// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries. * All rights reserved. */ #include #include #include "netdev.h" #include "cfg80211.h" struct wilc_spi { int crc_off; int nint; int has_thrpt_enh; }; static const struct wilc_hif_func wilc_hif_spi; /******************************************** * * Crc7 * ********************************************/ static const u8 crc7_syndrome_table[256] = { 0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77, 0x19, 0x10, 0x0b, 0x02, 0x3d, 0x34, 0x2f, 0x26, 0x51, 0x58, 0x43, 0x4a, 0x75, 0x7c, 0x67, 0x6e, 0x32, 0x3b, 0x20, 0x29, 0x16, 0x1f, 0x04, 0x0d, 0x7a, 0x73, 0x68, 0x61, 0x5e, 0x57, 0x4c, 0x45, 0x2b, 0x22, 0x39, 0x30, 0x0f, 0x06, 0x1d, 0x14, 0x63, 0x6a, 0x71, 0x78, 0x47, 0x4e, 0x55, 0x5c, 0x64, 0x6d, 0x76, 0x7f, 0x40, 0x49, 0x52, 0x5b, 0x2c, 0x25, 0x3e, 0x37, 0x08, 0x01, 0x1a, 0x13, 0x7d, 0x74, 0x6f, 0x66, 0x59, 0x50, 0x4b, 0x42, 0x35, 0x3c, 0x27, 0x2e, 0x11, 0x18, 0x03, 0x0a, 0x56, 0x5f, 0x44, 0x4d, 0x72, 0x7b, 0x60, 0x69, 0x1e, 0x17, 0x0c, 0x05, 0x3a, 0x33, 0x28, 0x21, 0x4f, 0x46, 0x5d, 0x54, 0x6b, 0x62, 0x79, 0x70, 0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31, 0x38, 0x41, 0x48, 0x53, 0x5a, 0x65, 0x6c, 0x77, 0x7e, 0x09, 0x00, 0x1b, 0x12, 0x2d, 0x24, 0x3f, 0x36, 0x58, 0x51, 0x4a, 0x43, 0x7c, 0x75, 0x6e, 0x67, 0x10, 0x19, 0x02, 0x0b, 0x34, 0x3d, 0x26, 0x2f, 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c, 0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04, 0x6a, 0x63, 0x78, 0x71, 0x4e, 0x47, 0x5c, 0x55, 0x22, 0x2b, 0x30, 0x39, 0x06, 0x0f, 0x14, 0x1d, 0x25, 0x2c, 0x37, 0x3e, 0x01, 0x08, 0x13, 0x1a, 0x6d, 0x64, 0x7f, 0x76, 0x49, 0x40, 0x5b, 0x52, 0x3c, 0x35, 0x2e, 0x27, 0x18, 0x11, 0x0a, 0x03, 0x74, 0x7d, 0x66, 0x6f, 0x50, 0x59, 0x42, 0x4b, 0x17, 0x1e, 0x05, 0x0c, 0x33, 0x3a, 0x21, 0x28, 0x5f, 0x56, 0x4d, 0x44, 0x7b, 0x72, 0x69, 0x60, 0x0e, 0x07, 0x1c, 0x15, 0x2a, 0x23, 0x38, 0x31, 0x46, 0x4f, 0x54, 0x5d, 0x62, 0x6b, 0x70, 0x79 }; static u8 crc7_byte(u8 crc, u8 data) { return crc7_syndrome_table[(crc << 1) ^ data]; } static u8 crc7(u8 crc, const u8 *buffer, u32 len) { while (len--) crc = crc7_byte(crc, *buffer++); return crc; } /******************************************** * * Spi protocol Function * ********************************************/ #define CMD_DMA_WRITE 0xc1 #define CMD_DMA_READ 0xc2 #define CMD_INTERNAL_WRITE 0xc3 #define CMD_INTERNAL_READ 0xc4 #define CMD_TERMINATE 0xc5 #define CMD_REPEAT 0xc6 #define CMD_DMA_EXT_WRITE 0xc7 #define CMD_DMA_EXT_READ 0xc8 #define CMD_SINGLE_WRITE 0xc9 #define CMD_SINGLE_READ 0xca #define CMD_RESET 0xcf #define N_OK 1 #define N_FAIL 0 #define N_RESET -1 #define N_RETRY -2 #define DATA_PKT_SZ_256 256 #define DATA_PKT_SZ_512 512 #define DATA_PKT_SZ_1K 1024 #define DATA_PKT_SZ_4K (4 * 1024) #define DATA_PKT_SZ_8K (8 * 1024) #define DATA_PKT_SZ DATA_PKT_SZ_8K #define USE_SPI_DMA 0 static int wilc_bus_probe(struct spi_device *spi) { int ret; struct wilc *wilc; struct gpio_desc *gpio; struct wilc_spi *spi_priv; spi_priv = kzalloc(sizeof(*spi_priv), GFP_KERNEL); if (!spi_priv) return -ENOMEM; gpio = gpiod_get(&spi->dev, "irq", GPIOD_IN); if (IS_ERR(gpio)) { /* get the GPIO descriptor from hardcode GPIO number */ gpio = gpio_to_desc(GPIO_NUM); if (!gpio) dev_err(&spi->dev, "failed to get the irq gpio\n"); } ret = wilc_cfg80211_init(&wilc, &spi->dev, WILC_HIF_SPI, &wilc_hif_spi); if (ret) { kfree(spi_priv); return ret; } spi_set_drvdata(spi, wilc); wilc->dev = &spi->dev; wilc->bus_data = spi_priv; wilc->gpio_irq = gpio; wilc->rtc_clk = devm_clk_get(&spi->dev, "rtc_clk"); if (PTR_ERR_OR_ZERO(wilc->rtc_clk) == -EPROBE_DEFER) return -EPROBE_DEFER; else if (!IS_ERR(wilc->rtc_clk)) clk_prepare_enable(wilc->rtc_clk); return 0; } static int wilc_bus_remove(struct spi_device *spi) { struct wilc *wilc = spi_get_drvdata(spi); /* free the GPIO in module remove */ if (wilc->gpio_irq) gpiod_put(wilc->gpio_irq); if (!IS_ERR(wilc->rtc_clk)) clk_disable_unprepare(wilc->rtc_clk); wilc_netdev_cleanup(wilc); return 0; } static const struct of_device_id wilc_of_match[] = { { .compatible = "microchip,wilc1000-spi", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, wilc_of_match); static struct spi_driver wilc_spi_driver = { .driver = { .name = MODALIAS, .of_match_table = wilc_of_match, }, .probe = wilc_bus_probe, .remove = wilc_bus_remove, }; module_spi_driver(wilc_spi_driver); MODULE_LICENSE("GPL"); static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len) { struct spi_device *spi = to_spi_device(wilc->dev); int ret; struct spi_message msg; if (len > 0 && b) { struct spi_transfer tr = { .tx_buf = b, .len = len, .delay_usecs = 0, }; char *r_buffer = kzalloc(len, GFP_KERNEL); if (!r_buffer) return -ENOMEM; tr.rx_buf = r_buffer; dev_dbg(&spi->dev, "Request writing %d bytes\n", len); memset(&msg, 0, sizeof(msg)); spi_message_init(&msg); msg.spi = spi; msg.is_dma_mapped = USE_SPI_DMA; spi_message_add_tail(&tr, &msg); ret = spi_sync(spi, &msg); if (ret < 0) dev_err(&spi->dev, "SPI transaction failed\n"); kfree(r_buffer); } else { dev_err(&spi->dev, "can't write data with the following length: %d\n", len); ret = -EINVAL; } return ret; } static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen) { struct spi_device *spi = to_spi_device(wilc->dev); int ret; if (rlen > 0) { struct spi_message msg; struct spi_transfer tr = { .rx_buf = rb, .len = rlen, .delay_usecs = 0, }; char *t_buffer = kzalloc(rlen, GFP_KERNEL); if (!t_buffer) return -ENOMEM; tr.tx_buf = t_buffer; memset(&msg, 0, sizeof(msg)); spi_message_init(&msg); msg.spi = spi; msg.is_dma_mapped = USE_SPI_DMA; spi_message_add_tail(&tr, &msg); ret = spi_sync(spi, &msg); if (ret < 0) dev_err(&spi->dev, "SPI transaction failed\n"); kfree(t_buffer); } else { dev_err(&spi->dev, "can't read data with the following length: %u\n", rlen); ret = -EINVAL; } return ret; } static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen) { struct spi_device *spi = to_spi_device(wilc->dev); int ret; if (rlen > 0) { struct spi_message msg; struct spi_transfer tr = { .rx_buf = rb, .tx_buf = wb, .len = rlen, .bits_per_word = 8, .delay_usecs = 0, }; memset(&msg, 0, sizeof(msg)); spi_message_init(&msg); msg.spi = spi; msg.is_dma_mapped = USE_SPI_DMA; spi_message_add_tail(&tr, &msg); ret = spi_sync(spi, &msg); if (ret < 0) dev_err(&spi->dev, "SPI transaction failed\n"); } else { dev_err(&spi->dev, "can't read data with the following length: %u\n", rlen); ret = -EINVAL; } return ret; } static int spi_cmd_complete(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz, u8 clockless) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; u8 wb[32], rb[32]; u8 wix, rix; u32 len2; u8 rsp; int len = 0; int result = N_OK; int retry; u8 crc[2]; wb[0] = cmd; switch (cmd) { case CMD_SINGLE_READ: /* single word (4 bytes) read */ wb[1] = (u8)(adr >> 16); wb[2] = (u8)(adr >> 8); wb[3] = (u8)adr; len = 5; break; case CMD_INTERNAL_READ: /* internal register read */ wb[1] = (u8)(adr >> 8); if (clockless == 1) wb[1] |= BIT(7); wb[2] = (u8)adr; wb[3] = 0x00; len = 5; break; case CMD_TERMINATE: wb[1] = 0x00; wb[2] = 0x00; wb[3] = 0x00; len = 5; break; case CMD_REPEAT: wb[1] = 0x00; wb[2] = 0x00; wb[3] = 0x00; len = 5; break; case CMD_RESET: wb[1] = 0xff; wb[2] = 0xff; wb[3] = 0xff; len = 5; break; case CMD_DMA_WRITE: /* dma write */ case CMD_DMA_READ: /* dma read */ wb[1] = (u8)(adr >> 16); wb[2] = (u8)(adr >> 8); wb[3] = (u8)adr; wb[4] = (u8)(sz >> 8); wb[5] = (u8)(sz); len = 7; break; case CMD_DMA_EXT_WRITE: /* dma extended write */ case CMD_DMA_EXT_READ: /* dma extended read */ wb[1] = (u8)(adr >> 16); wb[2] = (u8)(adr >> 8); wb[3] = (u8)adr; wb[4] = (u8)(sz >> 16); wb[5] = (u8)(sz >> 8); wb[6] = (u8)(sz); len = 8; break; case CMD_INTERNAL_WRITE: /* internal register write */ wb[1] = (u8)(adr >> 8); if (clockless == 1) wb[1] |= BIT(7); wb[2] = (u8)(adr); wb[3] = b[3]; wb[4] = b[2]; wb[5] = b[1]; wb[6] = b[0]; len = 8; break; case CMD_SINGLE_WRITE: /* single word write */ wb[1] = (u8)(adr >> 16); wb[2] = (u8)(adr >> 8); wb[3] = (u8)(adr); wb[4] = b[3]; wb[5] = b[2]; wb[6] = b[1]; wb[7] = b[0]; len = 9; break; default: result = N_FAIL; break; } if (result != N_OK) return result; if (!spi_priv->crc_off) wb[len - 1] = (crc7(0x7f, (const u8 *)&wb[0], len - 1)) << 1; else len -= 1; #define NUM_SKIP_BYTES (1) #define NUM_RSP_BYTES (2) #define NUM_DATA_HDR_BYTES (1) #define NUM_DATA_BYTES (4) #define NUM_CRC_BYTES (2) #define NUM_DUMMY_BYTES (3) if (cmd == CMD_RESET || cmd == CMD_TERMINATE || cmd == CMD_REPEAT) { len2 = len + (NUM_SKIP_BYTES + NUM_RSP_BYTES + NUM_DUMMY_BYTES); } else if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ) { int tmp = NUM_RSP_BYTES + NUM_DATA_HDR_BYTES + NUM_DATA_BYTES + NUM_DUMMY_BYTES; if (!spi_priv->crc_off) len2 = len + tmp + NUM_CRC_BYTES; else len2 = len + tmp; } else { len2 = len + (NUM_RSP_BYTES + NUM_DUMMY_BYTES); } #undef NUM_DUMMY_BYTES if (len2 > ARRAY_SIZE(wb)) { dev_err(&spi->dev, "spi buffer size too small (%d) (%zu)\n", len2, ARRAY_SIZE(wb)); return N_FAIL; } /* zero spi write buffers. */ for (wix = len; wix < len2; wix++) wb[wix] = 0; rix = len; if (wilc_spi_tx_rx(wilc, wb, rb, len2)) { dev_err(&spi->dev, "Failed cmd write, bus error...\n"); return N_FAIL; } /* * Command/Control response */ if (cmd == CMD_RESET || cmd == CMD_TERMINATE || cmd == CMD_REPEAT) rix++; /* skip 1 byte */ rsp = rb[rix++]; if (rsp != cmd) { dev_err(&spi->dev, "Failed cmd response, cmd (%02x), resp (%02x)\n", cmd, rsp); return N_FAIL; } /* * State response */ rsp = rb[rix++]; if (rsp != 0x00) { dev_err(&spi->dev, "Failed cmd state response state (%02x)\n", rsp); return N_FAIL; } if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ || cmd == CMD_DMA_READ || cmd == CMD_DMA_EXT_READ) { /* * Data Respnose header */ retry = 100; do { /* * ensure there is room in buffer later * to read data and crc */ if (rix < len2) { rsp = rb[rix++]; } else { retry = 0; break; } if (((rsp >> 4) & 0xf) == 0xf) break; } while (retry--); if (retry <= 0) { dev_err(&spi->dev, "Error, data read response (%02x)\n", rsp); return N_RESET; } } if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ) { /* * Read bytes */ if ((rix + 3) < len2) { b[0] = rb[rix++]; b[1] = rb[rix++]; b[2] = rb[rix++]; b[3] = rb[rix++]; } else { dev_err(&spi->dev, "buffer overrun when reading data.\n"); return N_FAIL; } if (!spi_priv->crc_off) { /* * Read Crc */ if ((rix + 1) < len2) { crc[0] = rb[rix++]; crc[1] = rb[rix++]; } else { dev_err(&spi->dev, "buffer overrun when reading crc.\n"); return N_FAIL; } } } else if ((cmd == CMD_DMA_READ) || (cmd == CMD_DMA_EXT_READ)) { int ix; /* some data may be read in response to dummy bytes. */ for (ix = 0; (rix < len2) && (ix < sz); ) b[ix++] = rb[rix++]; sz -= ix; if (sz > 0) { int nbytes; if (sz <= (DATA_PKT_SZ - ix)) nbytes = sz; else nbytes = DATA_PKT_SZ - ix; /* * Read bytes */ if (wilc_spi_rx(wilc, &b[ix], nbytes)) { dev_err(&spi->dev, "Failed block read, bus err\n"); return N_FAIL; } /* * Read Crc */ if (!spi_priv->crc_off && wilc_spi_rx(wilc, crc, 2)) { dev_err(&spi->dev, "Failed block crc read, bus err\n"); return N_FAIL; } ix += nbytes; sz -= nbytes; } /* * if any data in left unread, * then read the rest using normal DMA code. */ while (sz > 0) { int nbytes; if (sz <= DATA_PKT_SZ) nbytes = sz; else nbytes = DATA_PKT_SZ; /* * read data response only on the next DMA cycles not * the first DMA since data response header is already * handled above for the first DMA. */ /* * Data Respnose header */ retry = 10; do { if (wilc_spi_rx(wilc, &rsp, 1)) { dev_err(&spi->dev, "Failed resp read, bus err\n"); result = N_FAIL; break; } if (((rsp >> 4) & 0xf) == 0xf) break; } while (retry--); if (result == N_FAIL) break; /* * Read bytes */ if (wilc_spi_rx(wilc, &b[ix], nbytes)) { dev_err(&spi->dev, "Failed block read, bus err\n"); result = N_FAIL; break; } /* * Read Crc */ if (!spi_priv->crc_off && wilc_spi_rx(wilc, crc, 2)) { dev_err(&spi->dev, "Failed block crc read, bus err\n"); result = N_FAIL; break; } ix += nbytes; sz -= nbytes; } } return result; } static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; int ix, nbytes; int result = 1; u8 cmd, order, crc[2] = {0}; /* * Data */ ix = 0; do { if (sz <= DATA_PKT_SZ) { nbytes = sz; order = 0x3; } else { nbytes = DATA_PKT_SZ; if (ix == 0) order = 0x1; else order = 0x02; } /* * Write command */ cmd = 0xf0; cmd |= order; if (wilc_spi_tx(wilc, &cmd, 1)) { dev_err(&spi->dev, "Failed data block cmd write, bus error...\n"); result = N_FAIL; break; } /* * Write data */ if (wilc_spi_tx(wilc, &b[ix], nbytes)) { dev_err(&spi->dev, "Failed data block write, bus error...\n"); result = N_FAIL; break; } /* * Write Crc */ if (!spi_priv->crc_off) { if (wilc_spi_tx(wilc, crc, 2)) { dev_err(&spi->dev, "Failed data block crc write, bus error...\n"); result = N_FAIL; break; } } /* * No need to wait for response */ ix += nbytes; sz -= nbytes; } while (sz); return result; } /******************************************** * * Spi Internal Read/Write Function * ********************************************/ static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat) { struct spi_device *spi = to_spi_device(wilc->dev); int result; cpu_to_le32s(&dat); result = spi_cmd_complete(wilc, CMD_INTERNAL_WRITE, adr, (u8 *)&dat, 4, 0); if (result != N_OK) dev_err(&spi->dev, "Failed internal write cmd...\n"); return result; } static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data) { struct spi_device *spi = to_spi_device(wilc->dev); int result; result = spi_cmd_complete(wilc, CMD_INTERNAL_READ, adr, (u8 *)data, 4, 0); if (result != N_OK) { dev_err(&spi->dev, "Failed internal read cmd...\n"); return 0; } le32_to_cpus(data); return 1; } /******************************************** * * Spi interfaces * ********************************************/ static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data) { struct spi_device *spi = to_spi_device(wilc->dev); int result; u8 cmd = CMD_SINGLE_WRITE; u8 clockless = 0; cpu_to_le32s(&data); if (addr < 0x30) { /* Clockless register */ cmd = CMD_INTERNAL_WRITE; clockless = 1; } result = spi_cmd_complete(wilc, cmd, addr, (u8 *)&data, 4, clockless); if (result != N_OK) dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr); return result; } static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size) { struct spi_device *spi = to_spi_device(wilc->dev); int result; /* * has to be greated than 4 */ if (size <= 4) return 0; result = spi_cmd_complete(wilc, CMD_DMA_EXT_WRITE, addr, NULL, size, 0); if (result != N_OK) { dev_err(&spi->dev, "Failed cmd, write block (%08x)...\n", addr); return 0; } /* * Data */ result = spi_data_write(wilc, buf, size); if (result != N_OK) dev_err(&spi->dev, "Failed block data write...\n"); return 1; } static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data) { struct spi_device *spi = to_spi_device(wilc->dev); int result; u8 cmd = CMD_SINGLE_READ; u8 clockless = 0; if (addr < 0x30) { /* Clockless register */ cmd = CMD_INTERNAL_READ; clockless = 1; } result = spi_cmd_complete(wilc, cmd, addr, (u8 *)data, 4, clockless); if (result != N_OK) { dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr); return 0; } le32_to_cpus(data); return 1; } static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size) { struct spi_device *spi = to_spi_device(wilc->dev); int result; if (size <= 4) return 0; result = spi_cmd_complete(wilc, CMD_DMA_EXT_READ, addr, buf, size, 0); if (result != N_OK) { dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr); return 0; } return 1; } /******************************************** * * Bus interfaces * ********************************************/ static int wilc_spi_deinit(struct wilc *wilc) { /* * TODO: */ return 1; } static int wilc_spi_init(struct wilc *wilc, bool resume) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; u32 reg; u32 chipid; static int isinit; if (isinit) { if (!wilc_spi_read_reg(wilc, 0x1000, &chipid)) { dev_err(&spi->dev, "Fail cmd read chip id...\n"); return 0; } return 1; } /* * configure protocol */ /* * TODO: We can remove the CRC trials if there is a definite * way to reset */ /* the SPI to it's initial value. */ if (!spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, ®)) { /* * Read failed. Try with CRC off. This might happen when module * is removed but chip isn't reset */ spi_priv->crc_off = 1; dev_err(&spi->dev, "Failed read with CRC on, retrying with CRC off\n"); if (!spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, ®)) { /* * Read failed with both CRC on and off, * something went bad */ dev_err(&spi->dev, "Failed internal read protocol\n"); return 0; } } if (spi_priv->crc_off == 0) { reg &= ~0xc; /* disable crc checking */ reg &= ~0x70; reg |= (0x5 << 4); if (!spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg)) { dev_err(&spi->dev, "[wilc spi %d]: Failed internal write reg\n", __LINE__); return 0; } spi_priv->crc_off = 1; } /* * make sure can read back chip id correctly */ if (!wilc_spi_read_reg(wilc, 0x1000, &chipid)) { dev_err(&spi->dev, "Fail cmd read chip id...\n"); return 0; } spi_priv->has_thrpt_enh = 1; isinit = 1; return 1; } static int wilc_spi_read_size(struct wilc *wilc, u32 *size) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; int ret; if (spi_priv->has_thrpt_enh) { ret = spi_internal_read(wilc, 0xe840 - WILC_SPI_REG_BASE, size); *size = *size & IRQ_DMA_WD_CNT_MASK; } else { u32 tmp; u32 byte_cnt; ret = wilc_spi_read_reg(wilc, WILC_VMM_TO_HOST_SIZE, &byte_cnt); if (!ret) { dev_err(&spi->dev, "Failed read WILC_VMM_TO_HOST_SIZE ...\n"); return ret; } tmp = (byte_cnt >> 2) & IRQ_DMA_WD_CNT_MASK; *size = tmp; } return ret; } static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; int ret; u32 tmp; u32 byte_cnt; bool unexpected_irq; int j; u32 unknown_mask; u32 irq_flags; int k = IRG_FLAGS_OFFSET + 5; if (spi_priv->has_thrpt_enh) return spi_internal_read(wilc, 0xe840 - WILC_SPI_REG_BASE, int_status); ret = wilc_spi_read_reg(wilc, WILC_VMM_TO_HOST_SIZE, &byte_cnt); if (!ret) { dev_err(&spi->dev, "Failed read WILC_VMM_TO_HOST_SIZE ...\n"); return ret; } tmp = (byte_cnt >> 2) & IRQ_DMA_WD_CNT_MASK; j = 0; do { wilc_spi_read_reg(wilc, 0x1a90, &irq_flags); tmp |= ((irq_flags >> 27) << IRG_FLAGS_OFFSET); if (spi_priv->nint > 5) { wilc_spi_read_reg(wilc, 0x1a94, &irq_flags); tmp |= (((irq_flags >> 0) & 0x7) << k); } unknown_mask = ~((1ul << spi_priv->nint) - 1); unexpected_irq = (tmp >> IRG_FLAGS_OFFSET) & unknown_mask; if (unexpected_irq) { dev_err(&spi->dev, "Unexpected interrupt(2):j=%d,tmp=%x,mask=%x\n", j, tmp, unknown_mask); } j++; } while (unexpected_irq); *int_status = tmp; return ret; } static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; int ret; u32 flags; u32 tbl_ctl; if (spi_priv->has_thrpt_enh) { return spi_internal_write(wilc, 0xe844 - WILC_SPI_REG_BASE, val); } flags = val & (BIT(MAX_NUM_INT) - 1); if (flags) { int i; ret = 1; for (i = 0; i < spi_priv->nint; i++) { /* * No matter what you write 1 or 0, * it will clear interrupt. */ if (flags & 1) ret = wilc_spi_write_reg(wilc, 0x10c8 + i * 4, 1); if (!ret) break; flags >>= 1; } if (!ret) { dev_err(&spi->dev, "Failed wilc_spi_write_reg, set reg %x ...\n", 0x10c8 + i * 4); return ret; } for (i = spi_priv->nint; i < MAX_NUM_INT; i++) { if (flags & 1) dev_err(&spi->dev, "Unexpected interrupt cleared %d...\n", i); flags >>= 1; } } tbl_ctl = 0; /* select VMM table 0 */ if (val & SEL_VMM_TBL0) tbl_ctl |= BIT(0); /* select VMM table 1 */ if (val & SEL_VMM_TBL1) tbl_ctl |= BIT(1); ret = wilc_spi_write_reg(wilc, WILC_VMM_TBL_CTL, tbl_ctl); if (!ret) { dev_err(&spi->dev, "fail write reg vmm_tbl_ctl...\n"); return ret; } if (val & EN_VMM) { /* * enable vmm transfer. */ ret = wilc_spi_write_reg(wilc, WILC_VMM_CORE_CTL, 1); if (!ret) { dev_err(&spi->dev, "fail write reg vmm_core_ctl...\n"); return ret; } } return ret; } static int wilc_spi_sync_ext(struct wilc *wilc, int nint) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; u32 reg; int ret, i; if (nint > MAX_NUM_INT) { dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint); return 0; } spi_priv->nint = nint; /* * interrupt pin mux select */ ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, ®); if (!ret) { dev_err(&spi->dev, "Failed read reg (%08x)...\n", WILC_PIN_MUX_0); return 0; } reg |= BIT(8); ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg); if (!ret) { dev_err(&spi->dev, "Failed write reg (%08x)...\n", WILC_PIN_MUX_0); return 0; } /* * interrupt enable */ ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, ®); if (!ret) { dev_err(&spi->dev, "Failed read reg (%08x)...\n", WILC_INTR_ENABLE); return 0; } for (i = 0; (i < 5) && (nint > 0); i++, nint--) reg |= (BIT((27 + i))); ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg); if (!ret) { dev_err(&spi->dev, "Failed write reg (%08x)...\n", WILC_INTR_ENABLE); return 0; } if (nint) { ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, ®); if (!ret) { dev_err(&spi->dev, "Failed read reg (%08x)...\n", WILC_INTR2_ENABLE); return 0; } for (i = 0; (i < 3) && (nint > 0); i++, nint--) reg |= BIT(i); ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, ®); if (!ret) { dev_err(&spi->dev, "Failed write reg (%08x)...\n", WILC_INTR2_ENABLE); return 0; } } return 1; } /* Global spi HIF function table */ static const struct wilc_hif_func wilc_hif_spi = { .hif_init = wilc_spi_init, .hif_deinit = wilc_spi_deinit, .hif_read_reg = wilc_spi_read_reg, .hif_write_reg = wilc_spi_write_reg, .hif_block_rx = wilc_spi_read, .hif_block_tx = wilc_spi_write, .hif_read_int = wilc_spi_read_int, .hif_clear_int_ext = wilc_spi_clear_int_ext, .hif_read_size = wilc_spi_read_size, .hif_block_tx_ext = wilc_spi_write, .hif_block_rx_ext = wilc_spi_read, .hif_sync_ext = wilc_spi_sync_ext, };