/* * fs/f2fs/f2fs.h * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef _LINUX_F2FS_H #define _LINUX_F2FS_H #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_F2FS_FS_ENCRYPTION #include #else #include #endif #include #ifdef CONFIG_F2FS_CHECK_FS #define f2fs_bug_on(sbi, condition) BUG_ON(condition) #else #define f2fs_bug_on(sbi, condition) \ do { \ if (unlikely(condition)) { \ WARN_ON(1); \ set_sbi_flag(sbi, SBI_NEED_FSCK); \ } \ } while (0) #endif #ifdef CONFIG_F2FS_FAULT_INJECTION enum { FAULT_KMALLOC, FAULT_PAGE_ALLOC, FAULT_ALLOC_NID, FAULT_ORPHAN, FAULT_BLOCK, FAULT_DIR_DEPTH, FAULT_EVICT_INODE, FAULT_TRUNCATE, FAULT_IO, FAULT_CHECKPOINT, FAULT_MAX, }; struct f2fs_fault_info { atomic_t inject_ops; unsigned int inject_rate; unsigned int inject_type; }; extern char *fault_name[FAULT_MAX]; #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) #endif /* * For mount options */ #define F2FS_MOUNT_BG_GC 0x00000001 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 #define F2FS_MOUNT_DISCARD 0x00000004 #define F2FS_MOUNT_NOHEAP 0x00000008 #define F2FS_MOUNT_XATTR_USER 0x00000010 #define F2FS_MOUNT_POSIX_ACL 0x00000020 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 #define F2FS_MOUNT_INLINE_DATA 0x00000100 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 #define F2FS_MOUNT_NOBARRIER 0x00000800 #define F2FS_MOUNT_FASTBOOT 0x00001000 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 #define F2FS_MOUNT_ADAPTIVE 0x00020000 #define F2FS_MOUNT_LFS 0x00040000 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option) #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option) #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option) #define ver_after(a, b) (typecheck(unsigned long long, a) && \ typecheck(unsigned long long, b) && \ ((long long)((a) - (b)) > 0)) typedef u32 block_t; /* * should not change u32, since it is the on-disk block * address format, __le32. */ typedef u32 nid_t; struct f2fs_mount_info { unsigned int opt; }; #define F2FS_FEATURE_ENCRYPT 0x0001 #define F2FS_FEATURE_BLKZONED 0x0002 #define F2FS_HAS_FEATURE(sb, mask) \ ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) #define F2FS_SET_FEATURE(sb, mask) \ (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) #define F2FS_CLEAR_FEATURE(sb, mask) \ (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) /* * For checkpoint manager */ enum { NAT_BITMAP, SIT_BITMAP }; enum { CP_UMOUNT, CP_FASTBOOT, CP_SYNC, CP_RECOVERY, CP_DISCARD, }; #define DEF_BATCHED_TRIM_SECTIONS 2048 #define BATCHED_TRIM_SEGMENTS(sbi) \ (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) #define BATCHED_TRIM_BLOCKS(sbi) \ (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) #define DISCARD_ISSUE_RATE 8 #define DEF_CP_INTERVAL 60 /* 60 secs */ #define DEF_IDLE_INTERVAL 5 /* 5 secs */ struct cp_control { int reason; __u64 trim_start; __u64 trim_end; __u64 trim_minlen; __u64 trimmed; }; /* * For CP/NAT/SIT/SSA readahead */ enum { META_CP, META_NAT, META_SIT, META_SSA, META_POR, }; /* for the list of ino */ enum { ORPHAN_INO, /* for orphan ino list */ APPEND_INO, /* for append ino list */ UPDATE_INO, /* for update ino list */ MAX_INO_ENTRY, /* max. list */ }; struct ino_entry { struct list_head list; /* list head */ nid_t ino; /* inode number */ }; /* for the list of inodes to be GCed */ struct inode_entry { struct list_head list; /* list head */ struct inode *inode; /* vfs inode pointer */ }; /* for the bitmap indicate blocks to be discarded */ struct discard_entry { struct list_head list; /* list head */ block_t start_blkaddr; /* start blockaddr of current segment */ unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ }; /* max discard pend list number */ #define MAX_PLIST_NUM 512 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ (MAX_PLIST_NUM - 1) : (blk_num - 1)) enum { D_PREP, D_SUBMIT, D_DONE, }; struct discard_info { block_t lstart; /* logical start address */ block_t len; /* length */ block_t start; /* actual start address in dev */ }; struct discard_cmd { struct rb_node rb_node; /* rb node located in rb-tree */ union { struct { block_t lstart; /* logical start address */ block_t len; /* length */ block_t start; /* actual start address in dev */ }; struct discard_info di; /* discard info */ }; struct list_head list; /* command list */ struct completion wait; /* compleation */ struct block_device *bdev; /* bdev */ int state; /* state */ int error; /* bio error */ }; struct discard_cmd_control { struct task_struct *f2fs_issue_discard; /* discard thread */ struct list_head entry_list; /* 4KB discard entry list */ struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ struct list_head wait_list; /* store on-flushing entries */ wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ struct mutex cmd_lock; int nr_discards; /* # of discards in the list */ int max_discards; /* max. discards to be issued */ unsigned int undiscard_blks; /* # of undiscard blocks */ atomic_t issued_discard; /* # of issued discard */ atomic_t issing_discard; /* # of issing discard */ atomic_t discard_cmd_cnt; /* # of cached cmd count */ struct rb_root root; /* root of discard rb-tree */ }; /* for the list of fsync inodes, used only during recovery */ struct fsync_inode_entry { struct list_head list; /* list head */ struct inode *inode; /* vfs inode pointer */ block_t blkaddr; /* block address locating the last fsync */ block_t last_dentry; /* block address locating the last dentry */ }; #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) { int before = nats_in_cursum(journal); journal->n_nats = cpu_to_le16(before + i); return before; } static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) { int before = sits_in_cursum(journal); journal->n_sits = cpu_to_le16(before + i); return before; } static inline bool __has_cursum_space(struct f2fs_journal *journal, int size, int type) { if (type == NAT_JOURNAL) return size <= MAX_NAT_JENTRIES(journal); return size <= MAX_SIT_JENTRIES(journal); } /* * ioctl commands */ #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION #define F2FS_IOCTL_MAGIC 0xf5 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ struct f2fs_move_range) #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ struct f2fs_flush_device) #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT /* * should be same as XFS_IOC_GOINGDOWN. * Flags for going down operation used by FS_IOC_GOINGDOWN */ #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ #if defined(__KERNEL__) && defined(CONFIG_COMPAT) /* * ioctl commands in 32 bit emulation */ #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION #endif struct f2fs_defragment { u64 start; u64 len; }; struct f2fs_move_range { u32 dst_fd; /* destination fd */ u64 pos_in; /* start position in src_fd */ u64 pos_out; /* start position in dst_fd */ u64 len; /* size to move */ }; struct f2fs_flush_device { u32 dev_num; /* device number to flush */ u32 segments; /* # of segments to flush */ }; /* * For INODE and NODE manager */ /* for directory operations */ struct f2fs_dentry_ptr { struct inode *inode; const void *bitmap; struct f2fs_dir_entry *dentry; __u8 (*filename)[F2FS_SLOT_LEN]; int max; }; static inline void make_dentry_ptr_block(struct inode *inode, struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) { d->inode = inode; d->max = NR_DENTRY_IN_BLOCK; d->bitmap = &t->dentry_bitmap; d->dentry = t->dentry; d->filename = t->filename; } static inline void make_dentry_ptr_inline(struct inode *inode, struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t) { d->inode = inode; d->max = NR_INLINE_DENTRY; d->bitmap = &t->dentry_bitmap; d->dentry = t->dentry; d->filename = t->filename; } /* * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 * as its node offset to distinguish from index node blocks. * But some bits are used to mark the node block. */ #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ >> OFFSET_BIT_SHIFT) enum { ALLOC_NODE, /* allocate a new node page if needed */ LOOKUP_NODE, /* look up a node without readahead */ LOOKUP_NODE_RA, /* * look up a node with readahead called * by get_data_block. */ }; #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ /* vector size for gang look-up from extent cache that consists of radix tree */ #define EXT_TREE_VEC_SIZE 64 /* for in-memory extent cache entry */ #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ /* number of extent info in extent cache we try to shrink */ #define EXTENT_CACHE_SHRINK_NUMBER 128 struct rb_entry { struct rb_node rb_node; /* rb node located in rb-tree */ unsigned int ofs; /* start offset of the entry */ unsigned int len; /* length of the entry */ }; struct extent_info { unsigned int fofs; /* start offset in a file */ unsigned int len; /* length of the extent */ u32 blk; /* start block address of the extent */ }; struct extent_node { struct rb_node rb_node; union { struct { unsigned int fofs; unsigned int len; u32 blk; }; struct extent_info ei; /* extent info */ }; struct list_head list; /* node in global extent list of sbi */ struct extent_tree *et; /* extent tree pointer */ }; struct extent_tree { nid_t ino; /* inode number */ struct rb_root root; /* root of extent info rb-tree */ struct extent_node *cached_en; /* recently accessed extent node */ struct extent_info largest; /* largested extent info */ struct list_head list; /* to be used by sbi->zombie_list */ rwlock_t lock; /* protect extent info rb-tree */ atomic_t node_cnt; /* # of extent node in rb-tree*/ }; /* * This structure is taken from ext4_map_blocks. * * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). */ #define F2FS_MAP_NEW (1 << BH_New) #define F2FS_MAP_MAPPED (1 << BH_Mapped) #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ F2FS_MAP_UNWRITTEN) struct f2fs_map_blocks { block_t m_pblk; block_t m_lblk; unsigned int m_len; unsigned int m_flags; pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ }; /* for flag in get_data_block */ #define F2FS_GET_BLOCK_READ 0 #define F2FS_GET_BLOCK_DIO 1 #define F2FS_GET_BLOCK_FIEMAP 2 #define F2FS_GET_BLOCK_BMAP 3 #define F2FS_GET_BLOCK_PRE_DIO 4 #define F2FS_GET_BLOCK_PRE_AIO 5 /* * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. */ #define FADVISE_COLD_BIT 0x01 #define FADVISE_LOST_PINO_BIT 0x02 #define FADVISE_ENCRYPT_BIT 0x04 #define FADVISE_ENC_NAME_BIT 0x08 #define FADVISE_KEEP_SIZE_BIT 0x10 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) #define DEF_DIR_LEVEL 0 struct f2fs_inode_info { struct inode vfs_inode; /* serve a vfs inode */ unsigned long i_flags; /* keep an inode flags for ioctl */ unsigned char i_advise; /* use to give file attribute hints */ unsigned char i_dir_level; /* use for dentry level for large dir */ unsigned int i_current_depth; /* use only in directory structure */ unsigned int i_pino; /* parent inode number */ umode_t i_acl_mode; /* keep file acl mode temporarily */ /* Use below internally in f2fs*/ unsigned long flags; /* use to pass per-file flags */ struct rw_semaphore i_sem; /* protect fi info */ atomic_t dirty_pages; /* # of dirty pages */ f2fs_hash_t chash; /* hash value of given file name */ unsigned int clevel; /* maximum level of given file name */ struct task_struct *task; /* lookup and create consistency */ nid_t i_xattr_nid; /* node id that contains xattrs */ loff_t last_disk_size; /* lastly written file size */ struct list_head dirty_list; /* dirty list for dirs and files */ struct list_head gdirty_list; /* linked in global dirty list */ struct list_head inmem_pages; /* inmemory pages managed by f2fs */ struct mutex inmem_lock; /* lock for inmemory pages */ struct extent_tree *extent_tree; /* cached extent_tree entry */ struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ }; static inline void get_extent_info(struct extent_info *ext, struct f2fs_extent *i_ext) { ext->fofs = le32_to_cpu(i_ext->fofs); ext->blk = le32_to_cpu(i_ext->blk); ext->len = le32_to_cpu(i_ext->len); } static inline void set_raw_extent(struct extent_info *ext, struct f2fs_extent *i_ext) { i_ext->fofs = cpu_to_le32(ext->fofs); i_ext->blk = cpu_to_le32(ext->blk); i_ext->len = cpu_to_le32(ext->len); } static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, u32 blk, unsigned int len) { ei->fofs = fofs; ei->blk = blk; ei->len = len; } static inline bool __is_discard_mergeable(struct discard_info *back, struct discard_info *front) { return back->lstart + back->len == front->lstart; } static inline bool __is_discard_back_mergeable(struct discard_info *cur, struct discard_info *back) { return __is_discard_mergeable(back, cur); } static inline bool __is_discard_front_mergeable(struct discard_info *cur, struct discard_info *front) { return __is_discard_mergeable(cur, front); } static inline bool __is_extent_mergeable(struct extent_info *back, struct extent_info *front) { return (back->fofs + back->len == front->fofs && back->blk + back->len == front->blk); } static inline bool __is_back_mergeable(struct extent_info *cur, struct extent_info *back) { return __is_extent_mergeable(back, cur); } static inline bool __is_front_mergeable(struct extent_info *cur, struct extent_info *front) { return __is_extent_mergeable(cur, front); } extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); static inline void __try_update_largest_extent(struct inode *inode, struct extent_tree *et, struct extent_node *en) { if (en->ei.len > et->largest.len) { et->largest = en->ei; f2fs_mark_inode_dirty_sync(inode, true); } } enum nid_list { FREE_NID_LIST, ALLOC_NID_LIST, MAX_NID_LIST, }; struct f2fs_nm_info { block_t nat_blkaddr; /* base disk address of NAT */ nid_t max_nid; /* maximum possible node ids */ nid_t available_nids; /* # of available node ids */ nid_t next_scan_nid; /* the next nid to be scanned */ unsigned int ram_thresh; /* control the memory footprint */ unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ /* NAT cache management */ struct radix_tree_root nat_root;/* root of the nat entry cache */ struct radix_tree_root nat_set_root;/* root of the nat set cache */ struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ struct list_head nat_entries; /* cached nat entry list (clean) */ unsigned int nat_cnt; /* the # of cached nat entries */ unsigned int dirty_nat_cnt; /* total num of nat entries in set */ unsigned int nat_blocks; /* # of nat blocks */ /* free node ids management */ struct radix_tree_root free_nid_root;/* root of the free_nid cache */ struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */ unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */ spinlock_t nid_list_lock; /* protect nid lists ops */ struct mutex build_lock; /* lock for build free nids */ unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; unsigned char *nat_block_bitmap; unsigned short *free_nid_count; /* free nid count of NAT block */ /* for checkpoint */ char *nat_bitmap; /* NAT bitmap pointer */ unsigned int nat_bits_blocks; /* # of nat bits blocks */ unsigned char *nat_bits; /* NAT bits blocks */ unsigned char *full_nat_bits; /* full NAT pages */ unsigned char *empty_nat_bits; /* empty NAT pages */ #ifdef CONFIG_F2FS_CHECK_FS char *nat_bitmap_mir; /* NAT bitmap mirror */ #endif int bitmap_size; /* bitmap size */ }; /* * this structure is used as one of function parameters. * all the information are dedicated to a given direct node block determined * by the data offset in a file. */ struct dnode_of_data { struct inode *inode; /* vfs inode pointer */ struct page *inode_page; /* its inode page, NULL is possible */ struct page *node_page; /* cached direct node page */ nid_t nid; /* node id of the direct node block */ unsigned int ofs_in_node; /* data offset in the node page */ bool inode_page_locked; /* inode page is locked or not */ bool node_changed; /* is node block changed */ char cur_level; /* level of hole node page */ char max_level; /* level of current page located */ block_t data_blkaddr; /* block address of the node block */ }; static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, struct page *ipage, struct page *npage, nid_t nid) { memset(dn, 0, sizeof(*dn)); dn->inode = inode; dn->inode_page = ipage; dn->node_page = npage; dn->nid = nid; } /* * For SIT manager * * By default, there are 6 active log areas across the whole main area. * When considering hot and cold data separation to reduce cleaning overhead, * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, * respectively. * In the current design, you should not change the numbers intentionally. * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 * logs individually according to the underlying devices. (default: 6) * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for * data and 8 for node logs. */ #define NR_CURSEG_DATA_TYPE (3) #define NR_CURSEG_NODE_TYPE (3) #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) enum { CURSEG_HOT_DATA = 0, /* directory entry blocks */ CURSEG_WARM_DATA, /* data blocks */ CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ CURSEG_HOT_NODE, /* direct node blocks of directory files */ CURSEG_WARM_NODE, /* direct node blocks of normal files */ CURSEG_COLD_NODE, /* indirect node blocks */ NO_CHECK_TYPE, }; struct flush_cmd { struct completion wait; struct llist_node llnode; int ret; }; struct flush_cmd_control { struct task_struct *f2fs_issue_flush; /* flush thread */ wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ atomic_t issued_flush; /* # of issued flushes */ atomic_t issing_flush; /* # of issing flushes */ struct llist_head issue_list; /* list for command issue */ struct llist_node *dispatch_list; /* list for command dispatch */ }; struct f2fs_sm_info { struct sit_info *sit_info; /* whole segment information */ struct free_segmap_info *free_info; /* free segment information */ struct dirty_seglist_info *dirty_info; /* dirty segment information */ struct curseg_info *curseg_array; /* active segment information */ block_t seg0_blkaddr; /* block address of 0'th segment */ block_t main_blkaddr; /* start block address of main area */ block_t ssa_blkaddr; /* start block address of SSA area */ unsigned int segment_count; /* total # of segments */ unsigned int main_segments; /* # of segments in main area */ unsigned int reserved_segments; /* # of reserved segments */ unsigned int ovp_segments; /* # of overprovision segments */ /* a threshold to reclaim prefree segments */ unsigned int rec_prefree_segments; /* for batched trimming */ unsigned int trim_sections; /* # of sections to trim */ struct list_head sit_entry_set; /* sit entry set list */ unsigned int ipu_policy; /* in-place-update policy */ unsigned int min_ipu_util; /* in-place-update threshold */ unsigned int min_fsync_blocks; /* threshold for fsync */ unsigned int min_hot_blocks; /* threshold for hot block allocation */ /* for flush command control */ struct flush_cmd_control *fcc_info; /* for discard command control */ struct discard_cmd_control *dcc_info; }; /* * For superblock */ /* * COUNT_TYPE for monitoring * * f2fs monitors the number of several block types such as on-writeback, * dirty dentry blocks, dirty node blocks, and dirty meta blocks. */ #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) enum count_type { F2FS_DIRTY_DENTS, F2FS_DIRTY_DATA, F2FS_DIRTY_NODES, F2FS_DIRTY_META, F2FS_INMEM_PAGES, F2FS_DIRTY_IMETA, F2FS_WB_CP_DATA, F2FS_WB_DATA, NR_COUNT_TYPE, }; /* * The below are the page types of bios used in submit_bio(). * The available types are: * DATA User data pages. It operates as async mode. * NODE Node pages. It operates as async mode. * META FS metadata pages such as SIT, NAT, CP. * NR_PAGE_TYPE The number of page types. * META_FLUSH Make sure the previous pages are written * with waiting the bio's completion * ... Only can be used with META. */ #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) enum page_type { DATA, NODE, META, NR_PAGE_TYPE, META_FLUSH, INMEM, /* the below types are used by tracepoints only. */ INMEM_DROP, INMEM_INVALIDATE, INMEM_REVOKE, IPU, OPU, }; struct f2fs_io_info { struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ int op; /* contains REQ_OP_ */ int op_flags; /* req_flag_bits */ block_t new_blkaddr; /* new block address to be written */ block_t old_blkaddr; /* old block address before Cow */ struct page *page; /* page to be written */ struct page *encrypted_page; /* encrypted page */ bool submitted; /* indicate IO submission */ bool cp_rwsem_locked; /* indicate cp_rwsem is held */ }; #define is_read_io(rw) ((rw) == READ) struct f2fs_bio_info { struct f2fs_sb_info *sbi; /* f2fs superblock */ struct bio *bio; /* bios to merge */ sector_t last_block_in_bio; /* last block number */ struct f2fs_io_info fio; /* store buffered io info. */ struct rw_semaphore io_rwsem; /* blocking op for bio */ }; #define FDEV(i) (sbi->devs[i]) #define RDEV(i) (raw_super->devs[i]) struct f2fs_dev_info { struct block_device *bdev; char path[MAX_PATH_LEN]; unsigned int total_segments; block_t start_blk; block_t end_blk; #ifdef CONFIG_BLK_DEV_ZONED unsigned int nr_blkz; /* Total number of zones */ u8 *blkz_type; /* Array of zones type */ #endif }; enum inode_type { DIR_INODE, /* for dirty dir inode */ FILE_INODE, /* for dirty regular/symlink inode */ DIRTY_META, /* for all dirtied inode metadata */ NR_INODE_TYPE, }; /* for inner inode cache management */ struct inode_management { struct radix_tree_root ino_root; /* ino entry array */ spinlock_t ino_lock; /* for ino entry lock */ struct list_head ino_list; /* inode list head */ unsigned long ino_num; /* number of entries */ }; /* For s_flag in struct f2fs_sb_info */ enum { SBI_IS_DIRTY, /* dirty flag for checkpoint */ SBI_IS_CLOSE, /* specify unmounting */ SBI_NEED_FSCK, /* need fsck.f2fs to fix */ SBI_POR_DOING, /* recovery is doing or not */ SBI_NEED_SB_WRITE, /* need to recover superblock */ SBI_NEED_CP, /* need to checkpoint */ }; enum { CP_TIME, REQ_TIME, MAX_TIME, }; struct f2fs_sb_info { struct super_block *sb; /* pointer to VFS super block */ struct proc_dir_entry *s_proc; /* proc entry */ struct f2fs_super_block *raw_super; /* raw super block pointer */ int valid_super_block; /* valid super block no */ unsigned long s_flag; /* flags for sbi */ #ifdef CONFIG_BLK_DEV_ZONED unsigned int blocks_per_blkz; /* F2FS blocks per zone */ unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ #endif /* for node-related operations */ struct f2fs_nm_info *nm_info; /* node manager */ struct inode *node_inode; /* cache node blocks */ /* for segment-related operations */ struct f2fs_sm_info *sm_info; /* segment manager */ /* for bio operations */ struct f2fs_bio_info read_io; /* for read bios */ struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */ int write_io_size_bits; /* Write IO size bits */ mempool_t *write_io_dummy; /* Dummy pages */ /* for checkpoint */ struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ int cur_cp_pack; /* remain current cp pack */ spinlock_t cp_lock; /* for flag in ckpt */ struct inode *meta_inode; /* cache meta blocks */ struct mutex cp_mutex; /* checkpoint procedure lock */ struct rw_semaphore cp_rwsem; /* blocking FS operations */ struct rw_semaphore node_write; /* locking node writes */ struct rw_semaphore node_change; /* locking node change */ wait_queue_head_t cp_wait; unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ long interval_time[MAX_TIME]; /* to store thresholds */ struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ /* for orphan inode, use 0'th array */ unsigned int max_orphans; /* max orphan inodes */ /* for inode management */ struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ /* for extent tree cache */ struct radix_tree_root extent_tree_root;/* cache extent cache entries */ struct mutex extent_tree_lock; /* locking extent radix tree */ struct list_head extent_list; /* lru list for shrinker */ spinlock_t extent_lock; /* locking extent lru list */ atomic_t total_ext_tree; /* extent tree count */ struct list_head zombie_list; /* extent zombie tree list */ atomic_t total_zombie_tree; /* extent zombie tree count */ atomic_t total_ext_node; /* extent info count */ /* basic filesystem units */ unsigned int log_sectors_per_block; /* log2 sectors per block */ unsigned int log_blocksize; /* log2 block size */ unsigned int blocksize; /* block size */ unsigned int root_ino_num; /* root inode number*/ unsigned int node_ino_num; /* node inode number*/ unsigned int meta_ino_num; /* meta inode number*/ unsigned int log_blocks_per_seg; /* log2 blocks per segment */ unsigned int blocks_per_seg; /* blocks per segment */ unsigned int segs_per_sec; /* segments per section */ unsigned int secs_per_zone; /* sections per zone */ unsigned int total_sections; /* total section count */ unsigned int total_node_count; /* total node block count */ unsigned int total_valid_node_count; /* valid node block count */ loff_t max_file_blocks; /* max block index of file */ int active_logs; /* # of active logs */ int dir_level; /* directory level */ block_t user_block_count; /* # of user blocks */ block_t total_valid_block_count; /* # of valid blocks */ block_t discard_blks; /* discard command candidats */ block_t last_valid_block_count; /* for recovery */ u32 s_next_generation; /* for NFS support */ /* # of pages, see count_type */ atomic_t nr_pages[NR_COUNT_TYPE]; /* # of allocated blocks */ struct percpu_counter alloc_valid_block_count; /* writeback control */ atomic_t wb_sync_req; /* count # of WB_SYNC threads */ /* valid inode count */ struct percpu_counter total_valid_inode_count; struct f2fs_mount_info mount_opt; /* mount options */ /* for cleaning operations */ struct mutex gc_mutex; /* mutex for GC */ struct f2fs_gc_kthread *gc_thread; /* GC thread */ unsigned int cur_victim_sec; /* current victim section num */ /* threshold for converting bg victims for fg */ u64 fggc_threshold; /* maximum # of trials to find a victim segment for SSR and GC */ unsigned int max_victim_search; /* * for stat information. * one is for the LFS mode, and the other is for the SSR mode. */ #ifdef CONFIG_F2FS_STAT_FS struct f2fs_stat_info *stat_info; /* FS status information */ unsigned int segment_count[2]; /* # of allocated segments */ unsigned int block_count[2]; /* # of allocated blocks */ atomic_t inplace_count; /* # of inplace update */ atomic64_t total_hit_ext; /* # of lookup extent cache */ atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ atomic64_t read_hit_largest; /* # of hit largest extent node */ atomic64_t read_hit_cached; /* # of hit cached extent node */ atomic_t inline_xattr; /* # of inline_xattr inodes */ atomic_t inline_inode; /* # of inline_data inodes */ atomic_t inline_dir; /* # of inline_dentry inodes */ atomic_t aw_cnt; /* # of atomic writes */ atomic_t vw_cnt; /* # of volatile writes */ atomic_t max_aw_cnt; /* max # of atomic writes */ atomic_t max_vw_cnt; /* max # of volatile writes */ int bg_gc; /* background gc calls */ unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ #endif spinlock_t stat_lock; /* lock for stat operations */ /* For sysfs suppport */ struct kobject s_kobj; struct completion s_kobj_unregister; /* For shrinker support */ struct list_head s_list; int s_ndevs; /* number of devices */ struct f2fs_dev_info *devs; /* for device list */ struct mutex umount_mutex; unsigned int shrinker_run_no; /* For write statistics */ u64 sectors_written_start; u64 kbytes_written; /* Reference to checksum algorithm driver via cryptoapi */ struct crypto_shash *s_chksum_driver; /* For fault injection */ #ifdef CONFIG_F2FS_FAULT_INJECTION struct f2fs_fault_info fault_info; #endif }; #ifdef CONFIG_F2FS_FAULT_INJECTION #define f2fs_show_injection_info(type) \ printk("%sF2FS-fs : inject %s in %s of %pF\n", \ KERN_INFO, fault_name[type], \ __func__, __builtin_return_address(0)) static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) { struct f2fs_fault_info *ffi = &sbi->fault_info; if (!ffi->inject_rate) return false; if (!IS_FAULT_SET(ffi, type)) return false; atomic_inc(&ffi->inject_ops); if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { atomic_set(&ffi->inject_ops, 0); return true; } return false; } #endif /* For write statistics. Suppose sector size is 512 bytes, * and the return value is in kbytes. s is of struct f2fs_sb_info. */ #define BD_PART_WRITTEN(s) \ (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ (s)->sectors_written_start) >> 1) static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) { sbi->last_time[type] = jiffies; } static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) { struct timespec ts = {sbi->interval_time[type], 0}; unsigned long interval = timespec_to_jiffies(&ts); return time_after(jiffies, sbi->last_time[type] + interval); } static inline bool is_idle(struct f2fs_sb_info *sbi) { struct block_device *bdev = sbi->sb->s_bdev; struct request_queue *q = bdev_get_queue(bdev); struct request_list *rl = &q->root_rl; if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) return 0; return f2fs_time_over(sbi, REQ_TIME); } /* * Inline functions */ static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, unsigned int length) { SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); u32 *ctx = (u32 *)shash_desc_ctx(shash); int err; shash->tfm = sbi->s_chksum_driver; shash->flags = 0; *ctx = F2FS_SUPER_MAGIC; err = crypto_shash_update(shash, address, length); BUG_ON(err); return *ctx; } static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, void *buf, size_t buf_size) { return f2fs_crc32(sbi, buf, buf_size) == blk_crc; } static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) { return container_of(inode, struct f2fs_inode_info, vfs_inode); } static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) { return sb->s_fs_info; } static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) { return F2FS_SB(inode->i_sb); } static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) { return F2FS_I_SB(mapping->host); } static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) { return F2FS_M_SB(page->mapping); } static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) { return (struct f2fs_super_block *)(sbi->raw_super); } static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) { return (struct f2fs_checkpoint *)(sbi->ckpt); } static inline struct f2fs_node *F2FS_NODE(struct page *page) { return (struct f2fs_node *)page_address(page); } static inline struct f2fs_inode *F2FS_INODE(struct page *page) { return &((struct f2fs_node *)page_address(page))->i; } static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) { return (struct f2fs_nm_info *)(sbi->nm_info); } static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) { return (struct f2fs_sm_info *)(sbi->sm_info); } static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) { return (struct sit_info *)(SM_I(sbi)->sit_info); } static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) { return (struct free_segmap_info *)(SM_I(sbi)->free_info); } static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) { return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); } static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) { return sbi->meta_inode->i_mapping; } static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) { return sbi->node_inode->i_mapping; } static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) { return test_bit(type, &sbi->s_flag); } static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) { set_bit(type, &sbi->s_flag); } static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) { clear_bit(type, &sbi->s_flag); } static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) { return le64_to_cpu(cp->checkpoint_ver); } static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) { size_t crc_offset = le32_to_cpu(cp->checksum_offset); return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); } static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) { unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); return ckpt_flags & f; } static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) { return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); } static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) { unsigned int ckpt_flags; ckpt_flags = le32_to_cpu(cp->ckpt_flags); ckpt_flags |= f; cp->ckpt_flags = cpu_to_le32(ckpt_flags); } static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) { spin_lock(&sbi->cp_lock); __set_ckpt_flags(F2FS_CKPT(sbi), f); spin_unlock(&sbi->cp_lock); } static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) { unsigned int ckpt_flags; ckpt_flags = le32_to_cpu(cp->ckpt_flags); ckpt_flags &= (~f); cp->ckpt_flags = cpu_to_le32(ckpt_flags); } static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) { spin_lock(&sbi->cp_lock); __clear_ckpt_flags(F2FS_CKPT(sbi), f); spin_unlock(&sbi->cp_lock); } static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) { set_sbi_flag(sbi, SBI_NEED_FSCK); if (lock) spin_lock(&sbi->cp_lock); __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); kfree(NM_I(sbi)->nat_bits); NM_I(sbi)->nat_bits = NULL; if (lock) spin_unlock(&sbi->cp_lock); } static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, struct cp_control *cpc) { bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); return (cpc) ? (cpc->reason == CP_UMOUNT) && set : set; } static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) { down_read(&sbi->cp_rwsem); } static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) { up_read(&sbi->cp_rwsem); } static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) { down_write(&sbi->cp_rwsem); } static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) { up_write(&sbi->cp_rwsem); } static inline int __get_cp_reason(struct f2fs_sb_info *sbi) { int reason = CP_SYNC; if (test_opt(sbi, FASTBOOT)) reason = CP_FASTBOOT; if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) reason = CP_UMOUNT; return reason; } static inline bool __remain_node_summaries(int reason) { return (reason == CP_UMOUNT || reason == CP_FASTBOOT); } static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) { return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); } /* * Check whether the given nid is within node id range. */ static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) { if (unlikely(nid < F2FS_ROOT_INO(sbi))) return -EINVAL; if (unlikely(nid >= NM_I(sbi)->max_nid)) return -EINVAL; return 0; } #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 /* * Check whether the inode has blocks or not */ static inline int F2FS_HAS_BLOCKS(struct inode *inode) { if (F2FS_I(inode)->i_xattr_nid) return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; else return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; } static inline bool f2fs_has_xattr_block(unsigned int ofs) { return ofs == XATTR_NODE_OFFSET; } static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool); static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, struct inode *inode, blkcnt_t *count) { blkcnt_t diff; #ifdef CONFIG_F2FS_FAULT_INJECTION if (time_to_inject(sbi, FAULT_BLOCK)) { f2fs_show_injection_info(FAULT_BLOCK); return false; } #endif /* * let's increase this in prior to actual block count change in order * for f2fs_sync_file to avoid data races when deciding checkpoint. */ percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); spin_lock(&sbi->stat_lock); sbi->total_valid_block_count += (block_t)(*count); if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) { diff = sbi->total_valid_block_count - sbi->user_block_count; *count -= diff; sbi->total_valid_block_count = sbi->user_block_count; if (!*count) { spin_unlock(&sbi->stat_lock); percpu_counter_sub(&sbi->alloc_valid_block_count, diff); return false; } } spin_unlock(&sbi->stat_lock); f2fs_i_blocks_write(inode, *count, true); return true; } static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, struct inode *inode, blkcnt_t count) { spin_lock(&sbi->stat_lock); f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); f2fs_bug_on(sbi, inode->i_blocks < count); sbi->total_valid_block_count -= (block_t)count; spin_unlock(&sbi->stat_lock); f2fs_i_blocks_write(inode, count, false); } static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) { atomic_inc(&sbi->nr_pages[count_type]); if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) return; set_sbi_flag(sbi, SBI_IS_DIRTY); } static inline void inode_inc_dirty_pages(struct inode *inode) { atomic_inc(&F2FS_I(inode)->dirty_pages); inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); } static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) { atomic_dec(&sbi->nr_pages[count_type]); } static inline void inode_dec_dirty_pages(struct inode *inode) { if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) return; atomic_dec(&F2FS_I(inode)->dirty_pages); dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); } static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) { return atomic_read(&sbi->nr_pages[count_type]); } static inline int get_dirty_pages(struct inode *inode) { return atomic_read(&F2FS_I(inode)->dirty_pages); } static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) { unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> sbi->log_blocks_per_seg; return segs / sbi->segs_per_sec; } static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) { return sbi->total_valid_block_count; } static inline block_t discard_blocks(struct f2fs_sb_info *sbi) { return sbi->discard_blks; } static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); /* return NAT or SIT bitmap */ if (flag == NAT_BITMAP) return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); else if (flag == SIT_BITMAP) return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); return 0; } static inline block_t __cp_payload(struct f2fs_sb_info *sbi) { return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); } static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); int offset; if (__cp_payload(sbi) > 0) { if (flag == NAT_BITMAP) return &ckpt->sit_nat_version_bitmap; else return (unsigned char *)ckpt + F2FS_BLKSIZE; } else { offset = (flag == NAT_BITMAP) ? le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; return &ckpt->sit_nat_version_bitmap + offset; } } static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) { block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); if (sbi->cur_cp_pack == 2) start_addr += sbi->blocks_per_seg; return start_addr; } static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) { block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); if (sbi->cur_cp_pack == 1) start_addr += sbi->blocks_per_seg; return start_addr; } static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) { sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; } static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) { return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); } static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, struct inode *inode) { block_t valid_block_count; unsigned int valid_node_count; spin_lock(&sbi->stat_lock); valid_block_count = sbi->total_valid_block_count + 1; if (unlikely(valid_block_count > sbi->user_block_count)) { spin_unlock(&sbi->stat_lock); return false; } valid_node_count = sbi->total_valid_node_count + 1; if (unlikely(valid_node_count > sbi->total_node_count)) { spin_unlock(&sbi->stat_lock); return false; } if (inode) f2fs_i_blocks_write(inode, 1, true); sbi->total_valid_node_count++; sbi->total_valid_block_count++; spin_unlock(&sbi->stat_lock); percpu_counter_inc(&sbi->alloc_valid_block_count); return true; } static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, struct inode *inode) { spin_lock(&sbi->stat_lock); f2fs_bug_on(sbi, !sbi->total_valid_block_count); f2fs_bug_on(sbi, !sbi->total_valid_node_count); f2fs_bug_on(sbi, !inode->i_blocks); f2fs_i_blocks_write(inode, 1, false); sbi->total_valid_node_count--; sbi->total_valid_block_count--; spin_unlock(&sbi->stat_lock); } static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) { return sbi->total_valid_node_count; } static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) { percpu_counter_inc(&sbi->total_valid_inode_count); } static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) { percpu_counter_dec(&sbi->total_valid_inode_count); } static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) { return percpu_counter_sum_positive(&sbi->total_valid_inode_count); } static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, pgoff_t index, bool for_write) { #ifdef CONFIG_F2FS_FAULT_INJECTION struct page *page = find_lock_page(mapping, index); if (page) return page; if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { f2fs_show_injection_info(FAULT_PAGE_ALLOC); return NULL; } #endif if (!for_write) return grab_cache_page(mapping, index); return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); } static inline void f2fs_copy_page(struct page *src, struct page *dst) { char *src_kaddr = kmap(src); char *dst_kaddr = kmap(dst); memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); kunmap(dst); kunmap(src); } static inline void f2fs_put_page(struct page *page, int unlock) { if (!page) return; if (unlock) { f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); unlock_page(page); } put_page(page); } static inline void f2fs_put_dnode(struct dnode_of_data *dn) { if (dn->node_page) f2fs_put_page(dn->node_page, 1); if (dn->inode_page && dn->node_page != dn->inode_page) f2fs_put_page(dn->inode_page, 0); dn->node_page = NULL; dn->inode_page = NULL; } static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, size_t size) { return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); } static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) { void *entry; entry = kmem_cache_alloc(cachep, flags); if (!entry) entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); return entry; } static inline struct bio *f2fs_bio_alloc(int npages) { struct bio *bio; /* No failure on bio allocation */ bio = bio_alloc(GFP_NOIO, npages); if (!bio) bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); return bio; } static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, unsigned long index, void *item) { while (radix_tree_insert(root, index, item)) cond_resched(); } #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) static inline bool IS_INODE(struct page *page) { struct f2fs_node *p = F2FS_NODE(page); return RAW_IS_INODE(p); } static inline __le32 *blkaddr_in_node(struct f2fs_node *node) { return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; } static inline block_t datablock_addr(struct page *node_page, unsigned int offset) { struct f2fs_node *raw_node; __le32 *addr_array; raw_node = F2FS_NODE(node_page); addr_array = blkaddr_in_node(raw_node); return le32_to_cpu(addr_array[offset]); } static inline int f2fs_test_bit(unsigned int nr, char *addr) { int mask; addr += (nr >> 3); mask = 1 << (7 - (nr & 0x07)); return mask & *addr; } static inline void f2fs_set_bit(unsigned int nr, char *addr) { int mask; addr += (nr >> 3); mask = 1 << (7 - (nr & 0x07)); *addr |= mask; } static inline void f2fs_clear_bit(unsigned int nr, char *addr) { int mask; addr += (nr >> 3); mask = 1 << (7 - (nr & 0x07)); *addr &= ~mask; } static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) { int mask; int ret; addr += (nr >> 3); mask = 1 << (7 - (nr & 0x07)); ret = mask & *addr; *addr |= mask; return ret; } static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) { int mask; int ret; addr += (nr >> 3); mask = 1 << (7 - (nr & 0x07)); ret = mask & *addr; *addr &= ~mask; return ret; } static inline void f2fs_change_bit(unsigned int nr, char *addr) { int mask; addr += (nr >> 3); mask = 1 << (7 - (nr & 0x07)); *addr ^= mask; } /* used for f2fs_inode_info->flags */ enum { FI_NEW_INODE, /* indicate newly allocated inode */ FI_DIRTY_INODE, /* indicate inode is dirty or not */ FI_AUTO_RECOVER, /* indicate inode is recoverable */ FI_DIRTY_DIR, /* indicate directory has dirty pages */ FI_INC_LINK, /* need to increment i_nlink */ FI_ACL_MODE, /* indicate acl mode */ FI_NO_ALLOC, /* should not allocate any blocks */ FI_FREE_NID, /* free allocated nide */ FI_NO_EXTENT, /* not to use the extent cache */ FI_INLINE_XATTR, /* used for inline xattr */ FI_INLINE_DATA, /* used for inline data*/ FI_INLINE_DENTRY, /* used for inline dentry */ FI_APPEND_WRITE, /* inode has appended data */ FI_UPDATE_WRITE, /* inode has in-place-update data */ FI_NEED_IPU, /* used for ipu per file */ FI_ATOMIC_FILE, /* indicate atomic file */ FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ FI_VOLATILE_FILE, /* indicate volatile file */ FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ FI_DROP_CACHE, /* drop dirty page cache */ FI_DATA_EXIST, /* indicate data exists */ FI_INLINE_DOTS, /* indicate inline dot dentries */ FI_DO_DEFRAG, /* indicate defragment is running */ FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ FI_HOT_DATA, /* indicate file is hot */ }; static inline void __mark_inode_dirty_flag(struct inode *inode, int flag, bool set) { switch (flag) { case FI_INLINE_XATTR: case FI_INLINE_DATA: case FI_INLINE_DENTRY: if (set) return; case FI_DATA_EXIST: case FI_INLINE_DOTS: f2fs_mark_inode_dirty_sync(inode, true); } } static inline void set_inode_flag(struct inode *inode, int flag) { if (!test_bit(flag, &F2FS_I(inode)->flags)) set_bit(flag, &F2FS_I(inode)->flags); __mark_inode_dirty_flag(inode, flag, true); } static inline int is_inode_flag_set(struct inode *inode, int flag) { return test_bit(flag, &F2FS_I(inode)->flags); } static inline void clear_inode_flag(struct inode *inode, int flag) { if (test_bit(flag, &F2FS_I(inode)->flags)) clear_bit(flag, &F2FS_I(inode)->flags); __mark_inode_dirty_flag(inode, flag, false); } static inline void set_acl_inode(struct inode *inode, umode_t mode) { F2FS_I(inode)->i_acl_mode = mode; set_inode_flag(inode, FI_ACL_MODE); f2fs_mark_inode_dirty_sync(inode, false); } static inline void f2fs_i_links_write(struct inode *inode, bool inc) { if (inc) inc_nlink(inode); else drop_nlink(inode); f2fs_mark_inode_dirty_sync(inode, true); } static inline void f2fs_i_blocks_write(struct inode *inode, blkcnt_t diff, bool add) { bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); inode->i_blocks = add ? inode->i_blocks + diff : inode->i_blocks - diff; f2fs_mark_inode_dirty_sync(inode, true); if (clean || recover) set_inode_flag(inode, FI_AUTO_RECOVER); } static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) { bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); if (i_size_read(inode) == i_size) return; i_size_write(inode, i_size); f2fs_mark_inode_dirty_sync(inode, true); if (clean || recover) set_inode_flag(inode, FI_AUTO_RECOVER); } static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) { F2FS_I(inode)->i_current_depth = depth; f2fs_mark_inode_dirty_sync(inode, true); } static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) { F2FS_I(inode)->i_xattr_nid = xnid; f2fs_mark_inode_dirty_sync(inode, true); } static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) { F2FS_I(inode)->i_pino = pino; f2fs_mark_inode_dirty_sync(inode, true); } static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) { struct f2fs_inode_info *fi = F2FS_I(inode); if (ri->i_inline & F2FS_INLINE_XATTR) set_bit(FI_INLINE_XATTR, &fi->flags); if (ri->i_inline & F2FS_INLINE_DATA) set_bit(FI_INLINE_DATA, &fi->flags); if (ri->i_inline & F2FS_INLINE_DENTRY) set_bit(FI_INLINE_DENTRY, &fi->flags); if (ri->i_inline & F2FS_DATA_EXIST) set_bit(FI_DATA_EXIST, &fi->flags); if (ri->i_inline & F2FS_INLINE_DOTS) set_bit(FI_INLINE_DOTS, &fi->flags); } static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) { ri->i_inline = 0; if (is_inode_flag_set(inode, FI_INLINE_XATTR)) ri->i_inline |= F2FS_INLINE_XATTR; if (is_inode_flag_set(inode, FI_INLINE_DATA)) ri->i_inline |= F2FS_INLINE_DATA; if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) ri->i_inline |= F2FS_INLINE_DENTRY; if (is_inode_flag_set(inode, FI_DATA_EXIST)) ri->i_inline |= F2FS_DATA_EXIST; if (is_inode_flag_set(inode, FI_INLINE_DOTS)) ri->i_inline |= F2FS_INLINE_DOTS; } static inline int f2fs_has_inline_xattr(struct inode *inode) { return is_inode_flag_set(inode, FI_INLINE_XATTR); } static inline unsigned int addrs_per_inode(struct inode *inode) { if (f2fs_has_inline_xattr(inode)) return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; return DEF_ADDRS_PER_INODE; } static inline void *inline_xattr_addr(struct page *page) { struct f2fs_inode *ri = F2FS_INODE(page); return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS]); } static inline int inline_xattr_size(struct inode *inode) { if (f2fs_has_inline_xattr(inode)) return F2FS_INLINE_XATTR_ADDRS << 2; else return 0; } static inline int f2fs_has_inline_data(struct inode *inode) { return is_inode_flag_set(inode, FI_INLINE_DATA); } static inline int f2fs_exist_data(struct inode *inode) { return is_inode_flag_set(inode, FI_DATA_EXIST); } static inline int f2fs_has_inline_dots(struct inode *inode) { return is_inode_flag_set(inode, FI_INLINE_DOTS); } static inline bool f2fs_is_atomic_file(struct inode *inode) { return is_inode_flag_set(inode, FI_ATOMIC_FILE); } static inline bool f2fs_is_commit_atomic_write(struct inode *inode) { return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); } static inline bool f2fs_is_volatile_file(struct inode *inode) { return is_inode_flag_set(inode, FI_VOLATILE_FILE); } static inline bool f2fs_is_first_block_written(struct inode *inode) { return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); } static inline bool f2fs_is_drop_cache(struct inode *inode) { return is_inode_flag_set(inode, FI_DROP_CACHE); } static inline void *inline_data_addr(struct page *page) { struct f2fs_inode *ri = F2FS_INODE(page); return (void *)&(ri->i_addr[1]); } static inline int f2fs_has_inline_dentry(struct inode *inode) { return is_inode_flag_set(inode, FI_INLINE_DENTRY); } static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) { if (!f2fs_has_inline_dentry(dir)) kunmap(page); } static inline int is_file(struct inode *inode, int type) { return F2FS_I(inode)->i_advise & type; } static inline void set_file(struct inode *inode, int type) { F2FS_I(inode)->i_advise |= type; f2fs_mark_inode_dirty_sync(inode, true); } static inline void clear_file(struct inode *inode, int type) { F2FS_I(inode)->i_advise &= ~type; f2fs_mark_inode_dirty_sync(inode, true); } static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) { if (dsync) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); bool ret; spin_lock(&sbi->inode_lock[DIRTY_META]); ret = list_empty(&F2FS_I(inode)->gdirty_list); spin_unlock(&sbi->inode_lock[DIRTY_META]); return ret; } if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || file_keep_isize(inode) || i_size_read(inode) & PAGE_MASK) return false; return F2FS_I(inode)->last_disk_size == i_size_read(inode); } static inline int f2fs_readonly(struct super_block *sb) { return sb->s_flags & MS_RDONLY; } static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) { return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); } static inline bool is_dot_dotdot(const struct qstr *str) { if (str->len == 1 && str->name[0] == '.') return true; if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') return true; return false; } static inline bool f2fs_may_extent_tree(struct inode *inode) { if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || is_inode_flag_set(inode, FI_NO_EXTENT)) return false; return S_ISREG(inode->i_mode); } static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, size_t size, gfp_t flags) { #ifdef CONFIG_F2FS_FAULT_INJECTION if (time_to_inject(sbi, FAULT_KMALLOC)) { f2fs_show_injection_info(FAULT_KMALLOC); return NULL; } #endif return kmalloc(size, flags); } static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) { void *ret; ret = kmalloc(size, flags | __GFP_NOWARN); if (!ret) ret = __vmalloc(size, flags, PAGE_KERNEL); return ret; } static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) { void *ret; ret = kzalloc(size, flags | __GFP_NOWARN); if (!ret) ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); return ret; } #define get_inode_mode(i) \ ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) /* * file.c */ int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); void truncate_data_blocks(struct dnode_of_data *dn); int truncate_blocks(struct inode *inode, u64 from, bool lock); int f2fs_truncate(struct inode *inode); int f2fs_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int flags); int f2fs_setattr(struct dentry *dentry, struct iattr *attr); int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); int truncate_data_blocks_range(struct dnode_of_data *dn, int count); long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); /* * inode.c */ void f2fs_set_inode_flags(struct inode *inode); struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); int update_inode(struct inode *inode, struct page *node_page); int update_inode_page(struct inode *inode); int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); void f2fs_evict_inode(struct inode *inode); void handle_failed_inode(struct inode *inode); /* * namei.c */ struct dentry *f2fs_get_parent(struct dentry *child); /* * dir.c */ void set_de_type(struct f2fs_dir_entry *de, umode_t mode); unsigned char get_de_type(struct f2fs_dir_entry *de); struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, f2fs_hash_t namehash, int *max_slots, struct f2fs_dentry_ptr *d); int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, unsigned int start_pos, struct fscrypt_str *fstr); void do_make_empty_dir(struct inode *inode, struct inode *parent, struct f2fs_dentry_ptr *d); struct page *init_inode_metadata(struct inode *inode, struct inode *dir, const struct qstr *new_name, const struct qstr *orig_name, struct page *dpage); void update_parent_metadata(struct inode *dir, struct inode *inode, unsigned int current_depth); int room_for_filename(const void *bitmap, int slots, int max_slots); void f2fs_drop_nlink(struct inode *dir, struct inode *inode); struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, struct fscrypt_name *fname, struct page **res_page); struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, const struct qstr *child, struct page **res_page); struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, struct page **page); void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, struct page *page, struct inode *inode); void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, const struct qstr *name, f2fs_hash_t name_hash, unsigned int bit_pos); int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, const struct qstr *orig_name, struct inode *inode, nid_t ino, umode_t mode); int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, struct inode *inode, nid_t ino, umode_t mode); int __f2fs_add_link(struct inode *dir, const struct qstr *name, struct inode *inode, nid_t ino, umode_t mode); void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, struct inode *dir, struct inode *inode); int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); bool f2fs_empty_dir(struct inode *dir); static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) { return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, inode, inode->i_ino, inode->i_mode); } /* * super.c */ int f2fs_inode_dirtied(struct inode *inode, bool sync); void f2fs_inode_synced(struct inode *inode); int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); int f2fs_sync_fs(struct super_block *sb, int sync); extern __printf(3, 4) void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); int sanity_check_ckpt(struct f2fs_sb_info *sbi); /* * hash.c */ f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info); /* * node.c */ struct dnode_of_data; struct node_info; bool available_free_memory(struct f2fs_sb_info *sbi, int type); int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); int truncate_inode_blocks(struct inode *inode, pgoff_t from); int truncate_xattr_node(struct inode *inode, struct page *page); int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); int remove_inode_page(struct inode *inode); struct page *new_inode_page(struct inode *inode); struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs, struct page *ipage); void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); struct page *get_node_page_ra(struct page *parent, int start); void move_node_page(struct page *node_page, int gc_type); int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, struct writeback_control *wbc, bool atomic); int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc); void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); void recover_inline_xattr(struct inode *inode, struct page *page); int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr); int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); int restore_node_summary(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_summary_block *sum); void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); int build_node_manager(struct f2fs_sb_info *sbi); void destroy_node_manager(struct f2fs_sb_info *sbi); int __init create_node_manager_caches(void); void destroy_node_manager_caches(void); /* * segment.c */ void register_inmem_page(struct inode *inode, struct page *page); void drop_inmem_pages(struct inode *inode); void drop_inmem_page(struct inode *inode, struct page *page); int commit_inmem_pages(struct inode *inode); void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); int f2fs_issue_flush(struct f2fs_sb_info *sbi); int create_flush_cmd_control(struct f2fs_sb_info *sbi); void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new); void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); void release_discard_addrs(struct f2fs_sb_info *sbi); int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); void allocate_new_segments(struct f2fs_sb_info *sbi); int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); void write_meta_page(struct f2fs_sb_info *sbi, struct page *page); void write_node_page(unsigned int nid, struct f2fs_io_info *fio); void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); int rewrite_data_page(struct f2fs_io_info *fio); void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, block_t old_blkaddr, block_t new_blkaddr, bool recover_curseg, bool recover_newaddr); void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, block_t old_addr, block_t new_addr, unsigned char version, bool recover_curseg, bool recover_newaddr); void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, block_t old_blkaddr, block_t *new_blkaddr, struct f2fs_summary *sum, int type); void f2fs_wait_on_page_writeback(struct page *page, enum page_type type, bool ordered); void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, unsigned int val, int alloc); void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); int build_segment_manager(struct f2fs_sb_info *sbi); void destroy_segment_manager(struct f2fs_sb_info *sbi); int __init create_segment_manager_caches(void); void destroy_segment_manager_caches(void); /* * checkpoint.c */ void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type, bool sync); void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, long nr_to_write); void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); void release_ino_entry(struct f2fs_sb_info *sbi, bool all); bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); int acquire_orphan_inode(struct f2fs_sb_info *sbi); void release_orphan_inode(struct f2fs_sb_info *sbi); void add_orphan_inode(struct inode *inode); void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); int recover_orphan_inodes(struct f2fs_sb_info *sbi); int get_valid_checkpoint(struct f2fs_sb_info *sbi); void update_dirty_page(struct inode *inode, struct page *page); void remove_dirty_inode(struct inode *inode); int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); void init_ino_entry_info(struct f2fs_sb_info *sbi); int __init create_checkpoint_caches(void); void destroy_checkpoint_caches(void); /* * data.c */ void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, int rw); void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, struct inode *inode, nid_t ino, pgoff_t idx, enum page_type type, int rw); void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi); int f2fs_submit_page_bio(struct f2fs_io_info *fio); int f2fs_submit_page_mbio(struct f2fs_io_info *fio); struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, block_t blk_addr, struct bio *bio); int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); void set_data_blkaddr(struct dnode_of_data *dn); void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); int reserve_new_block(struct dnode_of_data *dn); int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); struct page *get_read_data_page(struct inode *inode, pgoff_t index, int op_flags, bool for_write); struct page *find_data_page(struct inode *inode, pgoff_t index); struct page *get_lock_data_page(struct inode *inode, pgoff_t index, bool for_write); struct page *get_new_data_page(struct inode *inode, struct page *ipage, pgoff_t index, bool new_i_size); int do_write_data_page(struct f2fs_io_info *fio); int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int create, int flag); int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, u64 start, u64 len); void f2fs_set_page_dirty_nobuffers(struct page *page); void f2fs_invalidate_page(struct page *page, unsigned int offset, unsigned int length); int f2fs_release_page(struct page *page, gfp_t wait); #ifdef CONFIG_MIGRATION int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, struct page *page, enum migrate_mode mode); #endif /* * gc.c */ int start_gc_thread(struct f2fs_sb_info *sbi); void stop_gc_thread(struct f2fs_sb_info *sbi); block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, unsigned int segno); void build_gc_manager(struct f2fs_sb_info *sbi); /* * recovery.c */ int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); bool space_for_roll_forward(struct f2fs_sb_info *sbi); /* * debug.c */ #ifdef CONFIG_F2FS_STAT_FS struct f2fs_stat_info { struct list_head stat_list; struct f2fs_sb_info *sbi; int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; int main_area_segs, main_area_sections, main_area_zones; unsigned long long hit_largest, hit_cached, hit_rbtree; unsigned long long hit_total, total_ext; int ext_tree, zombie_tree, ext_node; int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; int inmem_pages; unsigned int ndirty_dirs, ndirty_files, ndirty_all; int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids; int total_count, utilization; int bg_gc, nr_wb_cp_data, nr_wb_data; int nr_flushing, nr_flushed, nr_discarding, nr_discarded; int nr_discard_cmd; unsigned int undiscard_blks; int inline_xattr, inline_inode, inline_dir, append, update, orphans; int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; unsigned int bimodal, avg_vblocks; int util_free, util_valid, util_invalid; int rsvd_segs, overp_segs; int dirty_count, node_pages, meta_pages; int prefree_count, call_count, cp_count, bg_cp_count; int tot_segs, node_segs, data_segs, free_segs, free_secs; int bg_node_segs, bg_data_segs; int tot_blks, data_blks, node_blks; int bg_data_blks, bg_node_blks; int curseg[NR_CURSEG_TYPE]; int cursec[NR_CURSEG_TYPE]; int curzone[NR_CURSEG_TYPE]; unsigned int segment_count[2]; unsigned int block_count[2]; unsigned int inplace_count; unsigned long long base_mem, cache_mem, page_mem; }; static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) { return (struct f2fs_stat_info *)sbi->stat_info; } #define stat_inc_cp_count(si) ((si)->cp_count++) #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) #define stat_inc_call_count(si) ((si)->call_count++) #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) #define stat_inc_inline_xattr(inode) \ do { \ if (f2fs_has_inline_xattr(inode)) \ (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ } while (0) #define stat_dec_inline_xattr(inode) \ do { \ if (f2fs_has_inline_xattr(inode)) \ (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ } while (0) #define stat_inc_inline_inode(inode) \ do { \ if (f2fs_has_inline_data(inode)) \ (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ } while (0) #define stat_dec_inline_inode(inode) \ do { \ if (f2fs_has_inline_data(inode)) \ (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ } while (0) #define stat_inc_inline_dir(inode) \ do { \ if (f2fs_has_inline_dentry(inode)) \ (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ } while (0) #define stat_dec_inline_dir(inode) \ do { \ if (f2fs_has_inline_dentry(inode)) \ (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ } while (0) #define stat_inc_seg_type(sbi, curseg) \ ((sbi)->segment_count[(curseg)->alloc_type]++) #define stat_inc_block_count(sbi, curseg) \ ((sbi)->block_count[(curseg)->alloc_type]++) #define stat_inc_inplace_blocks(sbi) \ (atomic_inc(&(sbi)->inplace_count)) #define stat_inc_atomic_write(inode) \ (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) #define stat_dec_atomic_write(inode) \ (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) #define stat_update_max_atomic_write(inode) \ do { \ int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ if (cur > max) \ atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ } while (0) #define stat_inc_volatile_write(inode) \ (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) #define stat_dec_volatile_write(inode) \ (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) #define stat_update_max_volatile_write(inode) \ do { \ int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ if (cur > max) \ atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ } while (0) #define stat_inc_seg_count(sbi, type, gc_type) \ do { \ struct f2fs_stat_info *si = F2FS_STAT(sbi); \ si->tot_segs++; \ if ((type) == SUM_TYPE_DATA) { \ si->data_segs++; \ si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ } else { \ si->node_segs++; \ si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ } \ } while (0) #define stat_inc_tot_blk_count(si, blks) \ ((si)->tot_blks += (blks)) #define stat_inc_data_blk_count(sbi, blks, gc_type) \ do { \ struct f2fs_stat_info *si = F2FS_STAT(sbi); \ stat_inc_tot_blk_count(si, blks); \ si->data_blks += (blks); \ si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ } while (0) #define stat_inc_node_blk_count(sbi, blks, gc_type) \ do { \ struct f2fs_stat_info *si = F2FS_STAT(sbi); \ stat_inc_tot_blk_count(si, blks); \ si->node_blks += (blks); \ si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ } while (0) int f2fs_build_stats(struct f2fs_sb_info *sbi); void f2fs_destroy_stats(struct f2fs_sb_info *sbi); int __init f2fs_create_root_stats(void); void f2fs_destroy_root_stats(void); #else #define stat_inc_cp_count(si) #define stat_inc_bg_cp_count(si) #define stat_inc_call_count(si) #define stat_inc_bggc_count(si) #define stat_inc_dirty_inode(sbi, type) #define stat_dec_dirty_inode(sbi, type) #define stat_inc_total_hit(sb) #define stat_inc_rbtree_node_hit(sb) #define stat_inc_largest_node_hit(sbi) #define stat_inc_cached_node_hit(sbi) #define stat_inc_inline_xattr(inode) #define stat_dec_inline_xattr(inode) #define stat_inc_inline_inode(inode) #define stat_dec_inline_inode(inode) #define stat_inc_inline_dir(inode) #define stat_dec_inline_dir(inode) #define stat_inc_atomic_write(inode) #define stat_dec_atomic_write(inode) #define stat_update_max_atomic_write(inode) #define stat_inc_volatile_write(inode) #define stat_dec_volatile_write(inode) #define stat_update_max_volatile_write(inode) #define stat_inc_seg_type(sbi, curseg) #define stat_inc_block_count(sbi, curseg) #define stat_inc_inplace_blocks(sbi) #define stat_inc_seg_count(sbi, type, gc_type) #define stat_inc_tot_blk_count(si, blks) #define stat_inc_data_blk_count(sbi, blks, gc_type) #define stat_inc_node_blk_count(sbi, blks, gc_type) static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } static inline int __init f2fs_create_root_stats(void) { return 0; } static inline void f2fs_destroy_root_stats(void) { } #endif extern const struct file_operations f2fs_dir_operations; extern const struct file_operations f2fs_file_operations; extern const struct inode_operations f2fs_file_inode_operations; extern const struct address_space_operations f2fs_dblock_aops; extern const struct address_space_operations f2fs_node_aops; extern const struct address_space_operations f2fs_meta_aops; extern const struct inode_operations f2fs_dir_inode_operations; extern const struct inode_operations f2fs_symlink_inode_operations; extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; extern const struct inode_operations f2fs_special_inode_operations; extern struct kmem_cache *inode_entry_slab; /* * inline.c */ bool f2fs_may_inline_data(struct inode *inode); bool f2fs_may_inline_dentry(struct inode *inode); void read_inline_data(struct page *page, struct page *ipage); void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); int f2fs_read_inline_data(struct inode *inode, struct page *page); int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); int f2fs_convert_inline_inode(struct inode *inode); int f2fs_write_inline_data(struct inode *inode, struct page *page); bool recover_inline_data(struct inode *inode, struct page *npage); struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, struct fscrypt_name *fname, struct page **res_page); int make_empty_inline_dir(struct inode *inode, struct inode *parent, struct page *ipage); int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, const struct qstr *orig_name, struct inode *inode, nid_t ino, umode_t mode); void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, struct inode *dir, struct inode *inode); bool f2fs_empty_inline_dir(struct inode *dir); int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, struct fscrypt_str *fstr); int f2fs_inline_data_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, __u64 start, __u64 len); /* * shrinker.c */ unsigned long f2fs_shrink_count(struct shrinker *shrink, struct shrink_control *sc); unsigned long f2fs_shrink_scan(struct shrinker *shrink, struct shrink_control *sc); void f2fs_join_shrinker(struct f2fs_sb_info *sbi); void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); /* * extent_cache.c */ struct rb_entry *__lookup_rb_tree(struct rb_root *root, struct rb_entry *cached_re, unsigned int ofs); struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, struct rb_root *root, struct rb_node **parent, unsigned int ofs); struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, struct rb_entry *cached_re, unsigned int ofs, struct rb_entry **prev_entry, struct rb_entry **next_entry, struct rb_node ***insert_p, struct rb_node **insert_parent, bool force); bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, struct rb_root *root); unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); void f2fs_drop_extent_tree(struct inode *inode); unsigned int f2fs_destroy_extent_node(struct inode *inode); void f2fs_destroy_extent_tree(struct inode *inode); bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, struct extent_info *ei); void f2fs_update_extent_cache(struct dnode_of_data *dn); void f2fs_update_extent_cache_range(struct dnode_of_data *dn, pgoff_t fofs, block_t blkaddr, unsigned int len); void init_extent_cache_info(struct f2fs_sb_info *sbi); int __init create_extent_cache(void); void destroy_extent_cache(void); /* * crypto support */ static inline bool f2fs_encrypted_inode(struct inode *inode) { return file_is_encrypt(inode); } static inline void f2fs_set_encrypted_inode(struct inode *inode) { #ifdef CONFIG_F2FS_FS_ENCRYPTION file_set_encrypt(inode); #endif } static inline bool f2fs_bio_encrypted(struct bio *bio) { return bio->bi_private != NULL; } static inline int f2fs_sb_has_crypto(struct super_block *sb) { return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); } static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) { return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); } #ifdef CONFIG_BLK_DEV_ZONED static inline int get_blkz_type(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t blkaddr) { unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; int i; for (i = 0; i < sbi->s_ndevs; i++) if (FDEV(i).bdev == bdev) return FDEV(i).blkz_type[zno]; return -EINVAL; } #endif static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) { struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); } static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) { clear_opt(sbi, ADAPTIVE); clear_opt(sbi, LFS); switch (mt) { case F2FS_MOUNT_ADAPTIVE: set_opt(sbi, ADAPTIVE); break; case F2FS_MOUNT_LFS: set_opt(sbi, LFS); break; } } static inline bool f2fs_may_encrypt(struct inode *inode) { #ifdef CONFIG_F2FS_FS_ENCRYPTION umode_t mode = inode->i_mode; return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); #else return 0; #endif } #endif