/* * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * File: rxtx.c * * Purpose: handle WMAC/802.3/802.11 rx & tx functions * * Author: Lyndon Chen * * Date: May 20, 2003 * * Functions: * s_vGenerateTxParameter - Generate tx dma required parameter. * vGenerateMACHeader - Translate 802.3 to 802.11 header * cbGetFragCount - Caculate fragment number count * csBeacon_xmit - beacon tx function * csMgmt_xmit - management tx function * s_cbFillTxBufHead - fulfill tx dma buffer header * s_uGetDataDuration - get tx data required duration * s_uFillDataHead- fulfill tx data duration header * s_uGetRTSCTSDuration- get rtx/cts required duration * s_uGetRTSCTSRsvTime- get rts/cts reserved time * s_uGetTxRsvTime- get frame reserved time * s_vFillCTSHead- fulfill CTS ctl header * s_vFillFragParameter- Set fragment ctl parameter. * s_vFillRTSHead- fulfill RTS ctl header * s_vFillTxKey- fulfill tx encrypt key * s_vSWencryption- Software encrypt header * vDMA0_tx_80211- tx 802.11 frame via dma0 * vGenerateFIFOHeader- Generate tx FIFO ctl header * * Revision History: * */ #include "device.h" #include "rxtx.h" #include "tether.h" #include "card.h" #include "bssdb.h" #include "mac.h" #include "baseband.h" #include "michael.h" #include "tkip.h" #include "tcrc.h" #include "wctl.h" #include "wroute.h" #include "hostap.h" #include "rf.h" /*--------------------- Static Definitions -------------------------*/ /*--------------------- Static Classes ----------------------------*/ /*--------------------- Static Variables --------------------------*/ //static int msglevel =MSG_LEVEL_DEBUG; static int msglevel =MSG_LEVEL_INFO; #define PLICE_DEBUG /*--------------------- Static Functions --------------------------*/ /*--------------------- Static Definitions -------------------------*/ #define CRITICAL_PACKET_LEN 256 // if packet size < 256 -> in-direct send // packet size >= 256 -> direct send const WORD wTimeStampOff[2][MAX_RATE] = { {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble }; const WORD wFB_Opt0[2][5] = { {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0 {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1 }; const WORD wFB_Opt1[2][5] = { {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0 {RATE_6M , RATE_6M, RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1 }; #define RTSDUR_BB 0 #define RTSDUR_BA 1 #define RTSDUR_AA 2 #define CTSDUR_BA 3 #define RTSDUR_BA_F0 4 #define RTSDUR_AA_F0 5 #define RTSDUR_BA_F1 6 #define RTSDUR_AA_F1 7 #define CTSDUR_BA_F0 8 #define CTSDUR_BA_F1 9 #define DATADUR_B 10 #define DATADUR_A 11 #define DATADUR_A_F0 12 #define DATADUR_A_F1 13 /*--------------------- Static Functions --------------------------*/ static void s_vFillTxKey( PSDevice pDevice, PBYTE pbyBuf, PBYTE pbyIVHead, PSKeyItem pTransmitKey, PBYTE pbyHdrBuf, WORD wPayloadLen, PBYTE pMICHDR ); static void s_vFillRTSHead( PSDevice pDevice, BYTE byPktType, void * pvRTS, UINT cbFrameLength, BOOL bNeedAck, BOOL bDisCRC, PSEthernetHeader psEthHeader, WORD wCurrentRate, BYTE byFBOption ); static void s_vGenerateTxParameter( PSDevice pDevice, BYTE byPktType, void * pTxBufHead, void * pvRrvTime, void * pvRTS, void * pvCTS, UINT cbFrameSize, BOOL bNeedACK, UINT uDMAIdx, PSEthernetHeader psEthHeader, WORD wCurrentRate ); static void s_vFillFragParameter( PSDevice pDevice, PBYTE pbyBuffer, UINT uTxType, void * pvtdCurr, WORD wFragType, UINT cbReqCount ); static UINT s_cbFillTxBufHead ( PSDevice pDevice, BYTE byPktType, PBYTE pbyTxBufferAddr, UINT cbFrameBodySize, UINT uDMAIdx, PSTxDesc pHeadTD, PSEthernetHeader psEthHeader, PBYTE pPacket, BOOL bNeedEncrypt, PSKeyItem pTransmitKey, UINT uNodeIndex, PUINT puMACfragNum ); static UINT s_uFillDataHead ( PSDevice pDevice, BYTE byPktType, void * pTxDataHead, UINT cbFrameLength, UINT uDMAIdx, BOOL bNeedAck, UINT uFragIdx, UINT cbLastFragmentSize, UINT uMACfragNum, BYTE byFBOption, WORD wCurrentRate ); /*--------------------- Export Variables --------------------------*/ static void s_vFillTxKey ( PSDevice pDevice, PBYTE pbyBuf, PBYTE pbyIVHead, PSKeyItem pTransmitKey, PBYTE pbyHdrBuf, WORD wPayloadLen, PBYTE pMICHDR ) { PDWORD pdwIV = (PDWORD) pbyIVHead; PDWORD pdwExtIV = (PDWORD) ((PBYTE)pbyIVHead+4); WORD wValue; PS802_11Header pMACHeader = (PS802_11Header)pbyHdrBuf; DWORD dwRevIVCounter; BYTE byKeyIndex = 0; //Fill TXKEY if (pTransmitKey == NULL) return; dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter); *pdwIV = pDevice->dwIVCounter; byKeyIndex = pTransmitKey->dwKeyIndex & 0xf; if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN ){ memcpy(pDevice->abyPRNG, (PBYTE)&(dwRevIVCounter), 3); memcpy(pDevice->abyPRNG+3, pTransmitKey->abyKey, pTransmitKey->uKeyLength); } else { memcpy(pbyBuf, (PBYTE)&(dwRevIVCounter), 3); memcpy(pbyBuf+3, pTransmitKey->abyKey, pTransmitKey->uKeyLength); if(pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) { memcpy(pbyBuf+8, (PBYTE)&(dwRevIVCounter), 3); memcpy(pbyBuf+11, pTransmitKey->abyKey, pTransmitKey->uKeyLength); } memcpy(pDevice->abyPRNG, pbyBuf, 16); } // Append IV after Mac Header *pdwIV &= WEP_IV_MASK;//00000000 11111111 11111111 11111111 *pdwIV |= (byKeyIndex << 30); *pdwIV = cpu_to_le32(*pdwIV); pDevice->dwIVCounter++; if (pDevice->dwIVCounter > WEP_IV_MASK) { pDevice->dwIVCounter = 0; } } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) { pTransmitKey->wTSC15_0++; if (pTransmitKey->wTSC15_0 == 0) { pTransmitKey->dwTSC47_16++; } TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr, pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG); memcpy(pbyBuf, pDevice->abyPRNG, 16); // Make IV memcpy(pdwIV, pDevice->abyPRNG, 3); *(pbyIVHead+3) = (BYTE)(((byKeyIndex << 6) & 0xc0) | 0x20); // 0x20 is ExtIV // Append IV&ExtIV after Mac Header *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vFillTxKey()---- pdwExtIV: %lx\n", *pdwExtIV); } else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { pTransmitKey->wTSC15_0++; if (pTransmitKey->wTSC15_0 == 0) { pTransmitKey->dwTSC47_16++; } memcpy(pbyBuf, pTransmitKey->abyKey, 16); // Make IV *pdwIV = 0; *(pbyIVHead+3) = (BYTE)(((byKeyIndex << 6) & 0xc0) | 0x20); // 0x20 is ExtIV *pdwIV |= cpu_to_le16((WORD)(pTransmitKey->wTSC15_0)); //Append IV&ExtIV after Mac Header *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16); //Fill MICHDR0 *pMICHDR = 0x59; *((PBYTE)(pMICHDR+1)) = 0; // TxPriority memcpy(pMICHDR+2, &(pMACHeader->abyAddr2[0]), 6); *((PBYTE)(pMICHDR+8)) = HIBYTE(HIWORD(pTransmitKey->dwTSC47_16)); *((PBYTE)(pMICHDR+9)) = LOBYTE(HIWORD(pTransmitKey->dwTSC47_16)); *((PBYTE)(pMICHDR+10)) = HIBYTE(LOWORD(pTransmitKey->dwTSC47_16)); *((PBYTE)(pMICHDR+11)) = LOBYTE(LOWORD(pTransmitKey->dwTSC47_16)); *((PBYTE)(pMICHDR+12)) = HIBYTE(pTransmitKey->wTSC15_0); *((PBYTE)(pMICHDR+13)) = LOBYTE(pTransmitKey->wTSC15_0); *((PBYTE)(pMICHDR+14)) = HIBYTE(wPayloadLen); *((PBYTE)(pMICHDR+15)) = LOBYTE(wPayloadLen); //Fill MICHDR1 *((PBYTE)(pMICHDR+16)) = 0; // HLEN[15:8] if (pDevice->bLongHeader) { *((PBYTE)(pMICHDR+17)) = 28; // HLEN[7:0] } else { *((PBYTE)(pMICHDR+17)) = 22; // HLEN[7:0] } wValue = cpu_to_le16(pMACHeader->wFrameCtl & 0xC78F); memcpy(pMICHDR+18, (PBYTE)&wValue, 2); // MSKFRACTL memcpy(pMICHDR+20, &(pMACHeader->abyAddr1[0]), 6); memcpy(pMICHDR+26, &(pMACHeader->abyAddr2[0]), 6); //Fill MICHDR2 memcpy(pMICHDR+32, &(pMACHeader->abyAddr3[0]), 6); wValue = pMACHeader->wSeqCtl; wValue &= 0x000F; wValue = cpu_to_le16(wValue); memcpy(pMICHDR+38, (PBYTE)&wValue, 2); // MSKSEQCTL if (pDevice->bLongHeader) { memcpy(pMICHDR+40, &(pMACHeader->abyAddr4[0]), 6); } } } static void s_vSWencryption ( PSDevice pDevice, PSKeyItem pTransmitKey, PBYTE pbyPayloadHead, WORD wPayloadSize ) { UINT cbICVlen = 4; DWORD dwICV = 0xFFFFFFFFL; PDWORD pdwICV; if (pTransmitKey == NULL) return; if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //======================================================================= // Append ICV after payload dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload) pdwICV = (PDWORD)(pbyPayloadHead + wPayloadSize); // finally, we must invert dwCRC to get the correct answer *pdwICV = cpu_to_le32(~dwICV); // RC4 encryption rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3); rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen); //======================================================================= } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) { //======================================================================= //Append ICV after payload dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload) pdwICV = (PDWORD)(pbyPayloadHead + wPayloadSize); // finally, we must invert dwCRC to get the correct answer *pdwICV = cpu_to_le32(~dwICV); // RC4 encryption rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN); rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen); //======================================================================= } } /*byPktType : PK_TYPE_11A 0 PK_TYPE_11B 1 PK_TYPE_11GB 2 PK_TYPE_11GA 3 */ static UINT s_uGetTxRsvTime ( PSDevice pDevice, BYTE byPktType, UINT cbFrameLength, WORD wRate, BOOL bNeedAck ) { UINT uDataTime, uAckTime; uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate); #ifdef PLICE_DEBUG //printk("s_uGetTxRsvTime is %d\n",uDataTime); #endif if (byPktType == PK_TYPE_11B) {//llb,CCK mode uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (WORD)pDevice->byTopCCKBasicRate); } else {//11g 2.4G OFDM mode & 11a 5G OFDM mode uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (WORD)pDevice->byTopOFDMBasicRate); } if (bNeedAck) { return (uDataTime + pDevice->uSIFS + uAckTime); } else { return uDataTime; } } //byFreqType: 0=>5GHZ 1=>2.4GHZ static UINT s_uGetRTSCTSRsvTime ( PSDevice pDevice, BYTE byRTSRsvType, BYTE byPktType, UINT cbFrameLength, WORD wCurrentRate ) { UINT uRrvTime , uRTSTime, uCTSTime, uAckTime, uDataTime; uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0; uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate); if (byRTSRsvType == 0) { //RTSTxRrvTime_bb uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate); uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate); } else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate); uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate); uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate); } else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate); uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate); } else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate); uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate); uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS; return uRrvTime; } //RTSRrvTime uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS; return uRrvTime; } //byFreqType 0: 5GHz, 1:2.4Ghz static UINT s_uGetDataDuration ( PSDevice pDevice, BYTE byDurType, UINT cbFrameLength, BYTE byPktType, WORD wRate, BOOL bNeedAck, UINT uFragIdx, UINT cbLastFragmentSize, UINT uMACfragNum, BYTE byFBOption ) { BOOL bLastFrag = 0; UINT uAckTime =0, uNextPktTime = 0; if (uFragIdx == (uMACfragNum-1)) { bLastFrag = 1; } switch (byDurType) { case DATADUR_B: //DATADUR_B if (((uMACfragNum == 1)) || (bLastFrag == 1)) {//Non Frag or Last Frag if (bNeedAck) { uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate); return (pDevice->uSIFS + uAckTime); } else { return 0; } } else {//First Frag or Mid Frag if (uFragIdx == (uMACfragNum-2)) { uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbLastFragmentSize, wRate, bNeedAck); } else { uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck); } if (bNeedAck) { uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate); return (pDevice->uSIFS + uAckTime + uNextPktTime); } else { return (pDevice->uSIFS + uNextPktTime); } } break; case DATADUR_A: //DATADUR_A if (((uMACfragNum==1)) || (bLastFrag==1)) {//Non Frag or Last Frag if(bNeedAck){ uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate); return (pDevice->uSIFS + uAckTime); } else { return 0; } } else {//First Frag or Mid Frag if(uFragIdx == (uMACfragNum-2)){ uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbLastFragmentSize, wRate, bNeedAck); } else { uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck); } if(bNeedAck){ uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate); return (pDevice->uSIFS + uAckTime + uNextPktTime); } else { return (pDevice->uSIFS + uNextPktTime); } } break; case DATADUR_A_F0: //DATADUR_A_F0 if (((uMACfragNum==1)) || (bLastFrag==1)) {//Non Frag or Last Frag if(bNeedAck){ uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate); return (pDevice->uSIFS + uAckTime); } else { return 0; } } else { //First Frag or Mid Frag if (byFBOption == AUTO_FB_0) { if (wRate < RATE_18M) wRate = RATE_18M; else if (wRate > RATE_54M) wRate = RATE_54M; if(uFragIdx == (uMACfragNum-2)){ uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbLastFragmentSize, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck); } else { uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck); } } else { // (byFBOption == AUTO_FB_1) if (wRate < RATE_18M) wRate = RATE_18M; else if (wRate > RATE_54M) wRate = RATE_54M; if(uFragIdx == (uMACfragNum-2)){ uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbLastFragmentSize, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck); } else { uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck); } } if(bNeedAck){ uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate); return (pDevice->uSIFS + uAckTime + uNextPktTime); } else { return (pDevice->uSIFS + uNextPktTime); } } break; case DATADUR_A_F1: //DATADUR_A_F1 if (((uMACfragNum==1)) || (bLastFrag==1)) {//Non Frag or Last Frag if(bNeedAck){ uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate); return (pDevice->uSIFS + uAckTime); } else { return 0; } } else { //First Frag or Mid Frag if (byFBOption == AUTO_FB_0) { if (wRate < RATE_18M) wRate = RATE_18M; else if (wRate > RATE_54M) wRate = RATE_54M; if(uFragIdx == (uMACfragNum-2)){ uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbLastFragmentSize, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck); } else { uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck); } } else { // (byFBOption == AUTO_FB_1) if (wRate < RATE_18M) wRate = RATE_18M; else if (wRate > RATE_54M) wRate = RATE_54M; if(uFragIdx == (uMACfragNum-2)){ uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbLastFragmentSize, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck); } else { uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck); } } if(bNeedAck){ uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate); return (pDevice->uSIFS + uAckTime + uNextPktTime); } else { return (pDevice->uSIFS + uNextPktTime); } } break; default: break; } ASSERT(FALSE); return 0; } //byFreqType: 0=>5GHZ 1=>2.4GHZ static UINT s_uGetRTSCTSDuration ( PSDevice pDevice, BYTE byDurType, UINT cbFrameLength, BYTE byPktType, WORD wRate, BOOL bNeedAck, BYTE byFBOption ) { UINT uCTSTime = 0, uDurTime = 0; switch (byDurType) { case RTSDUR_BB: //RTSDuration_bb uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate); uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck); break; case RTSDUR_BA: //RTSDuration_ba uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate); uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck); break; case RTSDUR_AA: //RTSDuration_aa uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate); uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck); break; case CTSDUR_BA: //CTSDuration_ba uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck); break; case RTSDUR_BA_F0: //RTSDuration_ba_f0 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate); if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) { uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck); } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) { uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck); } break; case RTSDUR_AA_F0: //RTSDuration_aa_f0 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate); if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) { uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck); } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) { uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck); } break; case RTSDUR_BA_F1: //RTSDuration_ba_f1 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate); if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) { uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck); } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) { uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck); } break; case RTSDUR_AA_F1: //RTSDuration_aa_f1 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate); if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) { uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck); } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) { uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck); } break; case CTSDUR_BA_F0: //CTSDuration_ba_f0 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) { uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck); } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) { uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck); } break; case CTSDUR_BA_F1: //CTSDuration_ba_f1 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) { uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck); } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) { uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck); } break; default: break; } return uDurTime; } static UINT s_uFillDataHead ( PSDevice pDevice, BYTE byPktType, void * pTxDataHead, UINT cbFrameLength, UINT uDMAIdx, BOOL bNeedAck, UINT uFragIdx, UINT cbLastFragmentSize, UINT uMACfragNum, BYTE byFBOption, WORD wCurrentRate ) { WORD wLen = 0x0000; if (pTxDataHead == NULL) { return 0; } if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) { if (byFBOption == AUTO_FB_NONE) { PSTxDataHead_g pBuf = (PSTxDataHead_g)pTxDataHead; //Get SignalField,ServiceField,Length BBvCaculateParameter(pDevice, cbFrameLength, wCurrentRate, byPktType, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_a), (PBYTE)&(pBuf->bySignalField_a) ); pBuf->wTransmitLength_a = cpu_to_le16(wLen); BBvCaculateParameter(pDevice, cbFrameLength, pDevice->byTopCCKBasicRate, PK_TYPE_11B, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_b), (PBYTE)&(pBuf->bySignalField_b) ); pBuf->wTransmitLength_b = cpu_to_le16(wLen); //Get Duration and TimeStamp pBuf->wDuration_a = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_A, cbFrameLength, byPktType, wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption)); //1: 2.4GHz pBuf->wDuration_b = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_B, cbFrameLength, PK_TYPE_11B, pDevice->byTopCCKBasicRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption)); //1: 2.4 pBuf->wTimeStampOff_a = cpu_to_le16(wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE]); pBuf->wTimeStampOff_b = cpu_to_le16(wTimeStampOff[pDevice->byPreambleType%2][pDevice->byTopCCKBasicRate%MAX_RATE]); return (pBuf->wDuration_a); } else { // Auto Fallback PSTxDataHead_g_FB pBuf = (PSTxDataHead_g_FB)pTxDataHead; //Get SignalField,ServiceField,Length BBvCaculateParameter(pDevice, cbFrameLength, wCurrentRate, byPktType, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_a), (PBYTE)&(pBuf->bySignalField_a) ); pBuf->wTransmitLength_a = cpu_to_le16(wLen); BBvCaculateParameter(pDevice, cbFrameLength, pDevice->byTopCCKBasicRate, PK_TYPE_11B, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_b), (PBYTE)&(pBuf->bySignalField_b) ); pBuf->wTransmitLength_b = cpu_to_le16(wLen); //Get Duration and TimeStamp pBuf->wDuration_a = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_A, cbFrameLength, byPktType, wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption)); //1: 2.4GHz pBuf->wDuration_b = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_B, cbFrameLength, PK_TYPE_11B, pDevice->byTopCCKBasicRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption)); //1: 2.4GHz pBuf->wDuration_a_f0 = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_A_F0, cbFrameLength, byPktType, wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption)); //1: 2.4GHz pBuf->wDuration_a_f1 = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_A_F1, cbFrameLength, byPktType, wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption)); //1: 2.4GHz pBuf->wTimeStampOff_a = cpu_to_le16(wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE]); pBuf->wTimeStampOff_b = cpu_to_le16(wTimeStampOff[pDevice->byPreambleType%2][pDevice->byTopCCKBasicRate%MAX_RATE]); return (pBuf->wDuration_a); } //if (byFBOption == AUTO_FB_NONE) } else if (byPktType == PK_TYPE_11A) { if ((byFBOption != AUTO_FB_NONE)) { // Auto Fallback PSTxDataHead_a_FB pBuf = (PSTxDataHead_a_FB)pTxDataHead; //Get SignalField,ServiceField,Length BBvCaculateParameter(pDevice, cbFrameLength, wCurrentRate, byPktType, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField) ); pBuf->wTransmitLength = cpu_to_le16(wLen); //Get Duration and TimeStampOff pBuf->wDuration = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_A, cbFrameLength, byPktType, wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption)); //0: 5GHz pBuf->wDuration_f0 = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_A_F0, cbFrameLength, byPktType, wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption)); //0: 5GHz pBuf->wDuration_f1 = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_A_F1, cbFrameLength, byPktType, wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption)); //0: 5GHz pBuf->wTimeStampOff = cpu_to_le16(wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE]); return (pBuf->wDuration); } else { PSTxDataHead_ab pBuf = (PSTxDataHead_ab)pTxDataHead; //Get SignalField,ServiceField,Length BBvCaculateParameter(pDevice, cbFrameLength, wCurrentRate, byPktType, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField) ); pBuf->wTransmitLength = cpu_to_le16(wLen); //Get Duration and TimeStampOff pBuf->wDuration = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_A, cbFrameLength, byPktType, wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption)); pBuf->wTimeStampOff = cpu_to_le16(wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE]); return (pBuf->wDuration); } } else { PSTxDataHead_ab pBuf = (PSTxDataHead_ab)pTxDataHead; //Get SignalField,ServiceField,Length BBvCaculateParameter(pDevice, cbFrameLength, wCurrentRate, byPktType, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField) ); pBuf->wTransmitLength = cpu_to_le16(wLen); //Get Duration and TimeStampOff pBuf->wDuration = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_B, cbFrameLength, byPktType, wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption)); pBuf->wTimeStampOff = cpu_to_le16(wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE]); return (pBuf->wDuration); } return 0; } static void s_vFillRTSHead ( PSDevice pDevice, BYTE byPktType, void * pvRTS, UINT cbFrameLength, BOOL bNeedAck, BOOL bDisCRC, PSEthernetHeader psEthHeader, WORD wCurrentRate, BYTE byFBOption ) { UINT uRTSFrameLen = 20; WORD wLen = 0x0000; if (pvRTS == NULL) return; if (bDisCRC) { // When CRCDIS bit is on, H/W forgot to generate FCS for RTS frame, // in this case we need to decrease its length by 4. uRTSFrameLen -= 4; } // Note: So far RTSHead dosen't appear in ATIM & Beacom DMA, so we don't need to take them into account. // Otherwise, we need to modify codes for them. if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) { if (byFBOption == AUTO_FB_NONE) { PSRTS_g pBuf = (PSRTS_g)pvRTS; //Get SignalField,ServiceField,Length BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopCCKBasicRate, PK_TYPE_11B, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_b), (PBYTE)&(pBuf->bySignalField_b) ); pBuf->wTransmitLength_b = cpu_to_le16(wLen); BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopOFDMBasicRate, byPktType, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_a), (PBYTE)&(pBuf->bySignalField_a) ); pBuf->wTransmitLength_a = cpu_to_le16(wLen); //Get Duration pBuf->wDuration_bb = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BB, cbFrameLength, PK_TYPE_11B, pDevice->byTopCCKBasicRate, bNeedAck, byFBOption)); //0:RTSDuration_bb, 1:2.4G, 1:CCKData pBuf->wDuration_aa = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //2:RTSDuration_aa, 1:2.4G, 2,3: 2.4G OFDMData pBuf->wDuration_ba = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //1:RTSDuration_ba, 1:2.4G, 2,3:2.4G OFDM Data pBuf->Data.wDurationID = pBuf->wDuration_aa; //Get RTS Frame body pBuf->Data.wFrameControl = TYPE_CTL_RTS;//0x00B4 if ((pDevice->eOPMode == OP_MODE_ADHOC) || (pDevice->eOPMode == OP_MODE_AP)) { memcpy(&(pBuf->Data.abyRA[0]), &(psEthHeader->abyDstAddr[0]), ETH_ALEN); } else { memcpy(&(pBuf->Data.abyRA[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); } if (pDevice->eOPMode == OP_MODE_AP) { memcpy(&(pBuf->Data.abyTA[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); } else { memcpy(&(pBuf->Data.abyTA[0]), &(psEthHeader->abySrcAddr[0]), ETH_ALEN); } } else { PSRTS_g_FB pBuf = (PSRTS_g_FB)pvRTS; //Get SignalField,ServiceField,Length BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopCCKBasicRate, PK_TYPE_11B, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_b), (PBYTE)&(pBuf->bySignalField_b) ); pBuf->wTransmitLength_b = cpu_to_le16(wLen); BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopOFDMBasicRate, byPktType, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_a), (PBYTE)&(pBuf->bySignalField_a) ); pBuf->wTransmitLength_a = cpu_to_le16(wLen); //Get Duration pBuf->wDuration_bb = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BB, cbFrameLength, PK_TYPE_11B, pDevice->byTopCCKBasicRate, bNeedAck, byFBOption)); //0:RTSDuration_bb, 1:2.4G, 1:CCKData pBuf->wDuration_aa = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //2:RTSDuration_aa, 1:2.4G, 2,3:2.4G OFDMData pBuf->wDuration_ba = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //1:RTSDuration_ba, 1:2.4G, 2,3:2.4G OFDMData pBuf->wRTSDuration_ba_f0 = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //4:wRTSDuration_ba_f0, 1:2.4G, 1:CCKData pBuf->wRTSDuration_aa_f0 = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA_F0, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //5:wRTSDuration_aa_f0, 1:2.4G, 1:CCKData pBuf->wRTSDuration_ba_f1 = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //6:wRTSDuration_ba_f1, 1:2.4G, 1:CCKData pBuf->wRTSDuration_aa_f1 = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA_F1, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //7:wRTSDuration_aa_f1, 1:2.4G, 1:CCKData pBuf->Data.wDurationID = pBuf->wDuration_aa; //Get RTS Frame body pBuf->Data.wFrameControl = TYPE_CTL_RTS;//0x00B4 if ((pDevice->eOPMode == OP_MODE_ADHOC) || (pDevice->eOPMode == OP_MODE_AP)) { memcpy(&(pBuf->Data.abyRA[0]), &(psEthHeader->abyDstAddr[0]), ETH_ALEN); } else { memcpy(&(pBuf->Data.abyRA[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); } if (pDevice->eOPMode == OP_MODE_AP) { memcpy(&(pBuf->Data.abyTA[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); } else { memcpy(&(pBuf->Data.abyTA[0]), &(psEthHeader->abySrcAddr[0]), ETH_ALEN); } } // if (byFBOption == AUTO_FB_NONE) } else if (byPktType == PK_TYPE_11A) { if (byFBOption == AUTO_FB_NONE) { PSRTS_ab pBuf = (PSRTS_ab)pvRTS; //Get SignalField,ServiceField,Length BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopOFDMBasicRate, byPktType, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField) ); pBuf->wTransmitLength = cpu_to_le16(wLen); //Get Duration pBuf->wDuration = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //0:RTSDuration_aa, 0:5G, 0: 5G OFDMData pBuf->Data.wDurationID = pBuf->wDuration; //Get RTS Frame body pBuf->Data.wFrameControl = TYPE_CTL_RTS;//0x00B4 if ((pDevice->eOPMode == OP_MODE_ADHOC) || (pDevice->eOPMode == OP_MODE_AP)) { memcpy(&(pBuf->Data.abyRA[0]), &(psEthHeader->abyDstAddr[0]), ETH_ALEN); } else { memcpy(&(pBuf->Data.abyRA[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); } if (pDevice->eOPMode == OP_MODE_AP) { memcpy(&(pBuf->Data.abyTA[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); } else { memcpy(&(pBuf->Data.abyTA[0]), &(psEthHeader->abySrcAddr[0]), ETH_ALEN); } } else { PSRTS_a_FB pBuf = (PSRTS_a_FB)pvRTS; //Get SignalField,ServiceField,Length BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopOFDMBasicRate, byPktType, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField) ); pBuf->wTransmitLength = cpu_to_le16(wLen); //Get Duration pBuf->wDuration = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //0:RTSDuration_aa, 0:5G, 0: 5G OFDMData pBuf->wRTSDuration_f0 = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA_F0, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //5:RTSDuration_aa_f0, 0:5G, 0: 5G OFDMData pBuf->wRTSDuration_f1 = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA_F1, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //7:RTSDuration_aa_f1, 0:5G, 0: pBuf->Data.wDurationID = pBuf->wDuration; //Get RTS Frame body pBuf->Data.wFrameControl = TYPE_CTL_RTS;//0x00B4 if ((pDevice->eOPMode == OP_MODE_ADHOC) || (pDevice->eOPMode == OP_MODE_AP)) { memcpy(&(pBuf->Data.abyRA[0]), &(psEthHeader->abyDstAddr[0]), ETH_ALEN); } else { memcpy(&(pBuf->Data.abyRA[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); } if (pDevice->eOPMode == OP_MODE_AP) { memcpy(&(pBuf->Data.abyTA[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); } else { memcpy(&(pBuf->Data.abyTA[0]), &(psEthHeader->abySrcAddr[0]), ETH_ALEN); } } } else if (byPktType == PK_TYPE_11B) { PSRTS_ab pBuf = (PSRTS_ab)pvRTS; //Get SignalField,ServiceField,Length BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopCCKBasicRate, PK_TYPE_11B, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField) ); pBuf->wTransmitLength = cpu_to_le16(wLen); //Get Duration pBuf->wDuration = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BB, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //0:RTSDuration_bb, 1:2.4G, 1:CCKData pBuf->Data.wDurationID = pBuf->wDuration; //Get RTS Frame body pBuf->Data.wFrameControl = TYPE_CTL_RTS;//0x00B4 if ((pDevice->eOPMode == OP_MODE_ADHOC) || (pDevice->eOPMode == OP_MODE_AP)) { memcpy(&(pBuf->Data.abyRA[0]), &(psEthHeader->abyDstAddr[0]), ETH_ALEN); } else { memcpy(&(pBuf->Data.abyRA[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); } if (pDevice->eOPMode == OP_MODE_AP) { memcpy(&(pBuf->Data.abyTA[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); } else { memcpy(&(pBuf->Data.abyTA[0]), &(psEthHeader->abySrcAddr[0]), ETH_ALEN); } } } static void s_vFillCTSHead ( PSDevice pDevice, UINT uDMAIdx, BYTE byPktType, void * pvCTS, UINT cbFrameLength, BOOL bNeedAck, BOOL bDisCRC, WORD wCurrentRate, BYTE byFBOption ) { UINT uCTSFrameLen = 14; WORD wLen = 0x0000; if (pvCTS == NULL) { return; } if (bDisCRC) { // When CRCDIS bit is on, H/W forgot to generate FCS for CTS frame, // in this case we need to decrease its length by 4. uCTSFrameLen -= 4; } if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) { if (byFBOption != AUTO_FB_NONE && uDMAIdx != TYPE_ATIMDMA && uDMAIdx != TYPE_BEACONDMA) { // Auto Fall back PSCTS_FB pBuf = (PSCTS_FB)pvCTS; //Get SignalField,ServiceField,Length BBvCaculateParameter(pDevice, uCTSFrameLen, pDevice->byTopCCKBasicRate, PK_TYPE_11B, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_b), (PBYTE)&(pBuf->bySignalField_b) ); pBuf->wTransmitLength_b = cpu_to_le16(wLen); pBuf->wDuration_ba = (WORD)s_uGetRTSCTSDuration(pDevice, CTSDUR_BA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption); //3:CTSDuration_ba, 1:2.4G, 2,3:2.4G OFDM Data pBuf->wDuration_ba += pDevice->wCTSDuration; pBuf->wDuration_ba = cpu_to_le16(pBuf->wDuration_ba); //Get CTSDuration_ba_f0 pBuf->wCTSDuration_ba_f0 = (WORD)s_uGetRTSCTSDuration(pDevice, CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption); //8:CTSDuration_ba_f0, 1:2.4G, 2,3:2.4G OFDM Data pBuf->wCTSDuration_ba_f0 += pDevice->wCTSDuration; pBuf->wCTSDuration_ba_f0 = cpu_to_le16(pBuf->wCTSDuration_ba_f0); //Get CTSDuration_ba_f1 pBuf->wCTSDuration_ba_f1 = (WORD)s_uGetRTSCTSDuration(pDevice, CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption); //9:CTSDuration_ba_f1, 1:2.4G, 2,3:2.4G OFDM Data pBuf->wCTSDuration_ba_f1 += pDevice->wCTSDuration; pBuf->wCTSDuration_ba_f1 = cpu_to_le16(pBuf->wCTSDuration_ba_f1); //Get CTS Frame body pBuf->Data.wDurationID = pBuf->wDuration_ba; pBuf->Data.wFrameControl = TYPE_CTL_CTS;//0x00C4 pBuf->Data.wReserved = 0x0000; memcpy(&(pBuf->Data.abyRA[0]), &(pDevice->abyCurrentNetAddr[0]), ETH_ALEN); } else { //if (byFBOption != AUTO_FB_NONE && uDMAIdx != TYPE_ATIMDMA && uDMAIdx != TYPE_BEACONDMA) PSCTS pBuf = (PSCTS)pvCTS; //Get SignalField,ServiceField,Length BBvCaculateParameter(pDevice, uCTSFrameLen, pDevice->byTopCCKBasicRate, PK_TYPE_11B, (PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_b), (PBYTE)&(pBuf->bySignalField_b) ); pBuf->wTransmitLength_b = cpu_to_le16(wLen); //Get CTSDuration_ba pBuf->wDuration_ba = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, CTSDUR_BA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //3:CTSDuration_ba, 1:2.4G, 2,3:2.4G OFDM Data pBuf->wDuration_ba += pDevice->wCTSDuration; pBuf->wDuration_ba = cpu_to_le16(pBuf->wDuration_ba); //Get CTS Frame body pBuf->Data.wDurationID = pBuf->wDuration_ba; pBuf->Data.wFrameControl = TYPE_CTL_CTS;//0x00C4 pBuf->Data.wReserved = 0x0000; memcpy(&(pBuf->Data.abyRA[0]), &(pDevice->abyCurrentNetAddr[0]), ETH_ALEN); } } } /*+ * * Description: * Generate FIFO control for MAC & Baseband controller * * Parameters: * In: * pDevice - Pointer to adapter * pTxDataHead - Transmit Data Buffer * pTxBufHead - pTxBufHead * pvRrvTime - pvRrvTime * pvRTS - RTS Buffer * pCTS - CTS Buffer * cbFrameSize - Transmit Data Length (Hdr+Payload+FCS) * bNeedACK - If need ACK * uDescIdx - Desc Index * Out: * none * * Return Value: none * -*/ // UINT cbFrameSize,//Hdr+Payload+FCS static void s_vGenerateTxParameter ( PSDevice pDevice, BYTE byPktType, void * pTxBufHead, void * pvRrvTime, void * pvRTS, void * pvCTS, UINT cbFrameSize, BOOL bNeedACK, UINT uDMAIdx, PSEthernetHeader psEthHeader, WORD wCurrentRate ) { UINT cbMACHdLen = WLAN_HDR_ADDR3_LEN; //24 WORD wFifoCtl; BOOL bDisCRC = FALSE; BYTE byFBOption = AUTO_FB_NONE; // WORD wCurrentRate = pDevice->wCurrentRate; //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n"); PSTxBufHead pFifoHead = (PSTxBufHead)pTxBufHead; pFifoHead->wReserved = wCurrentRate; wFifoCtl = pFifoHead->wFIFOCtl; if (wFifoCtl & FIFOCTL_CRCDIS) { bDisCRC = TRUE; } if (wFifoCtl & FIFOCTL_AUTO_FB_0) { byFBOption = AUTO_FB_0; } else if (wFifoCtl & FIFOCTL_AUTO_FB_1) { byFBOption = AUTO_FB_1; } if (pDevice->bLongHeader) cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6; if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) { if (pvRTS != NULL) { //RTS_need //Fill RsvTime if (pvRrvTime) { PSRrvTime_gRTS pBuf = (PSRrvTime_gRTS)pvRrvTime; pBuf->wRTSTxRrvTime_aa = cpu_to_le16((WORD)s_uGetRTSCTSRsvTime(pDevice, 2, byPktType, cbFrameSize, wCurrentRate));//2:RTSTxRrvTime_aa, 1:2.4GHz pBuf->wRTSTxRrvTime_ba = cpu_to_le16((WORD)s_uGetRTSCTSRsvTime(pDevice, 1, byPktType, cbFrameSize, wCurrentRate));//1:RTSTxRrvTime_ba, 1:2.4GHz pBuf->wRTSTxRrvTime_bb = cpu_to_le16((WORD)s_uGetRTSCTSRsvTime(pDevice, 0, byPktType, cbFrameSize, wCurrentRate));//0:RTSTxRrvTime_bb, 1:2.4GHz pBuf->wTxRrvTime_a = cpu_to_le16((WORD) s_uGetTxRsvTime(pDevice, byPktType, cbFrameSize, wCurrentRate, bNeedACK));//2.4G OFDM pBuf->wTxRrvTime_b = cpu_to_le16((WORD) s_uGetTxRsvTime(pDevice, PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate, bNeedACK));//1:CCK } //Fill RTS s_vFillRTSHead(pDevice, byPktType, pvRTS, cbFrameSize, bNeedACK, bDisCRC, psEthHeader, wCurrentRate, byFBOption); } else {//RTS_needless, PCF mode //Fill RsvTime if (pvRrvTime) { PSRrvTime_gCTS pBuf = (PSRrvTime_gCTS)pvRrvTime; pBuf->wTxRrvTime_a = cpu_to_le16((WORD)s_uGetTxRsvTime(pDevice, byPktType, cbFrameSize, wCurrentRate, bNeedACK));//2.4G OFDM pBuf->wTxRrvTime_b = cpu_to_le16((WORD)s_uGetTxRsvTime(pDevice, PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate, bNeedACK));//1:CCK pBuf->wCTSTxRrvTime_ba = cpu_to_le16((WORD)s_uGetRTSCTSRsvTime(pDevice, 3, byPktType, cbFrameSize, wCurrentRate));//3:CTSTxRrvTime_Ba, 1:2.4GHz } //Fill CTS s_vFillCTSHead(pDevice, uDMAIdx, byPktType, pvCTS, cbFrameSize, bNeedACK, bDisCRC, wCurrentRate, byFBOption); } } else if (byPktType == PK_TYPE_11A) { if (pvRTS != NULL) {//RTS_need, non PCF mode //Fill RsvTime if (pvRrvTime) { PSRrvTime_ab pBuf = (PSRrvTime_ab)pvRrvTime; pBuf->wRTSTxRrvTime = cpu_to_le16((WORD)s_uGetRTSCTSRsvTime(pDevice, 2, byPktType, cbFrameSize, wCurrentRate));//2:RTSTxRrvTime_aa, 0:5GHz pBuf->wTxRrvTime = cpu_to_le16((WORD)s_uGetTxRsvTime(pDevice, byPktType, cbFrameSize, wCurrentRate, bNeedACK));//0:OFDM } //Fill RTS s_vFillRTSHead(pDevice, byPktType, pvRTS, cbFrameSize, bNeedACK, bDisCRC, psEthHeader, wCurrentRate, byFBOption); } else if (pvRTS == NULL) {//RTS_needless, non PCF mode //Fill RsvTime if (pvRrvTime) { PSRrvTime_ab pBuf = (PSRrvTime_ab)pvRrvTime; pBuf->wTxRrvTime = cpu_to_le16((WORD)s_uGetTxRsvTime(pDevice, PK_TYPE_11A, cbFrameSize, wCurrentRate, bNeedACK)); //0:OFDM } } } else if (byPktType == PK_TYPE_11B) { if ((pvRTS != NULL)) {//RTS_need, non PCF mode //Fill RsvTime if (pvRrvTime) { PSRrvTime_ab pBuf = (PSRrvTime_ab)pvRrvTime; pBuf->wRTSTxRrvTime = cpu_to_le16((WORD)s_uGetRTSCTSRsvTime(pDevice, 0, byPktType, cbFrameSize, wCurrentRate));//0:RTSTxRrvTime_bb, 1:2.4GHz pBuf->wTxRrvTime = cpu_to_le16((WORD)s_uGetTxRsvTime(pDevice, PK_TYPE_11B, cbFrameSize, wCurrentRate, bNeedACK));//1:CCK } //Fill RTS s_vFillRTSHead(pDevice, byPktType, pvRTS, cbFrameSize, bNeedACK, bDisCRC, psEthHeader, wCurrentRate, byFBOption); } else { //RTS_needless, non PCF mode //Fill RsvTime if (pvRrvTime) { PSRrvTime_ab pBuf = (PSRrvTime_ab)pvRrvTime; pBuf->wTxRrvTime = cpu_to_le16((WORD)s_uGetTxRsvTime(pDevice, PK_TYPE_11B, cbFrameSize, wCurrentRate, bNeedACK)); //1:CCK } } } //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n"); } /* PBYTE pbyBuffer,//point to pTxBufHead WORD wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last UINT cbFragmentSize,//Hdr+payoad+FCS */ static void s_vFillFragParameter( PSDevice pDevice, PBYTE pbyBuffer, UINT uTxType, void * pvtdCurr, WORD wFragType, UINT cbReqCount ) { PSTxBufHead pTxBufHead = (PSTxBufHead) pbyBuffer; //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vFillFragParameter...\n"); if (uTxType == TYPE_SYNCDMA) { //PSTxSyncDesc ptdCurr = (PSTxSyncDesc)s_pvGetTxDescHead(pDevice, uTxType, uCurIdx); PSTxSyncDesc ptdCurr = (PSTxSyncDesc)pvtdCurr; //Set FIFOCtl & TimeStamp in TxSyncDesc ptdCurr->m_wFIFOCtl = pTxBufHead->wFIFOCtl; ptdCurr->m_wTimeStamp = pTxBufHead->wTimeStamp; //Set TSR1 & ReqCount in TxDescHead ptdCurr->m_td1TD1.wReqCount = cpu_to_le16((WORD)(cbReqCount)); if (wFragType == FRAGCTL_ENDFRAG) { //Last Fragmentation ptdCurr->m_td1TD1.byTCR |= (TCR_STP | TCR_EDP | EDMSDU); } else { ptdCurr->m_td1TD1.byTCR |= (TCR_STP | TCR_EDP); } } else { //PSTxDesc ptdCurr = (PSTxDesc)s_pvGetTxDescHead(pDevice, uTxType, uCurIdx); PSTxDesc ptdCurr = (PSTxDesc)pvtdCurr; //Set TSR1 & ReqCount in TxDescHead ptdCurr->m_td1TD1.wReqCount = cpu_to_le16((WORD)(cbReqCount)); if (wFragType == FRAGCTL_ENDFRAG) { //Last Fragmentation ptdCurr->m_td1TD1.byTCR |= (TCR_STP | TCR_EDP | EDMSDU); } else { ptdCurr->m_td1TD1.byTCR |= (TCR_STP | TCR_EDP); } } pTxBufHead->wFragCtl |= (WORD)wFragType;//0x0001; //0000 0000 0000 0001 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vFillFragParameter END\n"); } static UINT s_cbFillTxBufHead ( PSDevice pDevice, BYTE byPktType, PBYTE pbyTxBufferAddr, UINT cbFrameBodySize, UINT uDMAIdx, PSTxDesc pHeadTD, PSEthernetHeader psEthHeader, PBYTE pPacket, BOOL bNeedEncrypt, PSKeyItem pTransmitKey, UINT uNodeIndex, PUINT puMACfragNum ) { UINT cbMACHdLen; UINT cbFrameSize; UINT cbFragmentSize; //Hdr+(IV)+payoad+(MIC)+(ICV)+FCS UINT cbFragPayloadSize; UINT cbLastFragmentSize; //Hdr+(IV)+payoad+(MIC)+(ICV)+FCS UINT cbLastFragPayloadSize; UINT uFragIdx; PBYTE pbyPayloadHead; PBYTE pbyIVHead; PBYTE pbyMacHdr; WORD wFragType; //00:Non-Frag, 01:Start, 10:Mid, 11:Last UINT uDuration; PBYTE pbyBuffer; // UINT uKeyEntryIdx = NUM_KEY_ENTRY+1; // BYTE byKeySel = 0xFF; UINT cbIVlen = 0; UINT cbICVlen = 0; UINT cbMIClen = 0; UINT cbFCSlen = 4; UINT cb802_1_H_len = 0; UINT uLength = 0; UINT uTmpLen = 0; // BYTE abyTmp[8]; // DWORD dwCRC; UINT cbMICHDR = 0; DWORD dwMICKey0, dwMICKey1; DWORD dwMIC_Priority; PDWORD pdwMIC_L; PDWORD pdwMIC_R; DWORD dwSafeMIC_L, dwSafeMIC_R; //Fix "Last Frag Size" < "MIC length". BOOL bMIC2Frag = FALSE; UINT uMICFragLen = 0; UINT uMACfragNum = 1; UINT uPadding = 0; UINT cbReqCount = 0; BOOL bNeedACK; BOOL bRTS; BOOL bIsAdhoc; PBYTE pbyType; PSTxDesc ptdCurr; PSTxBufHead psTxBufHd = (PSTxBufHead) pbyTxBufferAddr; // UINT tmpDescIdx; UINT cbHeaderLength = 0; void * pvRrvTime; PSMICHDRHead pMICHDR; void * pvRTS; void * pvCTS; void * pvTxDataHd; WORD wTxBufSize; // FFinfo size UINT uTotalCopyLength = 0; BYTE byFBOption = AUTO_FB_NONE; BOOL bIsWEP256 = FALSE; PSMgmtObject pMgmt = pDevice->pMgmt; pvRrvTime = pMICHDR = pvRTS = pvCTS = pvTxDataHd = NULL; //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_cbFillTxBufHead...\n"); if ((pDevice->eOPMode == OP_MODE_ADHOC) || (pDevice->eOPMode == OP_MODE_AP)) { if (is_multicast_ether_addr(&(psEthHeader->abyDstAddr[0])) || is_broadcast_ether_addr(&(psEthHeader->abyDstAddr[0]))) { bNeedACK = FALSE; } else { bNeedACK = TRUE; } bIsAdhoc = TRUE; } else { // MSDUs in Infra mode always need ACK bNeedACK = TRUE; bIsAdhoc = FALSE; } if (pDevice->bLongHeader) cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6; else cbMACHdLen = WLAN_HDR_ADDR3_LEN; if ((bNeedEncrypt == TRUE) && (pTransmitKey != NULL)) { if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { cbIVlen = 4; cbICVlen = 4; if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) { bIsWEP256 = TRUE; } } if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) { cbIVlen = 8;//IV+ExtIV cbMIClen = 8; cbICVlen = 4; } if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { cbIVlen = 8;//RSN Header cbICVlen = 8;//MIC cbMICHDR = sizeof(SMICHDRHead); } if (pDevice->byLocalID > REV_ID_VT3253_A1) { //MAC Header should be padding 0 to DW alignment. uPadding = 4 - (cbMACHdLen%4); uPadding %= 4; } } cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen; if ((bNeedACK == FALSE) || (cbFrameSize < pDevice->wRTSThreshold) || ((cbFrameSize >= pDevice->wFragmentationThreshold) && (pDevice->wFragmentationThreshold <= pDevice->wRTSThreshold)) ) { bRTS = FALSE; } else { bRTS = TRUE; psTxBufHd->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY); } // // Use for AUTO FALL BACK // if (psTxBufHd->wFIFOCtl & FIFOCTL_AUTO_FB_0) { byFBOption = AUTO_FB_0; } else if (psTxBufHd->wFIFOCtl & FIFOCTL_AUTO_FB_1) { byFBOption = AUTO_FB_1; } ////////////////////////////////////////////////////// //Set RrvTime/RTS/CTS Buffer wTxBufSize = sizeof(STxBufHead); if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet if (byFBOption == AUTO_FB_NONE) { if (bRTS == TRUE) {//RTS_need pvRrvTime = (PSRrvTime_gRTS) (pbyTxBufferAddr + wTxBufSize); pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gRTS)); pvRTS = (PSRTS_g) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gRTS) + cbMICHDR); pvCTS = NULL; pvTxDataHd = (PSTxDataHead_g) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gRTS) + cbMICHDR + sizeof(SRTS_g)); cbHeaderLength = wTxBufSize + sizeof(SRrvTime_gRTS) + cbMICHDR + sizeof(SRTS_g) + sizeof(STxDataHead_g); } else { //RTS_needless pvRrvTime = (PSRrvTime_gCTS) (pbyTxBufferAddr + wTxBufSize); pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS)); pvRTS = NULL; pvCTS = (PSCTS) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR); pvTxDataHd = (PSTxDataHead_g) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR + sizeof(SCTS)); cbHeaderLength = wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR + sizeof(SCTS) + sizeof(STxDataHead_g); } } else { // Auto Fall Back if (bRTS == TRUE) {//RTS_need pvRrvTime = (PSRrvTime_gRTS) (pbyTxBufferAddr + wTxBufSize); pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gRTS)); pvRTS = (PSRTS_g_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gRTS) + cbMICHDR); pvCTS = NULL; pvTxDataHd = (PSTxDataHead_g_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gRTS) + cbMICHDR + sizeof(SRTS_g_FB)); cbHeaderLength = wTxBufSize + sizeof(SRrvTime_gRTS) + cbMICHDR + sizeof(SRTS_g_FB) + sizeof(STxDataHead_g_FB); } else { //RTS_needless pvRrvTime = (PSRrvTime_gCTS) (pbyTxBufferAddr + wTxBufSize); pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS)); pvRTS = NULL; pvCTS = (PSCTS_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR); pvTxDataHd = (PSTxDataHead_g_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR + sizeof(SCTS_FB)); cbHeaderLength = wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR + sizeof(SCTS_FB) + sizeof(STxDataHead_g_FB); } } // Auto Fall Back } else {//802.11a/b packet if (byFBOption == AUTO_FB_NONE) { if (bRTS == TRUE) { pvRrvTime = (PSRrvTime_ab) (pbyTxBufferAddr + wTxBufSize); pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab)); pvRTS = (PSRTS_ab) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR); pvCTS = NULL; pvTxDataHd = (PSTxDataHead_ab) (pbyTxBufferAddr + wTxBufSize + sizeof(PSRrvTime_ab) + cbMICHDR + sizeof(SRTS_ab)); cbHeaderLength = wTxBufSize + sizeof(PSRrvTime_ab) + cbMICHDR + sizeof(SRTS_ab) + sizeof(STxDataHead_ab); } else { //RTS_needless, need MICHDR pvRrvTime = (PSRrvTime_ab) (pbyTxBufferAddr + wTxBufSize); pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab)); pvRTS = NULL; pvCTS = NULL; pvTxDataHd = (PSTxDataHead_ab) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR); cbHeaderLength = wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR + sizeof(STxDataHead_ab); } } else { // Auto Fall Back if (bRTS == TRUE) {//RTS_need pvRrvTime = (PSRrvTime_ab) (pbyTxBufferAddr + wTxBufSize); pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab)); pvRTS = (PSRTS_a_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR); pvCTS = NULL; pvTxDataHd = (PSTxDataHead_a_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(PSRrvTime_ab) + cbMICHDR + sizeof(SRTS_a_FB)); cbHeaderLength = wTxBufSize + sizeof(PSRrvTime_ab) + cbMICHDR + sizeof(SRTS_a_FB) + sizeof(STxDataHead_a_FB); } else { //RTS_needless pvRrvTime = (PSRrvTime_ab) (pbyTxBufferAddr + wTxBufSize); pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab)); pvRTS = NULL; pvCTS = NULL; pvTxDataHd = (PSTxDataHead_a_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR); cbHeaderLength = wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR + sizeof(STxDataHead_a_FB); } } // Auto Fall Back } memset((void *)(pbyTxBufferAddr + wTxBufSize), 0, (cbHeaderLength - wTxBufSize)); ////////////////////////////////////////////////////////////////// if ((bNeedEncrypt == TRUE) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) { if (pDevice->pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) { dwMICKey0 = *(PDWORD)(&pTransmitKey->abyKey[16]); dwMICKey1 = *(PDWORD)(&pTransmitKey->abyKey[20]); } else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) { dwMICKey0 = *(PDWORD)(&pTransmitKey->abyKey[16]); dwMICKey1 = *(PDWORD)(&pTransmitKey->abyKey[20]); } else { dwMICKey0 = *(PDWORD)(&pTransmitKey->abyKey[24]); dwMICKey1 = *(PDWORD)(&pTransmitKey->abyKey[28]); } // DO Software Michael MIC_vInit(dwMICKey0, dwMICKey1); MIC_vAppend((PBYTE)&(psEthHeader->abyDstAddr[0]), 12); dwMIC_Priority = 0; MIC_vAppend((PBYTE)&dwMIC_Priority, 4); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %lX, %lX\n", dwMICKey0, dwMICKey1); } /////////////////////////////////////////////////////////////////// pbyMacHdr = (PBYTE)(pbyTxBufferAddr + cbHeaderLength); pbyPayloadHead = (PBYTE)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen); pbyIVHead = (PBYTE)(pbyMacHdr + cbMACHdLen + uPadding); if ((cbFrameSize > pDevice->wFragmentationThreshold) && (bNeedACK == TRUE) && (bIsWEP256 == FALSE)) { // Fragmentation // FragThreshold = Fragment size(Hdr+(IV)+fragment payload+(MIC)+(ICV)+FCS) cbFragmentSize = pDevice->wFragmentationThreshold; cbFragPayloadSize = cbFragmentSize - cbMACHdLen - cbIVlen - cbICVlen - cbFCSlen; //FragNum = (FrameSize-(Hdr+FCS))/(Fragment Size -(Hrd+FCS))) uMACfragNum = (WORD) ((cbFrameBodySize + cbMIClen) / cbFragPayloadSize); cbLastFragPayloadSize = (cbFrameBodySize + cbMIClen) % cbFragPayloadSize; if (cbLastFragPayloadSize == 0) { cbLastFragPayloadSize = cbFragPayloadSize; } else { uMACfragNum++; } //[Hdr+(IV)+last fragment payload+(MIC)+(ICV)+FCS] cbLastFragmentSize = cbMACHdLen + cbLastFragPayloadSize + cbIVlen + cbICVlen + cbFCSlen; for (uFragIdx = 0; uFragIdx < uMACfragNum; uFragIdx ++) { if (uFragIdx == 0) { //========================= // Start Fragmentation //========================= DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Start Fragmentation...\n"); wFragType = FRAGCTL_STAFRAG; //Fill FIFO,RrvTime,RTS,and CTS s_vGenerateTxParameter(pDevice, byPktType, (void *)psTxBufHd, pvRrvTime, pvRTS, pvCTS, cbFragmentSize, bNeedACK, uDMAIdx, psEthHeader, pDevice->wCurrentRate); //Fill DataHead uDuration = s_uFillDataHead(pDevice, byPktType, pvTxDataHd, cbFragmentSize, uDMAIdx, bNeedACK, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption, pDevice->wCurrentRate); // Generate TX MAC Header vGenerateMACHeader(pDevice, pbyMacHdr, (WORD)uDuration, psEthHeader, bNeedEncrypt, wFragType, uDMAIdx, uFragIdx); if (bNeedEncrypt == TRUE) { //Fill TXKEY s_vFillTxKey(pDevice, (PBYTE)(psTxBufHd->adwTxKey), pbyIVHead, pTransmitKey, pbyMacHdr, (WORD)cbFragPayloadSize, (PBYTE)pMICHDR); //Fill IV(ExtIV,RSNHDR) if (pDevice->bEnableHostWEP) { pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16; pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0; } } // 802.1H if (ntohs(psEthHeader->wType) > ETH_DATA_LEN) { if ((psEthHeader->wType == TYPE_PKT_IPX) || (psEthHeader->wType == cpu_to_le16(0xF380))) { memcpy((PBYTE) (pbyPayloadHead), &pDevice->abySNAP_Bridgetunnel[0], 6); } else { memcpy((PBYTE) (pbyPayloadHead), &pDevice->abySNAP_RFC1042[0], 6); } pbyType = (PBYTE) (pbyPayloadHead + 6); memcpy(pbyType, &(psEthHeader->wType), sizeof(WORD)); cb802_1_H_len = 8; } cbReqCount = cbHeaderLength + cbMACHdLen + uPadding + cbIVlen + cbFragPayloadSize; //--------------------------- // S/W or H/W Encryption //--------------------------- //Fill MICHDR //if (pDevice->bAES) { // s_vFillMICHDR(pDevice, (PBYTE)pMICHDR, pbyMacHdr, (WORD)cbFragPayloadSize); //} //cbReqCount += s_uDoEncryption(pDevice, psEthHeader, (void *)psTxBufHd, byKeySel, // pbyPayloadHead, (WORD)cbFragPayloadSize, uDMAIdx); //pbyBuffer = (PBYTE)pDevice->aamTxBuf[uDMAIdx][uDescIdx].pbyVAddr; pbyBuffer = (PBYTE)pHeadTD->pTDInfo->buf; uLength = cbHeaderLength + cbMACHdLen + uPadding + cbIVlen + cb802_1_H_len; //copy TxBufferHeader + MacHeader to desc memcpy(pbyBuffer, (void *)psTxBufHd, uLength); // Copy the Packet into a tx Buffer memcpy((pbyBuffer + uLength), (pPacket + 14), (cbFragPayloadSize - cb802_1_H_len)); uTotalCopyLength += cbFragPayloadSize - cb802_1_H_len; if ((bNeedEncrypt == TRUE) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Start MIC: %d\n", cbFragPayloadSize); MIC_vAppend((pbyBuffer + uLength - cb802_1_H_len), cbFragPayloadSize); } //--------------------------- // S/W Encryption //--------------------------- if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) { if (bNeedEncrypt) { s_vSWencryption(pDevice, pTransmitKey, (pbyBuffer + uLength - cb802_1_H_len), (WORD)cbFragPayloadSize); cbReqCount += cbICVlen; } } ptdCurr = (PSTxDesc)pHeadTD; //-------------------- //1.Set TSR1 & ReqCount in TxDescHead //2.Set FragCtl in TxBufferHead //3.Set Frame Control //4.Set Sequence Control //5.Get S/W generate FCS //-------------------- s_vFillFragParameter(pDevice, pbyBuffer, uDMAIdx, (void *)ptdCurr, wFragType, cbReqCount); ptdCurr->pTDInfo->dwReqCount = cbReqCount - uPadding; ptdCurr->pTDInfo->dwHeaderLength = cbHeaderLength; ptdCurr->pTDInfo->skb_dma = ptdCurr->pTDInfo->buf_dma; ptdCurr->buff_addr = cpu_to_le32(ptdCurr->pTDInfo->skb_dma); pDevice->iTDUsed[uDMAIdx]++; pHeadTD = ptdCurr->next; } else if (uFragIdx == (uMACfragNum-1)) { //========================= // Last Fragmentation //========================= DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Last Fragmentation...\n"); //tmpDescIdx = (uDescIdx + uFragIdx) % pDevice->cbTD[uDMAIdx]; wFragType = FRAGCTL_ENDFRAG; //Fill FIFO,RrvTime,RTS,and CTS s_vGenerateTxParameter(pDevice, byPktType, (void *)psTxBufHd, pvRrvTime, pvRTS, pvCTS, cbLastFragmentSize, bNeedACK, uDMAIdx, psEthHeader, pDevice->wCurrentRate); //Fill DataHead uDuration = s_uFillDataHead(pDevice, byPktType, pvTxDataHd, cbLastFragmentSize, uDMAIdx, bNeedACK, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption, pDevice->wCurrentRate); // Generate TX MAC Header vGenerateMACHeader(pDevice, pbyMacHdr, (WORD)uDuration, psEthHeader, bNeedEncrypt, wFragType, uDMAIdx, uFragIdx); if (bNeedEncrypt == TRUE) { //Fill TXKEY s_vFillTxKey(pDevice, (PBYTE)(psTxBufHd->adwTxKey), pbyIVHead, pTransmitKey, pbyMacHdr, (WORD)cbLastFragPayloadSize, (PBYTE)pMICHDR); if (pDevice->bEnableHostWEP) { pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16; pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0; } } cbReqCount = cbHeaderLength + cbMACHdLen + uPadding + cbIVlen + cbLastFragPayloadSize; //--------------------------- // S/W or H/W Encryption //--------------------------- pbyBuffer = (PBYTE)pHeadTD->pTDInfo->buf; //pbyBuffer = (PBYTE)pDevice->aamTxBuf[uDMAIdx][tmpDescIdx].pbyVAddr; uLength = cbHeaderLength + cbMACHdLen + uPadding + cbIVlen; //copy TxBufferHeader + MacHeader to desc memcpy(pbyBuffer, (void *)psTxBufHd, uLength); // Copy the Packet into a tx Buffer if (bMIC2Frag == FALSE) { memcpy((pbyBuffer + uLength), (pPacket + 14 + uTotalCopyLength), (cbLastFragPayloadSize - cbMIClen) ); //TODO check uTmpLen ! uTmpLen = cbLastFragPayloadSize - cbMIClen; } if ((bNeedEncrypt == TRUE) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"LAST: uMICFragLen:%d, cbLastFragPayloadSize:%d, uTmpLen:%d\n", uMICFragLen, cbLastFragPayloadSize, uTmpLen); if (bMIC2Frag == FALSE) { if (uTmpLen != 0) MIC_vAppend((pbyBuffer + uLength), uTmpLen); pdwMIC_L = (PDWORD)(pbyBuffer + uLength + uTmpLen); pdwMIC_R = (PDWORD)(pbyBuffer + uLength + uTmpLen + 4); MIC_vGetMIC(pdwMIC_L, pdwMIC_R); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Last MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R); } else { if (uMICFragLen >= 4) { memcpy((pbyBuffer + uLength), ((PBYTE)&dwSafeMIC_R + (uMICFragLen - 4)), (cbMIClen - uMICFragLen)); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"LAST: uMICFragLen >= 4: %X, %d\n", *(PBYTE)((PBYTE)&dwSafeMIC_R + (uMICFragLen - 4)), (cbMIClen - uMICFragLen)); } else { memcpy((pbyBuffer + uLength), ((PBYTE)&dwSafeMIC_L + uMICFragLen), (4 - uMICFragLen)); memcpy((pbyBuffer + uLength + (4 - uMICFragLen)), &dwSafeMIC_R, 4); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"LAST: uMICFragLen < 4: %X, %d\n", *(PBYTE)((PBYTE)&dwSafeMIC_R + uMICFragLen - 4), (cbMIClen - uMICFragLen)); } /* for (ii = 0; ii < cbLastFragPayloadSize + 8 + 24; ii++) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"%02x ", *((PBYTE)((pbyBuffer + uLength) + ii - 8 - 24))); } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\n\n"); */ } MIC_vUnInit(); } else { ASSERT(uTmpLen == (cbLastFragPayloadSize - cbMIClen)); } //--------------------------- // S/W Encryption //--------------------------- if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) { if (bNeedEncrypt) { s_vSWencryption(pDevice, pTransmitKey, (pbyBuffer + uLength), (WORD)cbLastFragPayloadSize); cbReqCount += cbICVlen; } } ptdCurr = (PSTxDesc)pHeadTD; //-------------------- //1.Set TSR1 & ReqCount in TxDescHead //2.Set FragCtl in TxBufferHead //3.Set Frame Control //4.Set Sequence Control //5.Get S/W generate FCS //-------------------- s_vFillFragParameter(pDevice, pbyBuffer, uDMAIdx, (void *)ptdCurr, wFragType, cbReqCount); ptdCurr->pTDInfo->dwReqCount = cbReqCount - uPadding; ptdCurr->pTDInfo->dwHeaderLength = cbHeaderLength; ptdCurr->pTDInfo->skb_dma = ptdCurr->pTDInfo->buf_dma; ptdCurr->buff_addr = cpu_to_le32(ptdCurr->pTDInfo->skb_dma); pDevice->iTDUsed[uDMAIdx]++; pHeadTD = ptdCurr->next; } else { //========================= // Middle Fragmentation //========================= DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Middle Fragmentation...\n"); //tmpDescIdx = (uDescIdx + uFragIdx) % pDevice->cbTD[uDMAIdx]; wFragType = FRAGCTL_MIDFRAG; //Fill FIFO,RrvTime,RTS,and CTS s_vGenerateTxParameter(pDevice, byPktType, (void *)psTxBufHd, pvRrvTime, pvRTS, pvCTS, cbFragmentSize, bNeedACK, uDMAIdx, psEthHeader, pDevice->wCurrentRate); //Fill DataHead uDuration = s_uFillDataHead(pDevice, byPktType, pvTxDataHd, cbFragmentSize, uDMAIdx, bNeedACK, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption, pDevice->wCurrentRate); // Generate TX MAC Header vGenerateMACHeader(pDevice, pbyMacHdr, (WORD)uDuration, psEthHeader, bNeedEncrypt, wFragType, uDMAIdx, uFragIdx); if (bNeedEncrypt == TRUE) { //Fill TXKEY s_vFillTxKey(pDevice, (PBYTE)(psTxBufHd->adwTxKey), pbyIVHead, pTransmitKey, pbyMacHdr, (WORD)cbFragPayloadSize, (PBYTE)pMICHDR); if (pDevice->bEnableHostWEP) { pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16; pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0; } } cbReqCount = cbHeaderLength + cbMACHdLen + uPadding + cbIVlen + cbFragPayloadSize; //--------------------------- // S/W or H/W Encryption //--------------------------- //Fill MICHDR //if (pDevice->bAES) { // s_vFillMICHDR(pDevice, (PBYTE)pMICHDR, pbyMacHdr, (WORD)cbFragPayloadSize); //} //cbReqCount += s_uDoEncryption(pDevice, psEthHeader, (void *)psTxBufHd, byKeySel, // pbyPayloadHead, (WORD)cbFragPayloadSize, uDMAIdx); pbyBuffer = (PBYTE)pHeadTD->pTDInfo->buf; //pbyBuffer = (PBYTE)pDevice->aamTxBuf[uDMAIdx][tmpDescIdx].pbyVAddr; uLength = cbHeaderLength + cbMACHdLen + uPadding + cbIVlen; //copy TxBufferHeader + MacHeader to desc memcpy(pbyBuffer, (void *)psTxBufHd, uLength); // Copy the Packet into a tx Buffer memcpy((pbyBuffer + uLength), (pPacket + 14 + uTotalCopyLength), cbFragPayloadSize ); uTmpLen = cbFragPayloadSize; uTotalCopyLength += uTmpLen; if ((bNeedEncrypt == TRUE) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) { MIC_vAppend((pbyBuffer + uLength), uTmpLen); if (uTmpLen < cbFragPayloadSize) { bMIC2Frag = TRUE; uMICFragLen = cbFragPayloadSize - uTmpLen; ASSERT(uMICFragLen < cbMIClen); pdwMIC_L = (PDWORD)(pbyBuffer + uLength + uTmpLen); pdwMIC_R = (PDWORD)(pbyBuffer + uLength + uTmpLen + 4); MIC_vGetMIC(pdwMIC_L, pdwMIC_R); dwSafeMIC_L = *pdwMIC_L; dwSafeMIC_R = *pdwMIC_R; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIDDLE: uMICFragLen:%d, cbFragPayloadSize:%d, uTmpLen:%d\n", uMICFragLen, cbFragPayloadSize, uTmpLen); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Fill MIC in Middle frag [%d]\n", uMICFragLen); /* for (ii = 0; ii < uMICFragLen; ii++) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"%02x ", *((PBYTE)((pbyBuffer + uLength + uTmpLen) + ii))); } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\n"); */ DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R); } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Middle frag len: %d\n", uTmpLen); /* for (ii = 0; ii < uTmpLen; ii++) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"%02x ", *((PBYTE)((pbyBuffer + uLength) + ii))); } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\n\n"); */ } else { ASSERT(uTmpLen == (cbFragPayloadSize)); } if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) { if (bNeedEncrypt) { s_vSWencryption(pDevice, pTransmitKey, (pbyBuffer + uLength), (WORD)cbFragPayloadSize); cbReqCount += cbICVlen; } } ptdCurr = (PSTxDesc)pHeadTD; //-------------------- //1.Set TSR1 & ReqCount in TxDescHead //2.Set FragCtl in TxBufferHead //3.Set Frame Control //4.Set Sequence Control //5.Get S/W generate FCS //-------------------- s_vFillFragParameter(pDevice, pbyBuffer, uDMAIdx, (void *)ptdCurr, wFragType, cbReqCount); ptdCurr->pTDInfo->dwReqCount = cbReqCount - uPadding; ptdCurr->pTDInfo->dwHeaderLength = cbHeaderLength; ptdCurr->pTDInfo->skb_dma = ptdCurr->pTDInfo->buf_dma; ptdCurr->buff_addr = cpu_to_le32(ptdCurr->pTDInfo->skb_dma); pDevice->iTDUsed[uDMAIdx]++; pHeadTD = ptdCurr->next; } } // for (uMACfragNum) } else { //========================= // No Fragmentation //========================= //DBG_PRTGRP03(("No Fragmentation...\n")); //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n"); wFragType = FRAGCTL_NONFRAG; //Set FragCtl in TxBufferHead psTxBufHd->wFragCtl |= (WORD)wFragType; //Fill FIFO,RrvTime,RTS,and CTS s_vGenerateTxParameter(pDevice, byPktType, (void *)psTxBufHd, pvRrvTime, pvRTS, pvCTS, cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, pDevice->wCurrentRate); //Fill DataHead uDuration = s_uFillDataHead(pDevice, byPktType, pvTxDataHd, cbFrameSize, uDMAIdx, bNeedACK, 0, 0, uMACfragNum, byFBOption, pDevice->wCurrentRate); // Generate TX MAC Header vGenerateMACHeader(pDevice, pbyMacHdr, (WORD)uDuration, psEthHeader, bNeedEncrypt, wFragType, uDMAIdx, 0); if (bNeedEncrypt == TRUE) { //Fill TXKEY s_vFillTxKey(pDevice, (PBYTE)(psTxBufHd->adwTxKey), pbyIVHead, pTransmitKey, pbyMacHdr, (WORD)cbFrameBodySize, (PBYTE)pMICHDR); if (pDevice->bEnableHostWEP) { pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16; pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0; } } // 802.1H if (ntohs(psEthHeader->wType) > ETH_DATA_LEN) { if ((psEthHeader->wType == TYPE_PKT_IPX) || (psEthHeader->wType == cpu_to_le16(0xF380))) { memcpy((PBYTE) (pbyPayloadHead), &pDevice->abySNAP_Bridgetunnel[0], 6); } else { memcpy((PBYTE) (pbyPayloadHead), &pDevice->abySNAP_RFC1042[0], 6); } pbyType = (PBYTE) (pbyPayloadHead + 6); memcpy(pbyType, &(psEthHeader->wType), sizeof(WORD)); cb802_1_H_len = 8; } cbReqCount = cbHeaderLength + cbMACHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen); //--------------------------- // S/W or H/W Encryption //--------------------------- //Fill MICHDR //if (pDevice->bAES) { // DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Fill MICHDR...\n"); // s_vFillMICHDR(pDevice, (PBYTE)pMICHDR, pbyMacHdr, (WORD)cbFrameBodySize); //} pbyBuffer = (PBYTE)pHeadTD->pTDInfo->buf; //pbyBuffer = (PBYTE)pDevice->aamTxBuf[uDMAIdx][uDescIdx].pbyVAddr; uLength = cbHeaderLength + cbMACHdLen + uPadding + cbIVlen + cb802_1_H_len; //copy TxBufferHeader + MacHeader to desc memcpy(pbyBuffer, (void *)psTxBufHd, uLength); // Copy the Packet into a tx Buffer memcpy((pbyBuffer + uLength), (pPacket + 14), cbFrameBodySize - cb802_1_H_len ); if ((bNeedEncrypt == TRUE) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)){ DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Length:%d, %d\n", cbFrameBodySize - cb802_1_H_len, uLength); /* for (ii = 0; ii < (cbFrameBodySize - cb802_1_H_len); ii++) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"%02x ", *((PBYTE)((pbyBuffer + uLength) + ii))); } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\n"); */ MIC_vAppend((pbyBuffer + uLength - cb802_1_H_len), cbFrameBodySize); pdwMIC_L = (PDWORD)(pbyBuffer + uLength - cb802_1_H_len + cbFrameBodySize); pdwMIC_R = (PDWORD)(pbyBuffer + uLength - cb802_1_H_len + cbFrameBodySize + 4); MIC_vGetMIC(pdwMIC_L, pdwMIC_R); MIC_vUnInit(); if (pDevice->bTxMICFail == TRUE) { *pdwMIC_L = 0; *pdwMIC_R = 0; pDevice->bTxMICFail = FALSE; } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lx, %lx\n", *pdwMIC_L, *pdwMIC_R); /* for (ii = 0; ii < 8; ii++) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"%02x ", *(((PBYTE)(pdwMIC_L) + ii))); } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\n"); */ } if ((pDevice->byLocalID <= REV_ID_VT3253_A1)){ if (bNeedEncrypt) { s_vSWencryption(pDevice, pTransmitKey, (pbyBuffer + uLength - cb802_1_H_len), (WORD)(cbFrameBodySize + cbMIClen)); cbReqCount += cbICVlen; } } ptdCurr = (PSTxDesc)pHeadTD; ptdCurr->pTDInfo->dwReqCount = cbReqCount - uPadding; ptdCurr->pTDInfo->dwHeaderLength = cbHeaderLength; ptdCurr->pTDInfo->skb_dma = ptdCurr->pTDInfo->buf_dma; ptdCurr->buff_addr = cpu_to_le32(ptdCurr->pTDInfo->skb_dma); //Set TSR1 & ReqCount in TxDescHead ptdCurr->m_td1TD1.byTCR |= (TCR_STP | TCR_EDP | EDMSDU); ptdCurr->m_td1TD1.wReqCount = cpu_to_le16((WORD)(cbReqCount)); pDevice->iTDUsed[uDMAIdx]++; // DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO" ptdCurr->m_dwReserved0[%d] ptdCurr->m_dwReserved1[%d].\n", ptdCurr->pTDInfo->dwReqCount, ptdCurr->pTDInfo->dwHeaderLength); // DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO" cbHeaderLength[%d]\n", cbHeaderLength); } *puMACfragNum = uMACfragNum; //DBG_PRTGRP03(("s_cbFillTxBufHead END\n")); return cbHeaderLength; } void vGenerateFIFOHeader ( PSDevice pDevice, BYTE byPktType, PBYTE pbyTxBufferAddr, BOOL bNeedEncrypt, UINT cbPayloadSize, UINT uDMAIdx, PSTxDesc pHeadTD, PSEthernetHeader psEthHeader, PBYTE pPacket, PSKeyItem pTransmitKey, UINT uNodeIndex, PUINT puMACfragNum, PUINT pcbHeaderSize ) { UINT wTxBufSize; // FFinfo size BOOL bNeedACK; BOOL bIsAdhoc; WORD cbMacHdLen; PSTxBufHead pTxBufHead = (PSTxBufHead) pbyTxBufferAddr; wTxBufSize = sizeof(STxBufHead); memset(pTxBufHead, 0, wTxBufSize); //Set FIFOCTL_NEEDACK if ((pDevice->eOPMode == OP_MODE_ADHOC) || (pDevice->eOPMode == OP_MODE_AP)) { if (is_multicast_ether_addr(&(psEthHeader->abyDstAddr[0])) || is_broadcast_ether_addr(&(psEthHeader->abyDstAddr[0]))) { bNeedACK = FALSE; pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK); } else { bNeedACK = TRUE; pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK; } bIsAdhoc = TRUE; } else { // MSDUs in Infra mode always need ACK bNeedACK = TRUE; pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK; bIsAdhoc = FALSE; } pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN; pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MSDU_LIFETIME_RES_64us); //Set FIFOCTL_LHEAD if (pDevice->bLongHeader) pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD; //Set FIFOCTL_GENINT pTxBufHead->wFIFOCtl |= FIFOCTL_GENINT; //Set FIFOCTL_ISDMA0 if (TYPE_TXDMA0 == uDMAIdx) { pTxBufHead->wFIFOCtl |= FIFOCTL_ISDMA0; } //Set FRAGCTL_MACHDCNT if (pDevice->bLongHeader) { cbMacHdLen = WLAN_HDR_ADDR3_LEN + 6; } else { cbMacHdLen = WLAN_HDR_ADDR3_LEN; } pTxBufHead->wFragCtl |= cpu_to_le16((WORD)(cbMacHdLen << 10)); //Set packet type if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000 ; } else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_11B; } else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB; } else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA; } //Set FIFOCTL_GrpAckPolicy if (pDevice->bGrpAckPolicy == TRUE) {//0000 0100 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK; } //Set Auto Fallback Ctl if (pDevice->wCurrentRate >= RATE_18M) { if (pDevice->byAutoFBCtrl == AUTO_FB_0) { pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0; } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) { pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1; } } //Set FRAGCTL_WEPTYP pDevice->bAES = FALSE; //Set FRAGCTL_WEPTYP if (pDevice->byLocalID > REV_ID_VT3253_A1) { if ((bNeedEncrypt) && (pTransmitKey != NULL)) { //WEP enabled if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) { pTxBufHead->wFragCtl |= FRAGCTL_TKIP; } else if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104 if (pTransmitKey->uKeyLength != WLAN_WEP232_KEYLEN) pTxBufHead->wFragCtl |= FRAGCTL_LEGACY; } else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP pTxBufHead->wFragCtl |= FRAGCTL_AES; } } } #ifdef PLICE_DEBUG //printk("Func:vGenerateFIFOHeader:TxDataRate is %d,TxPower is %d\n",pDevice->wCurrentRate,pDevice->byCurPwr); //if (pDevice->wCurrentRate <= 3) //{ // RFbRawSetPower(pDevice,36,pDevice->wCurrentRate); //} //else RFbSetPower(pDevice, pDevice->wCurrentRate, pDevice->byCurrentCh); #endif //if (pDevice->wCurrentRate == 3) //pDevice->byCurPwr = 46; pTxBufHead->byTxPower = pDevice->byCurPwr; /* if(pDevice->bEnableHostWEP) pTxBufHead->wFragCtl &= ~(FRAGCTL_TKIP | FRAGCTL_LEGACY |FRAGCTL_AES); */ *pcbHeaderSize = s_cbFillTxBufHead(pDevice, byPktType, pbyTxBufferAddr, cbPayloadSize, uDMAIdx, pHeadTD, psEthHeader, pPacket, bNeedEncrypt, pTransmitKey, uNodeIndex, puMACfragNum); return; } /*+ * * Description: * Translate 802.3 to 802.11 header * * Parameters: * In: * pDevice - Pointer to adapter * dwTxBufferAddr - Transmit Buffer * pPacket - Packet from upper layer * cbPacketSize - Transmit Data Length * Out: * pcbHeadSize - Header size of MAC&Baseband control and 802.11 Header * pcbAppendPayload - size of append payload for 802.1H translation * * Return Value: none * -*/ void vGenerateMACHeader ( PSDevice pDevice, PBYTE pbyBufferAddr, WORD wDuration, PSEthernetHeader psEthHeader, BOOL bNeedEncrypt, WORD wFragType, UINT uDMAIdx, UINT uFragIdx ) { PS802_11Header pMACHeader = (PS802_11Header)pbyBufferAddr; memset(pMACHeader, 0, (sizeof(S802_11Header))); //- sizeof(pMACHeader->dwIV))); if (uDMAIdx == TYPE_ATIMDMA) { pMACHeader->wFrameCtl = TYPE_802_11_ATIM; } else { pMACHeader->wFrameCtl = TYPE_802_11_DATA; } if (pDevice->eOPMode == OP_MODE_AP) { memcpy(&(pMACHeader->abyAddr1[0]), &(psEthHeader->abyDstAddr[0]), ETH_ALEN); memcpy(&(pMACHeader->abyAddr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); memcpy(&(pMACHeader->abyAddr3[0]), &(psEthHeader->abySrcAddr[0]), ETH_ALEN); pMACHeader->wFrameCtl |= FC_FROMDS; } else { if (pDevice->eOPMode == OP_MODE_ADHOC) { memcpy(&(pMACHeader->abyAddr1[0]), &(psEthHeader->abyDstAddr[0]), ETH_ALEN); memcpy(&(pMACHeader->abyAddr2[0]), &(psEthHeader->abySrcAddr[0]), ETH_ALEN); memcpy(&(pMACHeader->abyAddr3[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); } else { memcpy(&(pMACHeader->abyAddr3[0]), &(psEthHeader->abyDstAddr[0]), ETH_ALEN); memcpy(&(pMACHeader->abyAddr2[0]), &(psEthHeader->abySrcAddr[0]), ETH_ALEN); memcpy(&(pMACHeader->abyAddr1[0]), &(pDevice->abyBSSID[0]), ETH_ALEN); pMACHeader->wFrameCtl |= FC_TODS; } } if (bNeedEncrypt) pMACHeader->wFrameCtl |= cpu_to_le16((WORD)WLAN_SET_FC_ISWEP(1)); pMACHeader->wDurationID = cpu_to_le16(wDuration); if (pDevice->bLongHeader) { PWLAN_80211HDR_A4 pMACA4Header = (PWLAN_80211HDR_A4) pbyBufferAddr; pMACHeader->wFrameCtl |= (FC_TODS | FC_FROMDS); memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN); } pMACHeader->wSeqCtl = cpu_to_le16(pDevice->wSeqCounter << 4); //Set FragNumber in Sequence Control pMACHeader->wSeqCtl |= cpu_to_le16((WORD)uFragIdx); if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) { pDevice->wSeqCounter++; if (pDevice->wSeqCounter > 0x0fff) pDevice->wSeqCounter = 0; } if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag pMACHeader->wFrameCtl |= FC_MOREFRAG; } } CMD_STATUS csMgmt_xmit(PSDevice pDevice, PSTxMgmtPacket pPacket) { PSTxDesc pFrstTD; BYTE byPktType; PBYTE pbyTxBufferAddr; void * pvRTS; PSCTS pCTS; void * pvTxDataHd; UINT uDuration; UINT cbReqCount; PS802_11Header pMACHeader; UINT cbHeaderSize; UINT cbFrameBodySize; BOOL bNeedACK; BOOL bIsPSPOLL = FALSE; PSTxBufHead pTxBufHead; UINT cbFrameSize; UINT cbIVlen = 0; UINT cbICVlen = 0; UINT cbMIClen = 0; UINT cbFCSlen = 4; UINT uPadding = 0; WORD wTxBufSize; UINT cbMacHdLen; SEthernetHeader sEthHeader; void * pvRrvTime; void * pMICHDR; PSMgmtObject pMgmt = pDevice->pMgmt; WORD wCurrentRate = RATE_1M; if (AVAIL_TD(pDevice, TYPE_TXDMA0) <= 0) { return CMD_STATUS_RESOURCES; } pFrstTD = pDevice->apCurrTD[TYPE_TXDMA0]; pbyTxBufferAddr = (PBYTE)pFrstTD->pTDInfo->buf; cbFrameBodySize = pPacket->cbPayloadLen; pTxBufHead = (PSTxBufHead) pbyTxBufferAddr; wTxBufSize = sizeof(STxBufHead); memset(pTxBufHead, 0, wTxBufSize); if (pDevice->eCurrentPHYType == PHY_TYPE_11A) { wCurrentRate = RATE_6M; byPktType = PK_TYPE_11A; } else { wCurrentRate = RATE_1M; byPktType = PK_TYPE_11B; } // SetPower will cause error power TX state for OFDM Date packet in TX buffer. // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability. // And cmd timer will wait data pkt TX finish before scanning so it's OK // to set power here. if (pDevice->pMgmt->eScanState != WMAC_NO_SCANNING) { RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh); } else { RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel); } pTxBufHead->byTxPower = pDevice->byCurPwr; //+++++++++++++++++++++ Patch VT3253 A1 performance +++++++++++++++++++++++++++ if (pDevice->byFOETuning) { if ((pPacket->p80211Header->sA3.wFrameCtl & TYPE_DATE_NULL) == TYPE_DATE_NULL) { wCurrentRate = RATE_24M; byPktType = PK_TYPE_11GA; } } //Set packet type if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000 pTxBufHead->wFIFOCtl = 0; } else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_11B; } else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB; } else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA; } pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN; pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us); if (is_multicast_ether_addr(&(pPacket->p80211Header->sA3.abyAddr1[0])) || is_broadcast_ether_addr(&(pPacket->p80211Header->sA3.abyAddr1[0]))) { bNeedACK = FALSE; } else { bNeedACK = TRUE; pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK; }; if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) || (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) { pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY; //Set Preamble type always long //pDevice->byPreambleType = PREAMBLE_LONG; // probe-response don't retry //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) { // bNeedACK = FALSE; // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK); //} } pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0); if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) { bIsPSPOLL = TRUE; cbMacHdLen = WLAN_HDR_ADDR2_LEN; } else { cbMacHdLen = WLAN_HDR_ADDR3_LEN; } //Set FRAGCTL_MACHDCNT pTxBufHead->wFragCtl |= cpu_to_le16((WORD)(cbMacHdLen << 10)); // Notes: // Although spec says MMPDU can be fragmented; In most case, // no one will send a MMPDU under fragmentation. With RTS may occur. pDevice->bAES = FALSE; //Set FRAGCTL_WEPTYP if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) { if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) { cbIVlen = 4; cbICVlen = 4; pTxBufHead->wFragCtl |= FRAGCTL_LEGACY; } else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) { cbIVlen = 8;//IV+ExtIV cbMIClen = 8; cbICVlen = 4; pTxBufHead->wFragCtl |= FRAGCTL_TKIP; //We need to get seed here for filling TxKey entry. //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr, // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG); } else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) { cbIVlen = 8;//RSN Header cbICVlen = 8;//MIC pTxBufHead->wFragCtl |= FRAGCTL_AES; pDevice->bAES = TRUE; } //MAC Header should be padding 0 to DW alignment. uPadding = 4 - (cbMacHdLen%4); uPadding %= 4; } cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen; //Set FIFOCTL_GrpAckPolicy if (pDevice->bGrpAckPolicy == TRUE) {//0000 0100 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK; } //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter() //Set RrvTime/RTS/CTS Buffer if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet pvRrvTime = (PSRrvTime_gCTS) (pbyTxBufferAddr + wTxBufSize); pMICHDR = NULL; pvRTS = NULL; pCTS = (PSCTS) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS)); pvTxDataHd = (PSTxDataHead_g) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + sizeof(SCTS)); cbHeaderSize = wTxBufSize + sizeof(SRrvTime_gCTS) + sizeof(SCTS) + sizeof(STxDataHead_g); } else { // 802.11a/b packet pvRrvTime = (PSRrvTime_ab) (pbyTxBufferAddr + wTxBufSize); pMICHDR = NULL; pvRTS = NULL; pCTS = NULL; pvTxDataHd = (PSTxDataHead_ab) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab)); cbHeaderSize = wTxBufSize + sizeof(SRrvTime_ab) + sizeof(STxDataHead_ab); } memset((void *)(pbyTxBufferAddr + wTxBufSize), 0, (cbHeaderSize - wTxBufSize)); memcpy(&(sEthHeader.abyDstAddr[0]), &(pPacket->p80211Header->sA3.abyAddr1[0]), ETH_ALEN); memcpy(&(sEthHeader.abySrcAddr[0]), &(pPacket->p80211Header->sA3.abyAddr2[0]), ETH_ALEN); //========================= // No Fragmentation //========================= pTxBufHead->wFragCtl |= (WORD)FRAGCTL_NONFRAG; //Fill FIFO,RrvTime,RTS,and CTS s_vGenerateTxParameter(pDevice, byPktType, pbyTxBufferAddr, pvRrvTime, pvRTS, pCTS, cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, wCurrentRate); //Fill DataHead uDuration = s_uFillDataHead(pDevice, byPktType, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK, 0, 0, 1, AUTO_FB_NONE, wCurrentRate); pMACHeader = (PS802_11Header) (pbyTxBufferAddr + cbHeaderSize); cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize; if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) { PBYTE pbyIVHead; PBYTE pbyPayloadHead; PBYTE pbyBSSID; PSKeyItem pTransmitKey = NULL; pbyIVHead = (PBYTE)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding); pbyPayloadHead = (PBYTE)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen); //Fill TXKEY //Kyle: Need fix: TKIP and AES did't encryt Mnt Packet. //s_vFillTxKey(pDevice, (PBYTE)pTxBufHead->adwTxKey, NULL); //Fill IV(ExtIV,RSNHDR) //s_vFillPrePayload(pDevice, pbyIVHead, NULL); //--------------------------- // S/W or H/W Encryption //--------------------------- //Fill MICHDR //if (pDevice->bAES) { // s_vFillMICHDR(pDevice, (PBYTE)pMICHDR, (PBYTE)pMACHeader, (WORD)cbFrameBodySize); //} do { if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) && (pDevice->bLinkPass == TRUE)) { pbyBSSID = pDevice->abyBSSID; // get pairwise key if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == FALSE) { // get group key if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == TRUE) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n"); break; } } else { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n"); break; } } // get group key pbyBSSID = pDevice->abyBroadcastAddr; if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == FALSE) { pTransmitKey = NULL; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode); } else { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n"); } } while(FALSE); //Fill TXKEY s_vFillTxKey(pDevice, (PBYTE)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey, (PBYTE)pMACHeader, (WORD)cbFrameBodySize, NULL); memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen); memcpy(pbyPayloadHead, ((PBYTE)(pPacket->p80211Header) + cbMacHdLen), cbFrameBodySize); } else { // Copy the Packet into a tx Buffer memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen); } pMACHeader->wSeqCtl = cpu_to_le16(pDevice->wSeqCounter << 4); pDevice->wSeqCounter++ ; if (pDevice->wSeqCounter > 0x0fff) pDevice->wSeqCounter = 0; if (bIsPSPOLL) { // The MAC will automatically replace the Duration-field of MAC header by Duration-field // of FIFO control header. // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is // in the same place of other packet's Duration-field). // And it will cause Cisco-AP to issue Disassociation-packet if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) { ((PSTxDataHead_g)pvTxDataHd)->wDuration_a = cpu_to_le16(pPacket->p80211Header->sA2.wDurationID); ((PSTxDataHead_g)pvTxDataHd)->wDuration_b = cpu_to_le16(pPacket->p80211Header->sA2.wDurationID); } else { ((PSTxDataHead_ab)pvTxDataHd)->wDuration = cpu_to_le16(pPacket->p80211Header->sA2.wDurationID); } } // first TD is the only TD //Set TSR1 & ReqCount in TxDescHead pFrstTD->m_td1TD1.byTCR = (TCR_STP | TCR_EDP | EDMSDU); pFrstTD->pTDInfo->skb_dma = pFrstTD->pTDInfo->buf_dma; pFrstTD->m_td1TD1.wReqCount = cpu_to_le16((WORD)(cbReqCount)); pFrstTD->buff_addr = cpu_to_le32(pFrstTD->pTDInfo->skb_dma); pFrstTD->pTDInfo->byFlags = 0; if (MACbIsRegBitsOn(pDevice->PortOffset, MAC_REG_PSCTL, PSCTL_PS)) { // Disable PS MACbPSWakeup(pDevice->PortOffset); } pDevice->bPWBitOn = FALSE; wmb(); pFrstTD->m_td0TD0.f1Owner = OWNED_BY_NIC; wmb(); pDevice->iTDUsed[TYPE_TXDMA0]++; if (AVAIL_TD(pDevice, TYPE_TXDMA0) <= 1) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " available td0 <= 1\n"); } pDevice->apCurrTD[TYPE_TXDMA0] = pFrstTD->next; #ifdef PLICE_DEBUG //printk("SCAN:CurrentRate is %d,TxPower is %d\n",wCurrentRate,pTxBufHead->byTxPower); #endif #ifdef TxInSleep pDevice->nTxDataTimeCout=0; //2008-8-21 chester for send null packet #endif // Poll Transmit the adapter MACvTransmit0(pDevice->PortOffset); return CMD_STATUS_PENDING; } CMD_STATUS csBeacon_xmit(PSDevice pDevice, PSTxMgmtPacket pPacket) { BYTE byPktType; PBYTE pbyBuffer = (PBYTE)pDevice->tx_beacon_bufs; UINT cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN; UINT cbHeaderSize = 0; WORD wTxBufSize = sizeof(STxShortBufHead); PSTxShortBufHead pTxBufHead = (PSTxShortBufHead) pbyBuffer; PSTxDataHead_ab pTxDataHead = (PSTxDataHead_ab) (pbyBuffer + wTxBufSize); PS802_11Header pMACHeader; WORD wCurrentRate; WORD wLen = 0x0000; memset(pTxBufHead, 0, wTxBufSize); if (pDevice->eCurrentPHYType == PHY_TYPE_11A) { wCurrentRate = RATE_6M; byPktType = PK_TYPE_11A; } else { wCurrentRate = RATE_2M; byPktType = PK_TYPE_11B; } //Set Preamble type always long pDevice->byPreambleType = PREAMBLE_LONG; //Set FIFOCTL_GENINT pTxBufHead->wFIFOCtl |= FIFOCTL_GENINT; //Set packet type & Get Duration if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000 pTxDataHead->wDuration = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_A, cbFrameSize, byPktType, wCurrentRate, FALSE, 0, 0, 1, AUTO_FB_NONE)); } else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_11B; pTxDataHead->wDuration = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_B, cbFrameSize, byPktType, wCurrentRate, FALSE, 0, 0, 1, AUTO_FB_NONE)); } BBvCaculateParameter(pDevice, cbFrameSize, wCurrentRate, byPktType, (PWORD)&(wLen), (PBYTE)&(pTxDataHead->byServiceField), (PBYTE)&(pTxDataHead->bySignalField) ); pTxDataHead->wTransmitLength = cpu_to_le16(wLen); //Get TimeStampOff pTxDataHead->wTimeStampOff = cpu_to_le16(wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE]); cbHeaderSize = wTxBufSize + sizeof(STxDataHead_ab); //Generate Beacon Header pMACHeader = (PS802_11Header)(pbyBuffer + cbHeaderSize); memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen); pMACHeader->wDurationID = 0; pMACHeader->wSeqCtl = cpu_to_le16(pDevice->wSeqCounter << 4); pDevice->wSeqCounter++ ; if (pDevice->wSeqCounter > 0x0fff) pDevice->wSeqCounter = 0; // Set Beacon buffer length pDevice->wBCNBufLen = pPacket->cbMPDULen + cbHeaderSize; MACvSetCurrBCNTxDescAddr(pDevice->PortOffset, (pDevice->tx_beacon_dma)); MACvSetCurrBCNLength(pDevice->PortOffset, pDevice->wBCNBufLen); // Set auto Transmit on MACvRegBitsOn(pDevice->PortOffset, MAC_REG_TCR, TCR_AUTOBCNTX); // Poll Transmit the adapter MACvTransmitBCN(pDevice->PortOffset); return CMD_STATUS_PENDING; } UINT cbGetFragCount ( PSDevice pDevice, PSKeyItem pTransmitKey, UINT cbFrameBodySize, PSEthernetHeader psEthHeader ) { UINT cbMACHdLen; UINT cbFrameSize; UINT cbFragmentSize; //Hdr+(IV)+payoad+(MIC)+(ICV)+FCS UINT cbFragPayloadSize; UINT cbLastFragPayloadSize; UINT cbIVlen = 0; UINT cbICVlen = 0; UINT cbMIClen = 0; UINT cbFCSlen = 4; UINT uMACfragNum = 1; BOOL bNeedACK; if ((pDevice->eOPMode == OP_MODE_ADHOC) || (pDevice->eOPMode == OP_MODE_AP)) { if (is_multicast_ether_addr(&(psEthHeader->abyDstAddr[0])) || is_broadcast_ether_addr(&(psEthHeader->abyDstAddr[0]))) { bNeedACK = FALSE; } else { bNeedACK = TRUE; } } else { // MSDUs in Infra mode always need ACK bNeedACK = TRUE; } if (pDevice->bLongHeader) cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6; else cbMACHdLen = WLAN_HDR_ADDR3_LEN; if (pDevice->bEncryptionEnable == TRUE) { if (pTransmitKey == NULL) { if ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) || (pDevice->pMgmt->eAuthenMode < WMAC_AUTH_WPA)) { cbIVlen = 4; cbICVlen = 4; } else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) { cbIVlen = 8;//IV+ExtIV cbMIClen = 8; cbICVlen = 4; } else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) { cbIVlen = 8;//RSN Header cbICVlen = 8;//MIC } } else if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { cbIVlen = 4; cbICVlen = 4; } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) { cbIVlen = 8;//IV+ExtIV cbMIClen = 8; cbICVlen = 4; } else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { cbIVlen = 8;//RSN Header cbICVlen = 8;//MIC } } cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen; if ((cbFrameSize > pDevice->wFragmentationThreshold) && (bNeedACK == TRUE)) { // Fragmentation cbFragmentSize = pDevice->wFragmentationThreshold; cbFragPayloadSize = cbFragmentSize - cbMACHdLen - cbIVlen - cbICVlen - cbFCSlen; uMACfragNum = (WORD) ((cbFrameBodySize + cbMIClen) / cbFragPayloadSize); cbLastFragPayloadSize = (cbFrameBodySize + cbMIClen) % cbFragPayloadSize; if (cbLastFragPayloadSize == 0) { cbLastFragPayloadSize = cbFragPayloadSize; } else { uMACfragNum++; } } return uMACfragNum; } void vDMA0_tx_80211(PSDevice pDevice, struct sk_buff *skb, PBYTE pbMPDU, UINT cbMPDULen) { PSTxDesc pFrstTD; BYTE byPktType; PBYTE pbyTxBufferAddr; void * pvRTS; void * pvCTS; void * pvTxDataHd; UINT uDuration; UINT cbReqCount; PS802_11Header pMACHeader; UINT cbHeaderSize; UINT cbFrameBodySize; BOOL bNeedACK; BOOL bIsPSPOLL = FALSE; PSTxBufHead pTxBufHead; UINT cbFrameSize; UINT cbIVlen = 0; UINT cbICVlen = 0; UINT cbMIClen = 0; UINT cbFCSlen = 4; UINT uPadding = 0; UINT cbMICHDR = 0; UINT uLength = 0; DWORD dwMICKey0, dwMICKey1; DWORD dwMIC_Priority; PDWORD pdwMIC_L; PDWORD pdwMIC_R; WORD wTxBufSize; UINT cbMacHdLen; SEthernetHeader sEthHeader; void * pvRrvTime; void * pMICHDR; PSMgmtObject pMgmt = pDevice->pMgmt; WORD wCurrentRate = RATE_1M; PUWLAN_80211HDR p80211Header; UINT uNodeIndex = 0; BOOL bNodeExist = FALSE; SKeyItem STempKey; PSKeyItem pTransmitKey = NULL; PBYTE pbyIVHead; PBYTE pbyPayloadHead; PBYTE pbyMacHdr; UINT cbExtSuppRate = 0; // PWLAN_IE pItem; pvRrvTime = pMICHDR = pvRTS = pvCTS = pvTxDataHd = NULL; if(cbMPDULen <= WLAN_HDR_ADDR3_LEN) { cbFrameBodySize = 0; } else { cbFrameBodySize = cbMPDULen - WLAN_HDR_ADDR3_LEN; } p80211Header = (PUWLAN_80211HDR)pbMPDU; pFrstTD = pDevice->apCurrTD[TYPE_TXDMA0]; pbyTxBufferAddr = (PBYTE)pFrstTD->pTDInfo->buf; pTxBufHead = (PSTxBufHead) pbyTxBufferAddr; wTxBufSize = sizeof(STxBufHead); memset(pTxBufHead, 0, wTxBufSize); if (pDevice->eCurrentPHYType == PHY_TYPE_11A) { wCurrentRate = RATE_6M; byPktType = PK_TYPE_11A; } else { wCurrentRate = RATE_1M; byPktType = PK_TYPE_11B; } // SetPower will cause error power TX state for OFDM Date packet in TX buffer. // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability. // And cmd timer will wait data pkt TX finish before scanning so it's OK // to set power here. if (pDevice->pMgmt->eScanState != WMAC_NO_SCANNING) { RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh); } else { RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel); } pTxBufHead->byTxPower = pDevice->byCurPwr; //+++++++++++++++++++++ Patch VT3253 A1 performance +++++++++++++++++++++++++++ if (pDevice->byFOETuning) { if ((p80211Header->sA3.wFrameCtl & TYPE_DATE_NULL) == TYPE_DATE_NULL) { wCurrentRate = RATE_24M; byPktType = PK_TYPE_11GA; } } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl); //Set packet type if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000 pTxBufHead->wFIFOCtl = 0; } else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_11B; } else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB; } else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA; } pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN; pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us); if (is_multicast_ether_addr(&(p80211Header->sA3.abyAddr1[0])) || is_broadcast_ether_addr(&(p80211Header->sA3.abyAddr1[0]))) { bNeedACK = FALSE; if (pDevice->bEnableHostWEP) { uNodeIndex = 0; bNodeExist = TRUE; }; } else { if (pDevice->bEnableHostWEP) { if (BSSDBbIsSTAInNodeDB(pDevice->pMgmt, (PBYTE)(p80211Header->sA3.abyAddr1), &uNodeIndex)) bNodeExist = TRUE; }; bNeedACK = TRUE; pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK; }; if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) || (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) { pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY; //Set Preamble type always long //pDevice->byPreambleType = PREAMBLE_LONG; // probe-response don't retry //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) { // bNeedACK = FALSE; // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK); //} } pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0); if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) { bIsPSPOLL = TRUE; cbMacHdLen = WLAN_HDR_ADDR2_LEN; } else { cbMacHdLen = WLAN_HDR_ADDR3_LEN; } // hostapd deamon ext support rate patch if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) { if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) { cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN; } if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) { cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN; } if (cbExtSuppRate >0) { cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES; } } //Set FRAGCTL_MACHDCNT pTxBufHead->wFragCtl |= cpu_to_le16((WORD)cbMacHdLen << 10); // Notes: // Although spec says MMPDU can be fragmented; In most case, // no one will send a MMPDU under fragmentation. With RTS may occur. pDevice->bAES = FALSE; //Set FRAGCTL_WEPTYP if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) { if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) { cbIVlen = 4; cbICVlen = 4; pTxBufHead->wFragCtl |= FRAGCTL_LEGACY; } else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) { cbIVlen = 8;//IV+ExtIV cbMIClen = 8; cbICVlen = 4; pTxBufHead->wFragCtl |= FRAGCTL_TKIP; //We need to get seed here for filling TxKey entry. //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr, // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG); } else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) { cbIVlen = 8;//RSN Header cbICVlen = 8;//MIC cbMICHDR = sizeof(SMICHDRHead); pTxBufHead->wFragCtl |= FRAGCTL_AES; pDevice->bAES = TRUE; } //MAC Header should be padding 0 to DW alignment. uPadding = 4 - (cbMacHdLen%4); uPadding %= 4; } cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate; //Set FIFOCTL_GrpAckPolicy if (pDevice->bGrpAckPolicy == TRUE) {//0000 0100 0000 0000 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK; } //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter() if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet pvRrvTime = (PSRrvTime_gCTS) (pbyTxBufferAddr + wTxBufSize); pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS)); pvRTS = NULL; pvCTS = (PSCTS) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR); pvTxDataHd = (PSTxDataHead_g) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR + sizeof(SCTS)); cbHeaderSize = wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR + sizeof(SCTS) + sizeof(STxDataHead_g); } else {//802.11a/b packet pvRrvTime = (PSRrvTime_ab) (pbyTxBufferAddr + wTxBufSize); pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab)); pvRTS = NULL; pvCTS = NULL; pvTxDataHd = (PSTxDataHead_ab) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR); cbHeaderSize = wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR + sizeof(STxDataHead_ab); } memset((void *)(pbyTxBufferAddr + wTxBufSize), 0, (cbHeaderSize - wTxBufSize)); memcpy(&(sEthHeader.abyDstAddr[0]), &(p80211Header->sA3.abyAddr1[0]), ETH_ALEN); memcpy(&(sEthHeader.abySrcAddr[0]), &(p80211Header->sA3.abyAddr2[0]), ETH_ALEN); //========================= // No Fragmentation //========================= pTxBufHead->wFragCtl |= (WORD)FRAGCTL_NONFRAG; //Fill FIFO,RrvTime,RTS,and CTS s_vGenerateTxParameter(pDevice, byPktType, pbyTxBufferAddr, pvRrvTime, pvRTS, pvCTS, cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, wCurrentRate); //Fill DataHead uDuration = s_uFillDataHead(pDevice, byPktType, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK, 0, 0, 1, AUTO_FB_NONE, wCurrentRate); pMACHeader = (PS802_11Header) (pbyTxBufferAddr + cbHeaderSize); cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate; pbyMacHdr = (PBYTE)(pbyTxBufferAddr + cbHeaderSize); pbyPayloadHead = (PBYTE)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen); pbyIVHead = (PBYTE)(pbyMacHdr + cbMacHdLen + uPadding); // Copy the Packet into a tx Buffer memcpy(pbyMacHdr, pbMPDU, cbMacHdLen); // version set to 0, patch for hostapd deamon pMACHeader->wFrameCtl &= cpu_to_le16(0xfffc); memcpy(pbyPayloadHead, (pbMPDU + cbMacHdLen), cbFrameBodySize); // replace support rate, patch for hostapd deamon( only support 11M) if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) { if (cbExtSuppRate != 0) { if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) memcpy((pbyPayloadHead + cbFrameBodySize), pMgmt->abyCurrSuppRates, ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN ); if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN, pMgmt->abyCurrExtSuppRates, ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN ); } } // Set wep if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) { if (pDevice->bEnableHostWEP) { pTransmitKey = &STempKey; pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite; pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex; pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength; pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16; pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0; memcpy(pTransmitKey->abyKey, &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0], pTransmitKey->uKeyLength ); } if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) { dwMICKey0 = *(PDWORD)(&pTransmitKey->abyKey[16]); dwMICKey1 = *(PDWORD)(&pTransmitKey->abyKey[20]); // DO Software Michael MIC_vInit(dwMICKey0, dwMICKey1); MIC_vAppend((PBYTE)&(sEthHeader.abyDstAddr[0]), 12); dwMIC_Priority = 0; MIC_vAppend((PBYTE)&dwMIC_Priority, 4); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY: %lX, %lX\n", dwMICKey0, dwMICKey1); uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen; MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize); pdwMIC_L = (PDWORD)(pbyTxBufferAddr + uLength + cbFrameBodySize); pdwMIC_R = (PDWORD)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4); MIC_vGetMIC(pdwMIC_L, pdwMIC_R); MIC_vUnInit(); if (pDevice->bTxMICFail == TRUE) { *pdwMIC_L = 0; *pdwMIC_R = 0; pDevice->bTxMICFail = FALSE; } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lx, %lx\n", *pdwMIC_L, *pdwMIC_R); } s_vFillTxKey(pDevice, (PBYTE)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey, pbyMacHdr, (WORD)cbFrameBodySize, (PBYTE)pMICHDR); if (pDevice->bEnableHostWEP) { pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16; pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0; } if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) { s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (WORD)(cbFrameBodySize + cbMIClen)); } } pMACHeader->wSeqCtl = cpu_to_le16(pDevice->wSeqCounter << 4); pDevice->wSeqCounter++ ; if (pDevice->wSeqCounter > 0x0fff) pDevice->wSeqCounter = 0; if (bIsPSPOLL) { // The MAC will automatically replace the Duration-field of MAC header by Duration-field // of FIFO control header. // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is // in the same place of other packet's Duration-field). // And it will cause Cisco-AP to issue Disassociation-packet if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) { ((PSTxDataHead_g)pvTxDataHd)->wDuration_a = cpu_to_le16(p80211Header->sA2.wDurationID); ((PSTxDataHead_g)pvTxDataHd)->wDuration_b = cpu_to_le16(p80211Header->sA2.wDurationID); } else { ((PSTxDataHead_ab)pvTxDataHd)->wDuration = cpu_to_le16(p80211Header->sA2.wDurationID); } } // first TD is the only TD //Set TSR1 & ReqCount in TxDescHead pFrstTD->pTDInfo->skb = skb; pFrstTD->m_td1TD1.byTCR = (TCR_STP | TCR_EDP | EDMSDU); pFrstTD->pTDInfo->skb_dma = pFrstTD->pTDInfo->buf_dma; pFrstTD->m_td1TD1.wReqCount = cpu_to_le16(cbReqCount); pFrstTD->buff_addr = cpu_to_le32(pFrstTD->pTDInfo->skb_dma); pFrstTD->pTDInfo->byFlags = 0; pFrstTD->pTDInfo->byFlags |= TD_FLAGS_PRIV_SKB; if (MACbIsRegBitsOn(pDevice->PortOffset, MAC_REG_PSCTL, PSCTL_PS)) { // Disable PS MACbPSWakeup(pDevice->PortOffset); } pDevice->bPWBitOn = FALSE; wmb(); pFrstTD->m_td0TD0.f1Owner = OWNED_BY_NIC; wmb(); pDevice->iTDUsed[TYPE_TXDMA0]++; if (AVAIL_TD(pDevice, TYPE_TXDMA0) <= 1) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " available td0 <= 1\n"); } pDevice->apCurrTD[TYPE_TXDMA0] = pFrstTD->next; // Poll Transmit the adapter MACvTransmit0(pDevice->PortOffset); return; }