/* * fs/f2fs/inline.c * Copyright (c) 2013, Intel Corporation * Authors: Huajun Li <huajun.li@intel.com> * Haicheng Li <haicheng.li@intel.com> * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/fs.h> #include <linux/f2fs_fs.h> #include "f2fs.h" #include "node.h" bool f2fs_may_inline_data(struct inode *inode) { if (f2fs_is_atomic_file(inode)) return false; if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) return false; if (i_size_read(inode) > MAX_INLINE_DATA) return false; if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) return false; return true; } bool f2fs_may_inline_dentry(struct inode *inode) { if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY)) return false; if (!S_ISDIR(inode->i_mode)) return false; return true; } void read_inline_data(struct page *page, struct page *ipage) { void *src_addr, *dst_addr; if (PageUptodate(page)) return; f2fs_bug_on(F2FS_P_SB(page), page->index); zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE); /* Copy the whole inline data block */ src_addr = inline_data_addr(ipage); dst_addr = kmap_atomic(page); memcpy(dst_addr, src_addr, MAX_INLINE_DATA); flush_dcache_page(page); kunmap_atomic(dst_addr); SetPageUptodate(page); } bool truncate_inline_inode(struct page *ipage, u64 from) { void *addr; if (from >= MAX_INLINE_DATA) return false; addr = inline_data_addr(ipage); f2fs_wait_on_page_writeback(ipage, NODE, true); memset(addr + from, 0, MAX_INLINE_DATA - from); return true; } int f2fs_read_inline_data(struct inode *inode, struct page *page) { struct page *ipage; ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); if (IS_ERR(ipage)) { unlock_page(page); return PTR_ERR(ipage); } if (!f2fs_has_inline_data(inode)) { f2fs_put_page(ipage, 1); return -EAGAIN; } if (page->index) zero_user_segment(page, 0, PAGE_SIZE); else read_inline_data(page, ipage); SetPageUptodate(page); f2fs_put_page(ipage, 1); unlock_page(page); return 0; } int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page) { struct f2fs_io_info fio = { .sbi = F2FS_I_SB(dn->inode), .type = DATA, .rw = WRITE_SYNC | REQ_PRIO, .page = page, .encrypted_page = NULL, }; int dirty, err; if (!f2fs_exist_data(dn->inode)) goto clear_out; err = f2fs_reserve_block(dn, 0); if (err) return err; f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page)); read_inline_data(page, dn->inode_page); set_page_dirty(page); /* clear dirty state */ dirty = clear_page_dirty_for_io(page); /* write data page to try to make data consistent */ set_page_writeback(page); fio.old_blkaddr = dn->data_blkaddr; write_data_page(dn, &fio); f2fs_wait_on_page_writeback(page, DATA, true); if (dirty) inode_dec_dirty_pages(dn->inode); /* this converted inline_data should be recovered. */ set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE); /* clear inline data and flag after data writeback */ truncate_inline_inode(dn->inode_page, 0); clear_inline_node(dn->inode_page); clear_out: stat_dec_inline_inode(dn->inode); f2fs_clear_inline_inode(dn->inode); sync_inode_page(dn); f2fs_put_dnode(dn); return 0; } int f2fs_convert_inline_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; struct page *ipage, *page; int err = 0; if (!f2fs_has_inline_data(inode)) return 0; page = f2fs_grab_cache_page(inode->i_mapping, 0, false); if (!page) return -ENOMEM; f2fs_lock_op(sbi); ipage = get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { err = PTR_ERR(ipage); goto out; } set_new_dnode(&dn, inode, ipage, ipage, 0); if (f2fs_has_inline_data(inode)) err = f2fs_convert_inline_page(&dn, page); f2fs_put_dnode(&dn); out: f2fs_unlock_op(sbi); f2fs_put_page(page, 1); f2fs_balance_fs(sbi, dn.node_changed); return err; } int f2fs_write_inline_data(struct inode *inode, struct page *page) { void *src_addr, *dst_addr; struct dnode_of_data dn; int err; set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); if (err) return err; if (!f2fs_has_inline_data(inode)) { f2fs_put_dnode(&dn); return -EAGAIN; } f2fs_bug_on(F2FS_I_SB(inode), page->index); f2fs_wait_on_page_writeback(dn.inode_page, NODE, true); src_addr = kmap_atomic(page); dst_addr = inline_data_addr(dn.inode_page); memcpy(dst_addr, src_addr, MAX_INLINE_DATA); kunmap_atomic(src_addr); set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE); set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); sync_inode_page(&dn); clear_inline_node(dn.inode_page); f2fs_put_dnode(&dn); return 0; } bool recover_inline_data(struct inode *inode, struct page *npage) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode *ri = NULL; void *src_addr, *dst_addr; struct page *ipage; /* * The inline_data recovery policy is as follows. * [prev.] [next] of inline_data flag * o o -> recover inline_data * o x -> remove inline_data, and then recover data blocks * x o -> remove inline_data, and then recover inline_data * x x -> recover data blocks */ if (IS_INODE(npage)) ri = F2FS_INODE(npage); if (f2fs_has_inline_data(inode) && ri && (ri->i_inline & F2FS_INLINE_DATA)) { process_inline: ipage = get_node_page(sbi, inode->i_ino); f2fs_bug_on(sbi, IS_ERR(ipage)); f2fs_wait_on_page_writeback(ipage, NODE, true); src_addr = inline_data_addr(npage); dst_addr = inline_data_addr(ipage); memcpy(dst_addr, src_addr, MAX_INLINE_DATA); set_inode_flag(F2FS_I(inode), FI_INLINE_DATA); set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); update_inode(inode, ipage); f2fs_put_page(ipage, 1); return true; } if (f2fs_has_inline_data(inode)) { ipage = get_node_page(sbi, inode->i_ino); f2fs_bug_on(sbi, IS_ERR(ipage)); if (!truncate_inline_inode(ipage, 0)) return false; f2fs_clear_inline_inode(inode); update_inode(inode, ipage); f2fs_put_page(ipage, 1); } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) { if (truncate_blocks(inode, 0, false)) return false; goto process_inline; } return false; } struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, struct fscrypt_name *fname, struct page **res_page) { struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); struct f2fs_inline_dentry *inline_dentry; struct qstr name = FSTR_TO_QSTR(&fname->disk_name); struct f2fs_dir_entry *de; struct f2fs_dentry_ptr d; struct page *ipage; f2fs_hash_t namehash; ipage = get_node_page(sbi, dir->i_ino); if (IS_ERR(ipage)) return NULL; namehash = f2fs_dentry_hash(&name); inline_dentry = inline_data_addr(ipage); make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2); de = find_target_dentry(fname, namehash, NULL, &d); unlock_page(ipage); if (de) *res_page = ipage; else f2fs_put_page(ipage, 0); return de; } struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir, struct page **p) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct page *ipage; struct f2fs_dir_entry *de; struct f2fs_inline_dentry *dentry_blk; ipage = get_node_page(sbi, dir->i_ino); if (IS_ERR(ipage)) return NULL; dentry_blk = inline_data_addr(ipage); de = &dentry_blk->dentry[1]; *p = ipage; unlock_page(ipage); return de; } int make_empty_inline_dir(struct inode *inode, struct inode *parent, struct page *ipage) { struct f2fs_inline_dentry *dentry_blk; struct f2fs_dentry_ptr d; dentry_blk = inline_data_addr(ipage); make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2); do_make_empty_dir(inode, parent, &d); set_page_dirty(ipage); /* update i_size to MAX_INLINE_DATA */ if (i_size_read(inode) < MAX_INLINE_DATA) { i_size_write(inode, MAX_INLINE_DATA); set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR); } return 0; } /* * NOTE: ipage is grabbed by caller, but if any error occurs, we should * release ipage in this function. */ static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage, struct f2fs_inline_dentry *inline_dentry) { struct page *page; struct dnode_of_data dn; struct f2fs_dentry_block *dentry_blk; int err; page = f2fs_grab_cache_page(dir->i_mapping, 0, false); if (!page) { f2fs_put_page(ipage, 1); return -ENOMEM; } set_new_dnode(&dn, dir, ipage, NULL, 0); err = f2fs_reserve_block(&dn, 0); if (err) goto out; f2fs_wait_on_page_writeback(page, DATA, true); zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE); dentry_blk = kmap_atomic(page); /* copy data from inline dentry block to new dentry block */ memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap, INLINE_DENTRY_BITMAP_SIZE); memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0, SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE); /* * we do not need to zero out remainder part of dentry and filename * field, since we have used bitmap for marking the usage status of * them, besides, we can also ignore copying/zeroing reserved space * of dentry block, because them haven't been used so far. */ memcpy(dentry_blk->dentry, inline_dentry->dentry, sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY); memcpy(dentry_blk->filename, inline_dentry->filename, NR_INLINE_DENTRY * F2FS_SLOT_LEN); kunmap_atomic(dentry_blk); SetPageUptodate(page); set_page_dirty(page); /* clear inline dir and flag after data writeback */ truncate_inline_inode(ipage, 0); stat_dec_inline_dir(dir); clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY); F2FS_I(dir)->i_current_depth = 1; if (i_size_read(dir) < PAGE_SIZE) { i_size_write(dir, PAGE_SIZE); set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR); } sync_inode_page(&dn); out: f2fs_put_page(page, 1); return err; } static int f2fs_add_inline_entries(struct inode *dir, struct f2fs_inline_dentry *inline_dentry) { struct f2fs_dentry_ptr d; unsigned long bit_pos = 0; int err = 0; make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2); while (bit_pos < d.max) { struct f2fs_dir_entry *de; struct qstr new_name; nid_t ino; umode_t fake_mode; if (!test_bit_le(bit_pos, d.bitmap)) { bit_pos++; continue; } de = &d.dentry[bit_pos]; if (unlikely(!de->name_len)) { bit_pos++; continue; } new_name.name = d.filename[bit_pos]; new_name.len = de->name_len; ino = le32_to_cpu(de->ino); fake_mode = get_de_type(de) << S_SHIFT; err = f2fs_add_regular_entry(dir, &new_name, NULL, ino, fake_mode); if (err) goto punch_dentry_pages; bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); } return 0; punch_dentry_pages: truncate_inode_pages(&dir->i_data, 0); truncate_blocks(dir, 0, false); remove_dirty_inode(dir); return err; } static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage, struct f2fs_inline_dentry *inline_dentry) { struct f2fs_inline_dentry *backup_dentry; struct f2fs_inode_info *fi = F2FS_I(dir); int err; backup_dentry = f2fs_kmalloc(sizeof(struct f2fs_inline_dentry), GFP_F2FS_ZERO); if (!backup_dentry) { f2fs_put_page(ipage, 1); return -ENOMEM; } memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA); truncate_inline_inode(ipage, 0); unlock_page(ipage); err = f2fs_add_inline_entries(dir, backup_dentry); if (err) goto recover; lock_page(ipage); stat_dec_inline_dir(dir); clear_inode_flag(fi, FI_INLINE_DENTRY); update_inode(dir, ipage); kfree(backup_dentry); return 0; recover: lock_page(ipage); memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA); fi->i_current_depth = 0; i_size_write(dir, MAX_INLINE_DATA); update_inode(dir, ipage); f2fs_put_page(ipage, 1); kfree(backup_dentry); return err; } static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage, struct f2fs_inline_dentry *inline_dentry) { if (!F2FS_I(dir)->i_dir_level) return f2fs_move_inline_dirents(dir, ipage, inline_dentry); else return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry); } int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name, struct inode *inode, nid_t ino, umode_t mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct page *ipage; unsigned int bit_pos; f2fs_hash_t name_hash; size_t namelen = name->len; struct f2fs_inline_dentry *dentry_blk = NULL; struct f2fs_dentry_ptr d; int slots = GET_DENTRY_SLOTS(namelen); struct page *page = NULL; int err = 0; ipage = get_node_page(sbi, dir->i_ino); if (IS_ERR(ipage)) return PTR_ERR(ipage); dentry_blk = inline_data_addr(ipage); bit_pos = room_for_filename(&dentry_blk->dentry_bitmap, slots, NR_INLINE_DENTRY); if (bit_pos >= NR_INLINE_DENTRY) { err = f2fs_convert_inline_dir(dir, ipage, dentry_blk); if (err) return err; err = -EAGAIN; goto out; } if (inode) { down_write(&F2FS_I(inode)->i_sem); page = init_inode_metadata(inode, dir, name, ipage); if (IS_ERR(page)) { err = PTR_ERR(page); goto fail; } } f2fs_wait_on_page_writeback(ipage, NODE, true); name_hash = f2fs_dentry_hash(name); make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2); f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos); set_page_dirty(ipage); /* we don't need to mark_inode_dirty now */ if (inode) { F2FS_I(inode)->i_pino = dir->i_ino; update_inode(inode, page); f2fs_put_page(page, 1); } update_parent_metadata(dir, inode, 0); fail: if (inode) up_write(&F2FS_I(inode)->i_sem); if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) { update_inode(dir, ipage); clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR); } out: f2fs_put_page(ipage, 1); return err; } void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, struct inode *dir, struct inode *inode) { struct f2fs_inline_dentry *inline_dentry; int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); unsigned int bit_pos; int i; lock_page(page); f2fs_wait_on_page_writeback(page, NODE, true); inline_dentry = inline_data_addr(page); bit_pos = dentry - inline_dentry->dentry; for (i = 0; i < slots; i++) test_and_clear_bit_le(bit_pos + i, &inline_dentry->dentry_bitmap); set_page_dirty(page); dir->i_ctime = dir->i_mtime = CURRENT_TIME; if (inode) f2fs_drop_nlink(dir, inode, page); f2fs_put_page(page, 1); } bool f2fs_empty_inline_dir(struct inode *dir) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct page *ipage; unsigned int bit_pos = 2; struct f2fs_inline_dentry *dentry_blk; ipage = get_node_page(sbi, dir->i_ino); if (IS_ERR(ipage)) return false; dentry_blk = inline_data_addr(ipage); bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, NR_INLINE_DENTRY, bit_pos); f2fs_put_page(ipage, 1); if (bit_pos < NR_INLINE_DENTRY) return false; return true; } int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, struct fscrypt_str *fstr) { struct inode *inode = file_inode(file); struct f2fs_inline_dentry *inline_dentry = NULL; struct page *ipage = NULL; struct f2fs_dentry_ptr d; if (ctx->pos == NR_INLINE_DENTRY) return 0; ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); if (IS_ERR(ipage)) return PTR_ERR(ipage); inline_dentry = inline_data_addr(ipage); make_dentry_ptr(inode, &d, (void *)inline_dentry, 2); if (!f2fs_fill_dentries(ctx, &d, 0, fstr)) ctx->pos = NR_INLINE_DENTRY; f2fs_put_page(ipage, 1); return 0; } int f2fs_inline_data_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, __u64 start, __u64 len) { __u64 byteaddr, ilen; __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED | FIEMAP_EXTENT_LAST; struct node_info ni; struct page *ipage; int err = 0; ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); if (IS_ERR(ipage)) return PTR_ERR(ipage); if (!f2fs_has_inline_data(inode)) { err = -EAGAIN; goto out; } ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode)); if (start >= ilen) goto out; if (start + len < ilen) ilen = start + len; ilen -= start; get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni); byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits; byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage); err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags); out: f2fs_put_page(ipage, 1); return err; }