/* Driver for Realtek PCI-Express card reader
*
* Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see .
*
* Author:
* Wei WANG (wei_wang@realsil.com.cn)
* Micky Ching (micky_ching@realsil.com.cn)
*/
#include
#include
#include
#include
#include "rtsx.h"
#include "rtsx_chip.h"
#include "rtsx_transport.h"
#include "rtsx_scsi.h"
#include "rtsx_card.h"
#include "general.h"
#include "ms.h"
#include "sd.h"
#include "xd.h"
MODULE_DESCRIPTION("Realtek PCI-Express card reader rts5208/rts5288 driver");
MODULE_LICENSE("GPL");
static unsigned int delay_use = 1;
module_param(delay_use, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(delay_use, "seconds to delay before using a new device");
static int ss_en;
module_param(ss_en, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(ss_en, "enable selective suspend");
static int ss_interval = 50;
module_param(ss_interval, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(ss_interval, "Interval to enter ss state in seconds");
static int auto_delink_en;
module_param(auto_delink_en, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(auto_delink_en, "enable auto delink");
static unsigned char aspm_l0s_l1_en;
module_param(aspm_l0s_l1_en, byte, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(aspm_l0s_l1_en, "enable device aspm");
static int msi_en;
module_param(msi_en, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(msi_en, "enable msi");
static irqreturn_t rtsx_interrupt(int irq, void *dev_id);
/***********************************************************************
* Host functions
***********************************************************************/
static const char *host_info(struct Scsi_Host *host)
{
return "SCSI emulation for PCI-Express Mass Storage devices";
}
static int slave_alloc(struct scsi_device *sdev)
{
/*
* Set the INQUIRY transfer length to 36. We don't use any of
* the extra data and many devices choke if asked for more or
* less than 36 bytes.
*/
sdev->inquiry_len = 36;
return 0;
}
static int slave_configure(struct scsi_device *sdev)
{
/* Scatter-gather buffers (all but the last) must have a length
* divisible by the bulk maxpacket size. Otherwise a data packet
* would end up being short, causing a premature end to the data
* transfer. Since high-speed bulk pipes have a maxpacket size
* of 512, we'll use that as the scsi device queue's DMA alignment
* mask. Guaranteeing proper alignment of the first buffer will
* have the desired effect because, except at the beginning and
* the end, scatter-gather buffers follow page boundaries. */
blk_queue_dma_alignment(sdev->request_queue, (512 - 1));
/* Set the SCSI level to at least 2. We'll leave it at 3 if that's
* what is originally reported. We need this to avoid confusing
* the SCSI layer with devices that report 0 or 1, but need 10-byte
* commands (ala ATAPI devices behind certain bridges, or devices
* which simply have broken INQUIRY data).
*
* NOTE: This means /dev/sg programs (ala cdrecord) will get the
* actual information. This seems to be the preference for
* programs like that.
*
* NOTE: This also means that /proc/scsi/scsi and sysfs may report
* the actual value or the modified one, depending on where the
* data comes from.
*/
if (sdev->scsi_level < SCSI_2)
sdev->scsi_level = sdev->sdev_target->scsi_level = SCSI_2;
return 0;
}
/***********************************************************************
* /proc/scsi/ functions
***********************************************************************/
/* we use this macro to help us write into the buffer */
#undef SPRINTF
#define SPRINTF(args...) \
do { if (pos < buffer+length) pos += sprintf(pos, ## args); } while (0)
/* queue a command */
/* This is always called with scsi_lock(host) held */
static int queuecommand_lck(struct scsi_cmnd *srb,
void (*done)(struct scsi_cmnd *))
{
struct rtsx_dev *dev = host_to_rtsx(srb->device->host);
struct rtsx_chip *chip = dev->chip;
/* check for state-transition errors */
if (chip->srb != NULL) {
dev_err(&dev->pci->dev, "Error in %s: chip->srb = %p\n",
__func__, chip->srb);
return SCSI_MLQUEUE_HOST_BUSY;
}
/* fail the command if we are disconnecting */
if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
dev_info(&dev->pci->dev, "Fail command during disconnect\n");
srb->result = DID_NO_CONNECT << 16;
done(srb);
return 0;
}
/* enqueue the command and wake up the control thread */
srb->scsi_done = done;
chip->srb = srb;
complete(&dev->cmnd_ready);
return 0;
}
static DEF_SCSI_QCMD(queuecommand)
/***********************************************************************
* Error handling functions
***********************************************************************/
/* Command timeout and abort */
static int command_abort(struct scsi_cmnd *srb)
{
struct Scsi_Host *host = srb->device->host;
struct rtsx_dev *dev = host_to_rtsx(host);
struct rtsx_chip *chip = dev->chip;
dev_info(&dev->pci->dev, "%s called\n", __func__);
scsi_lock(host);
/* Is this command still active? */
if (chip->srb != srb) {
scsi_unlock(host);
dev_info(&dev->pci->dev, "-- nothing to abort\n");
return FAILED;
}
rtsx_set_stat(chip, RTSX_STAT_ABORT);
scsi_unlock(host);
/* Wait for the aborted command to finish */
wait_for_completion(&dev->notify);
return SUCCESS;
}
/* This invokes the transport reset mechanism to reset the state of the
* device */
static int device_reset(struct scsi_cmnd *srb)
{
int result = 0;
struct rtsx_dev *dev = host_to_rtsx(srb->device->host);
dev_info(&dev->pci->dev, "%s called\n", __func__);
return result < 0 ? FAILED : SUCCESS;
}
/* Simulate a SCSI bus reset by resetting the device's USB port. */
static int bus_reset(struct scsi_cmnd *srb)
{
int result = 0;
struct rtsx_dev *dev = host_to_rtsx(srb->device->host);
dev_info(&dev->pci->dev, "%s called\n", __func__);
return result < 0 ? FAILED : SUCCESS;
}
/*
* this defines our host template, with which we'll allocate hosts
*/
static struct scsi_host_template rtsx_host_template = {
/* basic userland interface stuff */
.name = CR_DRIVER_NAME,
.proc_name = CR_DRIVER_NAME,
.info = host_info,
/* command interface -- queued only */
.queuecommand = queuecommand,
/* error and abort handlers */
.eh_abort_handler = command_abort,
.eh_device_reset_handler = device_reset,
.eh_bus_reset_handler = bus_reset,
/* queue commands only, only one command per LUN */
.can_queue = 1,
.cmd_per_lun = 1,
/* unknown initiator id */
.this_id = -1,
.slave_alloc = slave_alloc,
.slave_configure = slave_configure,
/* lots of sg segments can be handled */
.sg_tablesize = SG_ALL,
/* limit the total size of a transfer to 120 KB */
.max_sectors = 240,
/* merge commands... this seems to help performance, but
* periodically someone should test to see which setting is more
* optimal.
*/
.use_clustering = 1,
/* emulated HBA */
.emulated = 1,
/* we do our own delay after a device or bus reset */
.skip_settle_delay = 1,
/* module management */
.module = THIS_MODULE
};
static int rtsx_acquire_irq(struct rtsx_dev *dev)
{
struct rtsx_chip *chip = dev->chip;
dev_info(&dev->pci->dev, "%s: chip->msi_en = %d, pci->irq = %d\n",
__func__, chip->msi_en, dev->pci->irq);
if (request_irq(dev->pci->irq, rtsx_interrupt,
chip->msi_en ? 0 : IRQF_SHARED,
CR_DRIVER_NAME, dev)) {
dev_err(&dev->pci->dev,
"rtsx: unable to grab IRQ %d, disabling device\n",
dev->pci->irq);
return -1;
}
dev->irq = dev->pci->irq;
pci_intx(dev->pci, !chip->msi_en);
return 0;
}
int rtsx_read_pci_cfg_byte(u8 bus, u8 dev, u8 func, u8 offset, u8 *val)
{
struct pci_dev *pdev;
u8 data;
u8 devfn = (dev << 3) | func;
pdev = pci_get_bus_and_slot(bus, devfn);
if (!pdev)
return -1;
pci_read_config_byte(pdev, offset, &data);
if (val)
*val = data;
return 0;
}
#ifdef CONFIG_PM
/*
* power management
*/
static int rtsx_suspend(struct pci_dev *pci, pm_message_t state)
{
struct rtsx_dev *dev = (struct rtsx_dev *)pci_get_drvdata(pci);
struct rtsx_chip *chip;
if (!dev)
return 0;
/* lock the device pointers */
mutex_lock(&(dev->dev_mutex));
chip = dev->chip;
rtsx_do_before_power_down(chip, PM_S3);
if (dev->irq >= 0) {
synchronize_irq(dev->irq);
free_irq(dev->irq, (void *)dev);
dev->irq = -1;
}
if (chip->msi_en)
pci_disable_msi(pci);
pci_save_state(pci);
pci_enable_wake(pci, pci_choose_state(pci, state), 1);
pci_disable_device(pci);
pci_set_power_state(pci, pci_choose_state(pci, state));
/* unlock the device pointers */
mutex_unlock(&dev->dev_mutex);
return 0;
}
static int rtsx_resume(struct pci_dev *pci)
{
struct rtsx_dev *dev = (struct rtsx_dev *)pci_get_drvdata(pci);
struct rtsx_chip *chip;
if (!dev)
return 0;
chip = dev->chip;
/* lock the device pointers */
mutex_lock(&(dev->dev_mutex));
pci_set_power_state(pci, PCI_D0);
pci_restore_state(pci);
if (pci_enable_device(pci) < 0) {
dev_err(&dev->pci->dev,
"%s: pci_enable_device failed, disabling device\n",
CR_DRIVER_NAME);
/* unlock the device pointers */
mutex_unlock(&dev->dev_mutex);
return -EIO;
}
pci_set_master(pci);
if (chip->msi_en) {
if (pci_enable_msi(pci) < 0)
chip->msi_en = 0;
}
if (rtsx_acquire_irq(dev) < 0) {
/* unlock the device pointers */
mutex_unlock(&dev->dev_mutex);
return -EIO;
}
rtsx_write_register(chip, HOST_SLEEP_STATE, 0x03, 0x00);
rtsx_init_chip(chip);
/* unlock the device pointers */
mutex_unlock(&dev->dev_mutex);
return 0;
}
#endif /* CONFIG_PM */
static void rtsx_shutdown(struct pci_dev *pci)
{
struct rtsx_dev *dev = (struct rtsx_dev *)pci_get_drvdata(pci);
struct rtsx_chip *chip;
if (!dev)
return;
chip = dev->chip;
rtsx_do_before_power_down(chip, PM_S1);
if (dev->irq >= 0) {
synchronize_irq(dev->irq);
free_irq(dev->irq, (void *)dev);
dev->irq = -1;
}
if (chip->msi_en)
pci_disable_msi(pci);
pci_disable_device(pci);
return;
}
static int rtsx_control_thread(void *__dev)
{
struct rtsx_dev *dev = (struct rtsx_dev *)__dev;
struct rtsx_chip *chip = dev->chip;
struct Scsi_Host *host = rtsx_to_host(dev);
for (;;) {
if (wait_for_completion_interruptible(&dev->cmnd_ready))
break;
/* lock the device pointers */
mutex_lock(&(dev->dev_mutex));
/* if the device has disconnected, we are free to exit */
if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
dev_info(&dev->pci->dev, "-- rtsx-control exiting\n");
mutex_unlock(&dev->dev_mutex);
break;
}
/* lock access to the state */
scsi_lock(host);
/* has the command aborted ? */
if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
chip->srb->result = DID_ABORT << 16;
goto SkipForAbort;
}
scsi_unlock(host);
/* reject the command if the direction indicator
* is UNKNOWN
*/
if (chip->srb->sc_data_direction == DMA_BIDIRECTIONAL) {
dev_err(&dev->pci->dev, "UNKNOWN data direction\n");
chip->srb->result = DID_ERROR << 16;
}
/* reject if target != 0 or if LUN is higher than
* the maximum known LUN
*/
else if (chip->srb->device->id) {
dev_err(&dev->pci->dev, "Bad target number (%d:%d)\n",
chip->srb->device->id,
(u8)chip->srb->device->lun);
chip->srb->result = DID_BAD_TARGET << 16;
}
else if (chip->srb->device->lun > chip->max_lun) {
dev_err(&dev->pci->dev, "Bad LUN (%d:%d)\n",
chip->srb->device->id,
(u8)chip->srb->device->lun);
chip->srb->result = DID_BAD_TARGET << 16;
}
/* we've got a command, let's do it! */
else {
scsi_show_command(chip);
rtsx_invoke_transport(chip->srb, chip);
}
/* lock access to the state */
scsi_lock(host);
/* did the command already complete because of a disconnect? */
if (!chip->srb)
; /* nothing to do */
/* indicate that the command is done */
else if (chip->srb->result != DID_ABORT << 16) {
chip->srb->scsi_done(chip->srb);
} else {
SkipForAbort:
dev_err(&dev->pci->dev, "scsi command aborted\n");
}
if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
complete(&(dev->notify));
rtsx_set_stat(chip, RTSX_STAT_IDLE);
}
/* finished working on this command */
chip->srb = NULL;
scsi_unlock(host);
/* unlock the device pointers */
mutex_unlock(&dev->dev_mutex);
} /* for (;;) */
/* notify the exit routine that we're actually exiting now
*
* complete()/wait_for_completion() is similar to up()/down(),
* except that complete() is safe in the case where the structure
* is getting deleted in a parallel mode of execution (i.e. just
* after the down() -- that's necessary for the thread-shutdown
* case.
*
* complete_and_exit() goes even further than this -- it is safe in
* the case that the thread of the caller is going away (not just
* the structure) -- this is necessary for the module-remove case.
* This is important in preemption kernels, which transfer the flow
* of execution immediately upon a complete().
*/
complete_and_exit(&dev->control_exit, 0);
}
static int rtsx_polling_thread(void *__dev)
{
struct rtsx_dev *dev = (struct rtsx_dev *)__dev;
struct rtsx_chip *chip = dev->chip;
struct sd_info *sd_card = &(chip->sd_card);
struct xd_info *xd_card = &(chip->xd_card);
struct ms_info *ms_card = &(chip->ms_card);
sd_card->cleanup_counter = 0;
xd_card->cleanup_counter = 0;
ms_card->cleanup_counter = 0;
/* Wait until SCSI scan finished */
wait_timeout((delay_use + 5) * 1000);
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(POLLING_INTERVAL);
/* lock the device pointers */
mutex_lock(&(dev->dev_mutex));
/* if the device has disconnected, we are free to exit */
if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
dev_info(&dev->pci->dev, "-- rtsx-polling exiting\n");
mutex_unlock(&dev->dev_mutex);
break;
}
mutex_unlock(&dev->dev_mutex);
mspro_polling_format_status(chip);
/* lock the device pointers */
mutex_lock(&(dev->dev_mutex));
rtsx_polling_func(chip);
/* unlock the device pointers */
mutex_unlock(&dev->dev_mutex);
}
complete_and_exit(&dev->polling_exit, 0);
}
/*
* interrupt handler
*/
static irqreturn_t rtsx_interrupt(int irq, void *dev_id)
{
struct rtsx_dev *dev = dev_id;
struct rtsx_chip *chip;
int retval;
u32 status;
if (dev)
chip = dev->chip;
else
return IRQ_NONE;
if (!chip)
return IRQ_NONE;
spin_lock(&dev->reg_lock);
retval = rtsx_pre_handle_interrupt(chip);
if (retval == STATUS_FAIL) {
spin_unlock(&dev->reg_lock);
if (chip->int_reg == 0xFFFFFFFF)
return IRQ_HANDLED;
else
return IRQ_NONE;
}
status = chip->int_reg;
if (dev->check_card_cd) {
if (!(dev->check_card_cd & status)) {
/* card not exist, return TRANS_RESULT_FAIL */
dev->trans_result = TRANS_RESULT_FAIL;
if (dev->done)
complete(dev->done);
goto Exit;
}
}
if (status & (NEED_COMPLETE_INT | DELINK_INT)) {
if (status & (TRANS_FAIL_INT | DELINK_INT)) {
if (status & DELINK_INT)
RTSX_SET_DELINK(chip);
dev->trans_result = TRANS_RESULT_FAIL;
if (dev->done)
complete(dev->done);
} else if (status & TRANS_OK_INT) {
dev->trans_result = TRANS_RESULT_OK;
if (dev->done)
complete(dev->done);
} else if (status & DATA_DONE_INT) {
dev->trans_result = TRANS_NOT_READY;
if (dev->done && (dev->trans_state == STATE_TRANS_SG))
complete(dev->done);
}
}
Exit:
spin_unlock(&dev->reg_lock);
return IRQ_HANDLED;
}
/* Release all our dynamic resources */
static void rtsx_release_resources(struct rtsx_dev *dev)
{
dev_info(&dev->pci->dev, "-- %s\n", __func__);
/* Tell the control thread to exit. The SCSI host must
* already have been removed so it won't try to queue
* any more commands.
*/
dev_info(&dev->pci->dev, "-- sending exit command to thread\n");
complete(&dev->cmnd_ready);
if (dev->ctl_thread)
wait_for_completion(&dev->control_exit);
if (dev->polling_thread)
wait_for_completion(&dev->polling_exit);
wait_timeout(200);
if (dev->rtsx_resv_buf) {
dma_free_coherent(&(dev->pci->dev), RTSX_RESV_BUF_LEN,
dev->rtsx_resv_buf, dev->rtsx_resv_buf_addr);
dev->chip->host_cmds_ptr = NULL;
dev->chip->host_sg_tbl_ptr = NULL;
}
if (dev->irq > 0)
free_irq(dev->irq, (void *)dev);
if (dev->chip->msi_en)
pci_disable_msi(dev->pci);
if (dev->remap_addr)
iounmap(dev->remap_addr);
pci_disable_device(dev->pci);
pci_release_regions(dev->pci);
rtsx_release_chip(dev->chip);
kfree(dev->chip);
}
/* First stage of disconnect processing: stop all commands and remove
* the host */
static void quiesce_and_remove_host(struct rtsx_dev *dev)
{
struct Scsi_Host *host = rtsx_to_host(dev);
struct rtsx_chip *chip = dev->chip;
/* Prevent new transfers, stop the current command, and
* interrupt a SCSI-scan or device-reset delay */
mutex_lock(&dev->dev_mutex);
scsi_lock(host);
rtsx_set_stat(chip, RTSX_STAT_DISCONNECT);
scsi_unlock(host);
mutex_unlock(&dev->dev_mutex);
wake_up(&dev->delay_wait);
wait_for_completion(&dev->scanning_done);
/* Wait some time to let other threads exist */
wait_timeout(100);
/* queuecommand won't accept any new commands and the control
* thread won't execute a previously-queued command. If there
* is such a command pending, complete it with an error. */
mutex_lock(&dev->dev_mutex);
if (chip->srb) {
chip->srb->result = DID_NO_CONNECT << 16;
scsi_lock(host);
chip->srb->scsi_done(dev->chip->srb);
chip->srb = NULL;
scsi_unlock(host);
}
mutex_unlock(&dev->dev_mutex);
/* Now we own no commands so it's safe to remove the SCSI host */
scsi_remove_host(host);
}
/* Second stage of disconnect processing: deallocate all resources */
static void release_everything(struct rtsx_dev *dev)
{
rtsx_release_resources(dev);
/* Drop our reference to the host; the SCSI core will free it
* when the refcount becomes 0. */
scsi_host_put(rtsx_to_host(dev));
}
/* Thread to carry out delayed SCSI-device scanning */
static int rtsx_scan_thread(void *__dev)
{
struct rtsx_dev *dev = (struct rtsx_dev *)__dev;
struct rtsx_chip *chip = dev->chip;
/* Wait for the timeout to expire or for a disconnect */
if (delay_use > 0) {
dev_info(&dev->pci->dev,
"%s: waiting for device to settle before scanning\n",
CR_DRIVER_NAME);
wait_event_interruptible_timeout(dev->delay_wait,
rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT),
delay_use * HZ);
}
/* If the device is still connected, perform the scanning */
if (!rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
scsi_scan_host(rtsx_to_host(dev));
dev_info(&dev->pci->dev, "%s: device scan complete\n",
CR_DRIVER_NAME);
/* Should we unbind if no devices were detected? */
}
complete_and_exit(&dev->scanning_done, 0);
}
static void rtsx_init_options(struct rtsx_chip *chip)
{
chip->vendor_id = chip->rtsx->pci->vendor;
chip->product_id = chip->rtsx->pci->device;
chip->adma_mode = 1;
chip->lun_mc = 0;
chip->driver_first_load = 1;
#ifdef HW_AUTO_SWITCH_SD_BUS
chip->sdio_in_charge = 0;
#endif
chip->mspro_formatter_enable = 1;
chip->ignore_sd = 0;
chip->use_hw_setting = 0;
chip->lun_mode = DEFAULT_SINGLE;
chip->auto_delink_en = auto_delink_en;
chip->ss_en = ss_en;
chip->ss_idle_period = ss_interval * 1000;
chip->remote_wakeup_en = 0;
chip->aspm_l0s_l1_en = aspm_l0s_l1_en;
chip->dynamic_aspm = 1;
chip->fpga_sd_sdr104_clk = CLK_200;
chip->fpga_sd_ddr50_clk = CLK_100;
chip->fpga_sd_sdr50_clk = CLK_100;
chip->fpga_sd_hs_clk = CLK_100;
chip->fpga_mmc_52m_clk = CLK_80;
chip->fpga_ms_hg_clk = CLK_80;
chip->fpga_ms_4bit_clk = CLK_80;
chip->fpga_ms_1bit_clk = CLK_40;
chip->asic_sd_sdr104_clk = 203;
chip->asic_sd_sdr50_clk = 98;
chip->asic_sd_ddr50_clk = 98;
chip->asic_sd_hs_clk = 98;
chip->asic_mmc_52m_clk = 98;
chip->asic_ms_hg_clk = 117;
chip->asic_ms_4bit_clk = 78;
chip->asic_ms_1bit_clk = 39;
chip->ssc_depth_sd_sdr104 = SSC_DEPTH_2M;
chip->ssc_depth_sd_sdr50 = SSC_DEPTH_2M;
chip->ssc_depth_sd_ddr50 = SSC_DEPTH_1M;
chip->ssc_depth_sd_hs = SSC_DEPTH_1M;
chip->ssc_depth_mmc_52m = SSC_DEPTH_1M;
chip->ssc_depth_ms_hg = SSC_DEPTH_1M;
chip->ssc_depth_ms_4bit = SSC_DEPTH_512K;
chip->ssc_depth_low_speed = SSC_DEPTH_512K;
chip->ssc_en = 1;
chip->sd_speed_prior = 0x01040203;
chip->sd_current_prior = 0x00010203;
chip->sd_ctl = SD_PUSH_POINT_AUTO |
SD_SAMPLE_POINT_AUTO |
SUPPORT_MMC_DDR_MODE;
chip->sd_ddr_tx_phase = 0;
chip->mmc_ddr_tx_phase = 1;
chip->sd_default_tx_phase = 15;
chip->sd_default_rx_phase = 15;
chip->pmos_pwr_on_interval = 200;
chip->sd_voltage_switch_delay = 1000;
chip->ms_power_class_en = 3;
chip->sd_400mA_ocp_thd = 1;
chip->sd_800mA_ocp_thd = 5;
chip->ms_ocp_thd = 2;
chip->card_drive_sel = 0x55;
chip->sd30_drive_sel_1v8 = 0x03;
chip->sd30_drive_sel_3v3 = 0x01;
chip->do_delink_before_power_down = 1;
chip->auto_power_down = 1;
chip->polling_config = 0;
chip->force_clkreq_0 = 1;
chip->ft2_fast_mode = 0;
chip->sdio_retry_cnt = 1;
chip->xd_timeout = 2000;
chip->sd_timeout = 10000;
chip->ms_timeout = 2000;
chip->mspro_timeout = 15000;
chip->power_down_in_ss = 1;
chip->sdr104_en = 1;
chip->sdr50_en = 1;
chip->ddr50_en = 1;
chip->delink_stage1_step = 100;
chip->delink_stage2_step = 40;
chip->delink_stage3_step = 20;
chip->auto_delink_in_L1 = 1;
chip->blink_led = 1;
chip->msi_en = msi_en;
chip->hp_watch_bios_hotplug = 0;
chip->max_payload = 0;
chip->phy_voltage = 0;
chip->support_ms_8bit = 1;
chip->s3_pwr_off_delay = 1000;
}
static int rtsx_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
struct Scsi_Host *host;
struct rtsx_dev *dev;
int err = 0;
struct task_struct *th;
dev_dbg(&pci->dev, "Realtek PCI-E card reader detected\n");
err = pci_enable_device(pci);
if (err < 0) {
dev_err(&pci->dev, "PCI enable device failed!\n");
return err;
}
err = pci_request_regions(pci, CR_DRIVER_NAME);
if (err < 0) {
dev_err(&pci->dev, "PCI request regions for %s failed!\n",
CR_DRIVER_NAME);
pci_disable_device(pci);
return err;
}
/*
* Ask the SCSI layer to allocate a host structure, with extra
* space at the end for our private rtsx_dev structure.
*/
host = scsi_host_alloc(&rtsx_host_template, sizeof(*dev));
if (!host) {
dev_err(&pci->dev, "Unable to allocate the scsi host\n");
pci_release_regions(pci);
pci_disable_device(pci);
return -ENOMEM;
}
dev = host_to_rtsx(host);
memset(dev, 0, sizeof(struct rtsx_dev));
dev->chip = kzalloc(sizeof(struct rtsx_chip), GFP_KERNEL);
if (dev->chip == NULL) {
err = -ENOMEM;
goto errout;
}
spin_lock_init(&dev->reg_lock);
mutex_init(&(dev->dev_mutex));
init_completion(&dev->cmnd_ready);
init_completion(&dev->control_exit);
init_completion(&dev->polling_exit);
init_completion(&(dev->notify));
init_completion(&dev->scanning_done);
init_waitqueue_head(&dev->delay_wait);
dev->pci = pci;
dev->irq = -1;
dev_info(&pci->dev, "Resource length: 0x%x\n",
(unsigned int)pci_resource_len(pci, 0));
dev->addr = pci_resource_start(pci, 0);
dev->remap_addr = ioremap_nocache(dev->addr, pci_resource_len(pci, 0));
if (dev->remap_addr == NULL) {
dev_err(&pci->dev, "ioremap error\n");
err = -ENXIO;
goto errout;
}
/*
* Using "unsigned long" cast here to eliminate gcc warning in
* 64-bit system
*/
dev_info(&pci->dev, "Original address: 0x%lx, remapped address: 0x%lx\n",
(unsigned long)(dev->addr), (unsigned long)(dev->remap_addr));
dev->rtsx_resv_buf = dma_alloc_coherent(&(pci->dev), RTSX_RESV_BUF_LEN,
&(dev->rtsx_resv_buf_addr), GFP_KERNEL);
if (dev->rtsx_resv_buf == NULL) {
dev_err(&pci->dev, "alloc dma buffer fail\n");
err = -ENXIO;
goto errout;
}
dev->chip->host_cmds_ptr = dev->rtsx_resv_buf;
dev->chip->host_cmds_addr = dev->rtsx_resv_buf_addr;
dev->chip->host_sg_tbl_ptr = dev->rtsx_resv_buf + HOST_CMDS_BUF_LEN;
dev->chip->host_sg_tbl_addr = dev->rtsx_resv_buf_addr +
HOST_CMDS_BUF_LEN;
dev->chip->rtsx = dev;
rtsx_init_options(dev->chip);
dev_info(&pci->dev, "pci->irq = %d\n", pci->irq);
if (dev->chip->msi_en) {
if (pci_enable_msi(pci) < 0)
dev->chip->msi_en = 0;
}
if (rtsx_acquire_irq(dev) < 0) {
err = -EBUSY;
goto errout;
}
pci_set_master(pci);
synchronize_irq(dev->irq);
rtsx_init_chip(dev->chip);
/* set the supported max_lun and max_id for the scsi host
* NOTE: the minimal value of max_id is 1 */
host->max_id = 1;
host->max_lun = dev->chip->max_lun;
/* Start up our control thread */
th = kthread_run(rtsx_control_thread, dev, CR_DRIVER_NAME);
if (IS_ERR(th)) {
dev_err(&pci->dev, "Unable to start control thread\n");
err = PTR_ERR(th);
goto errout;
}
dev->ctl_thread = th;
err = scsi_add_host(host, &pci->dev);
if (err) {
dev_err(&pci->dev, "Unable to add the scsi host\n");
goto errout;
}
/* Start up the thread for delayed SCSI-device scanning */
th = kthread_run(rtsx_scan_thread, dev, "rtsx-scan");
if (IS_ERR(th)) {
dev_err(&pci->dev, "Unable to start the device-scanning thread\n");
complete(&dev->scanning_done);
quiesce_and_remove_host(dev);
err = PTR_ERR(th);
goto errout;
}
/* Start up the thread for polling thread */
th = kthread_run(rtsx_polling_thread, dev, "rtsx-polling");
if (IS_ERR(th)) {
dev_err(&pci->dev, "Unable to start the device-polling thread\n");
quiesce_and_remove_host(dev);
err = PTR_ERR(th);
goto errout;
}
dev->polling_thread = th;
pci_set_drvdata(pci, dev);
return 0;
/* We come here if there are any problems */
errout:
dev_err(&pci->dev, "rtsx_probe() failed\n");
release_everything(dev);
return err;
}
static void rtsx_remove(struct pci_dev *pci)
{
struct rtsx_dev *dev = (struct rtsx_dev *)pci_get_drvdata(pci);
dev_info(&pci->dev, "rtsx_remove() called\n");
quiesce_and_remove_host(dev);
release_everything(dev);
pci_set_drvdata(pci, NULL);
}
/* PCI IDs */
static const struct pci_device_id rtsx_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x5208),
PCI_CLASS_OTHERS << 16, 0xFF0000 },
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x5288),
PCI_CLASS_OTHERS << 16, 0xFF0000 },
{ 0, },
};
MODULE_DEVICE_TABLE(pci, rtsx_ids);
/* pci_driver definition */
static struct pci_driver driver = {
.name = CR_DRIVER_NAME,
.id_table = rtsx_ids,
.probe = rtsx_probe,
.remove = rtsx_remove,
#ifdef CONFIG_PM
.suspend = rtsx_suspend,
.resume = rtsx_resume,
#endif
.shutdown = rtsx_shutdown,
};
static int __init rtsx_init(void)
{
pr_info("Initializing Realtek PCIE storage driver...\n");
return pci_register_driver(&driver);
}
static void __exit rtsx_exit(void)
{
pr_info("rtsx_exit() called\n");
pci_unregister_driver(&driver);
pr_info("%s module exit\n", CR_DRIVER_NAME);
}
module_init(rtsx_init)
module_exit(rtsx_exit)