, offs, c->sbuf); if (err == 1) /* We hit the end of the log */ break; if (err) goto out; offs = 0; } err = replay_buds(c); if (err) goto out; err = apply_replay_tree(c); if (err) goto out; /* * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable * to roughly estimate index growth. Things like @c->bi.min_idx_lebs * depend on it. This means we have to initialize it to make sure * budgeting works properly. */ c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt); c->bi.uncommitted_idx *= c->max_idx_node_sz; ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery); dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, " "highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum, (unsigned long)c->highest_inum); out: destroy_replay_tree(c); destroy_bud_list(c); c->replaying = 0; return err; }