/* * SVC Greybus driver. * * Copyright 2015 Google Inc. * Copyright 2015 Linaro Ltd. * * Released under the GPLv2 only. */ #include #include #include "greybus.h" #define CPORT_FLAGS_E2EFC BIT(0) #define CPORT_FLAGS_CSD_N BIT(1) #define CPORT_FLAGS_CSV_N BIT(2) #define SVC_KEY_ARA_BUTTON KEY_A struct gb_svc_deferred_request { struct work_struct work; struct gb_operation *operation; }; static ssize_t endo_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gb_svc *svc = to_gb_svc(dev); return sprintf(buf, "0x%04x\n", svc->endo_id); } static DEVICE_ATTR_RO(endo_id); static ssize_t ap_intf_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gb_svc *svc = to_gb_svc(dev); return sprintf(buf, "%u\n", svc->ap_intf_id); } static DEVICE_ATTR_RO(ap_intf_id); // FIXME // This is a hack, we need to do this "right" and clean the interface up // properly, not just forcibly yank the thing out of the system and hope for the // best. But for now, people want their modules to come out without having to // throw the thing to the ground or get out a screwdriver. static ssize_t intf_eject_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct gb_svc *svc = to_gb_svc(dev); unsigned short intf_id; int ret; ret = kstrtou16(buf, 10, &intf_id); if (ret < 0) return ret; dev_warn(dev, "Forcibly trying to eject interface %d\n", intf_id); ret = gb_svc_intf_eject(svc, intf_id); if (ret < 0) return ret; return len; } static DEVICE_ATTR_WO(intf_eject); static struct attribute *svc_attrs[] = { &dev_attr_endo_id.attr, &dev_attr_ap_intf_id.attr, &dev_attr_intf_eject.attr, NULL, }; ATTRIBUTE_GROUPS(svc); static int gb_svc_intf_device_id(struct gb_svc *svc, u8 intf_id, u8 device_id) { struct gb_svc_intf_device_id_request request; request.intf_id = intf_id; request.device_id = device_id; return gb_operation_sync(svc->connection, GB_SVC_TYPE_INTF_DEVICE_ID, &request, sizeof(request), NULL, 0); } int gb_svc_intf_reset(struct gb_svc *svc, u8 intf_id) { struct gb_svc_intf_reset_request request; request.intf_id = intf_id; return gb_operation_sync(svc->connection, GB_SVC_TYPE_INTF_RESET, &request, sizeof(request), NULL, 0); } EXPORT_SYMBOL_GPL(gb_svc_intf_reset); int gb_svc_intf_eject(struct gb_svc *svc, u8 intf_id) { struct gb_svc_intf_eject_request request; request.intf_id = intf_id; /* * The pulse width for module release in svc is long so we need to * increase the timeout so the operation will not return to soon. */ return gb_operation_sync_timeout(svc->connection, GB_SVC_TYPE_INTF_EJECT, &request, sizeof(request), NULL, 0, GB_SVC_EJECT_TIME); } EXPORT_SYMBOL_GPL(gb_svc_intf_eject); int gb_svc_dme_peer_get(struct gb_svc *svc, u8 intf_id, u16 attr, u16 selector, u32 *value) { struct gb_svc_dme_peer_get_request request; struct gb_svc_dme_peer_get_response response; u16 result; int ret; request.intf_id = intf_id; request.attr = cpu_to_le16(attr); request.selector = cpu_to_le16(selector); ret = gb_operation_sync(svc->connection, GB_SVC_TYPE_DME_PEER_GET, &request, sizeof(request), &response, sizeof(response)); if (ret) { dev_err(&svc->dev, "failed to get DME attribute (%u 0x%04x %u): %d\n", intf_id, attr, selector, ret); return ret; } result = le16_to_cpu(response.result_code); if (result) { dev_err(&svc->dev, "UniPro error while getting DME attribute (%u 0x%04x %u): %u\n", intf_id, attr, selector, result); return -EIO; } if (value) *value = le32_to_cpu(response.attr_value); return 0; } EXPORT_SYMBOL_GPL(gb_svc_dme_peer_get); int gb_svc_dme_peer_set(struct gb_svc *svc, u8 intf_id, u16 attr, u16 selector, u32 value) { struct gb_svc_dme_peer_set_request request; struct gb_svc_dme_peer_set_response response; u16 result; int ret; request.intf_id = intf_id; request.attr = cpu_to_le16(attr); request.selector = cpu_to_le16(selector); request.value = cpu_to_le32(value); ret = gb_operation_sync(svc->connection, GB_SVC_TYPE_DME_PEER_SET, &request, sizeof(request), &response, sizeof(response)); if (ret) { dev_err(&svc->dev, "failed to set DME attribute (%u 0x%04x %u %u): %d\n", intf_id, attr, selector, value, ret); return ret; } result = le16_to_cpu(response.result_code); if (result) { dev_err(&svc->dev, "UniPro error while setting DME attribute (%u 0x%04x %u %u): %u\n", intf_id, attr, selector, value, result); return -EIO; } return 0; } EXPORT_SYMBOL_GPL(gb_svc_dme_peer_set); /* * T_TstSrcIncrement is written by the module on ES2 as a stand-in for boot * status attribute ES3_INIT_STATUS. AP needs to read and clear it, after * reading a non-zero value from it. * * FIXME: This is module-hardware dependent and needs to be extended for every * type of module we want to support. */ static int gb_svc_read_and_clear_module_boot_status(struct gb_interface *intf) { struct gb_host_device *hd = intf->hd; int ret; u32 value; u16 attr; u8 init_status; /* * Check if the module is ES2 or ES3, and choose attr number * appropriately. * FIXME: Remove ES2 support from the kernel entirely. */ if (intf->ddbl1_manufacturer_id == ES2_DDBL1_MFR_ID && intf->ddbl1_product_id == ES2_DDBL1_PROD_ID) attr = DME_ATTR_T_TST_SRC_INCREMENT; else attr = DME_ATTR_ES3_INIT_STATUS; /* Read and clear boot status in ES3_INIT_STATUS */ ret = gb_svc_dme_peer_get(hd->svc, intf->interface_id, attr, DME_ATTR_SELECTOR_INDEX, &value); if (ret) return ret; /* * A nonzero boot status indicates the module has finished * booting. Clear it. */ if (!value) { dev_err(&intf->dev, "Module not ready yet\n"); return -ENODEV; } /* * Check if the module needs to boot from UniPro. * For ES2: We need to check lowest 8 bits of 'value'. * For ES3: We need to check highest 8 bits out of 32 of 'value'. * FIXME: Remove ES2 support from the kernel entirely. */ if (intf->ddbl1_manufacturer_id == ES2_DDBL1_MFR_ID && intf->ddbl1_product_id == ES2_DDBL1_PROD_ID) init_status = value; else init_status = value >> 24; if (init_status == DME_DIS_UNIPRO_BOOT_STARTED || init_status == DME_DIS_FALLBACK_UNIPRO_BOOT_STARTED) intf->boot_over_unipro = true; return gb_svc_dme_peer_set(hd->svc, intf->interface_id, attr, DME_ATTR_SELECTOR_INDEX, 0); } int gb_svc_connection_create(struct gb_svc *svc, u8 intf1_id, u16 cport1_id, u8 intf2_id, u16 cport2_id, bool boot_over_unipro) { struct gb_svc_conn_create_request request; request.intf1_id = intf1_id; request.cport1_id = cpu_to_le16(cport1_id); request.intf2_id = intf2_id; request.cport2_id = cpu_to_le16(cport2_id); /* * XXX: fix connections paramaters to TC0 and all CPort flags * for now. */ request.tc = 0; /* * We need to skip setting E2EFC and other flags to the connection * create request, for all cports, on an interface that need to boot * over unipro, i.e. interfaces required to download firmware. */ if (boot_over_unipro) request.flags = CPORT_FLAGS_CSV_N | CPORT_FLAGS_CSD_N; else request.flags = CPORT_FLAGS_CSV_N | CPORT_FLAGS_E2EFC; return gb_operation_sync(svc->connection, GB_SVC_TYPE_CONN_CREATE, &request, sizeof(request), NULL, 0); } EXPORT_SYMBOL_GPL(gb_svc_connection_create); void gb_svc_connection_destroy(struct gb_svc *svc, u8 intf1_id, u16 cport1_id, u8 intf2_id, u16 cport2_id) { struct gb_svc_conn_destroy_request request; struct gb_connection *connection = svc->connection; int ret; request.intf1_id = intf1_id; request.cport1_id = cpu_to_le16(cport1_id); request.intf2_id = intf2_id; request.cport2_id = cpu_to_le16(cport2_id); ret = gb_operation_sync(connection, GB_SVC_TYPE_CONN_DESTROY, &request, sizeof(request), NULL, 0); if (ret) { dev_err(&svc->dev, "failed to destroy connection (%u:%u %u:%u): %d\n", intf1_id, cport1_id, intf2_id, cport2_id, ret); } } EXPORT_SYMBOL_GPL(gb_svc_connection_destroy); /* Creates bi-directional routes between the devices */ static int gb_svc_route_create(struct gb_svc *svc, u8 intf1_id, u8 dev1_id, u8 intf2_id, u8 dev2_id) { struct gb_svc_route_create_request request; request.intf1_id = intf1_id; request.dev1_id = dev1_id; request.intf2_id = intf2_id; request.dev2_id = dev2_id; return gb_operation_sync(svc->connection, GB_SVC_TYPE_ROUTE_CREATE, &request, sizeof(request), NULL, 0); } /* Destroys bi-directional routes between the devices */ static void gb_svc_route_destroy(struct gb_svc *svc, u8 intf1_id, u8 intf2_id) { struct gb_svc_route_destroy_request request; int ret; request.intf1_id = intf1_id; request.intf2_id = intf2_id; ret = gb_operation_sync(svc->connection, GB_SVC_TYPE_ROUTE_DESTROY, &request, sizeof(request), NULL, 0); if (ret) { dev_err(&svc->dev, "failed to destroy route (%u %u): %d\n", intf1_id, intf2_id, ret); } } int gb_svc_intf_set_power_mode(struct gb_svc *svc, u8 intf_id, u8 hs_series, u8 tx_mode, u8 tx_gear, u8 tx_nlanes, u8 rx_mode, u8 rx_gear, u8 rx_nlanes, u8 flags, u32 quirks) { struct gb_svc_intf_set_pwrm_request request; struct gb_svc_intf_set_pwrm_response response; int ret; request.intf_id = intf_id; request.hs_series = hs_series; request.tx_mode = tx_mode; request.tx_gear = tx_gear; request.tx_nlanes = tx_nlanes; request.rx_mode = rx_mode; request.rx_gear = rx_gear; request.rx_nlanes = rx_nlanes; request.flags = flags; request.quirks = cpu_to_le32(quirks); ret = gb_operation_sync(svc->connection, GB_SVC_TYPE_INTF_SET_PWRM, &request, sizeof(request), &response, sizeof(response)); if (ret < 0) return ret; return le16_to_cpu(response.result_code); } EXPORT_SYMBOL_GPL(gb_svc_intf_set_power_mode); static int gb_svc_version_request(struct gb_operation *op) { struct gb_connection *connection = op->connection; struct gb_svc *svc = connection->private; struct gb_protocol_version_request *request; struct gb_protocol_version_response *response; if (op->request->payload_size < sizeof(*request)) { dev_err(&svc->dev, "short version request (%zu < %zu)\n", op->request->payload_size, sizeof(*request)); return -EINVAL; } request = op->request->payload; if (request->major > GB_SVC_VERSION_MAJOR) { dev_warn(&svc->dev, "unsupported major version (%u > %u)\n", request->major, GB_SVC_VERSION_MAJOR); return -ENOTSUPP; } svc->protocol_major = request->major; svc->protocol_minor = request->minor; if (!gb_operation_response_alloc(op, sizeof(*response), GFP_KERNEL)) return -ENOMEM; response = op->response->payload; response->major = svc->protocol_major; response->minor = svc->protocol_minor; return 0; } static int gb_svc_hello(struct gb_operation *op) { struct gb_connection *connection = op->connection; struct gb_svc *svc = connection->private; struct gb_svc_hello_request *hello_request; int ret; if (op->request->payload_size < sizeof(*hello_request)) { dev_warn(&svc->dev, "short hello request (%zu < %zu)\n", op->request->payload_size, sizeof(*hello_request)); return -EINVAL; } hello_request = op->request->payload; svc->endo_id = le16_to_cpu(hello_request->endo_id); svc->ap_intf_id = hello_request->interface_id; ret = device_add(&svc->dev); if (ret) { dev_err(&svc->dev, "failed to register svc device: %d\n", ret); return ret; } ret = input_register_device(svc->input); if (ret) { dev_err(&svc->dev, "failed to register input: %d\n", ret); device_del(&svc->dev); return ret; } return 0; } static void gb_svc_intf_remove(struct gb_svc *svc, struct gb_interface *intf) { u8 intf_id = intf->interface_id; u8 device_id = intf->device_id; intf->disconnected = true; gb_interface_remove(intf); /* * Destroy the two-way route between the AP and the interface. */ gb_svc_route_destroy(svc, svc->ap_intf_id, intf_id); ida_simple_remove(&svc->device_id_map, device_id); } static void gb_svc_process_intf_hotplug(struct gb_operation *operation) { struct gb_svc_intf_hotplug_request *request; struct gb_connection *connection = operation->connection; struct gb_svc *svc = connection->private; struct gb_host_device *hd = connection->hd; struct gb_interface *intf; u8 intf_id, device_id; int ret; /* The request message size has already been verified. */ request = operation->request->payload; intf_id = request->intf_id; dev_dbg(&svc->dev, "%s - id = %u\n", __func__, intf_id); intf = gb_interface_find(hd, intf_id); if (intf) { /* * We have received a hotplug request for an interface that * already exists. * * This can happen in cases like: * - bootrom loading the firmware image and booting into that, * which only generates a hotplug event. i.e. no hot-unplug * event. * - Or the firmware on the module crashed and sent hotplug * request again to the SVC, which got propagated to AP. * * Remove the interface and add it again, and let user know * about this with a print message. */ dev_info(&svc->dev, "removing interface %u to add it again\n", intf_id); gb_svc_intf_remove(svc, intf); } intf = gb_interface_create(hd, intf_id); if (!intf) { dev_err(&svc->dev, "failed to create interface %u\n", intf_id); return; } intf->ddbl1_manufacturer_id = le32_to_cpu(request->data.ddbl1_mfr_id); intf->ddbl1_product_id = le32_to_cpu(request->data.ddbl1_prod_id); intf->vendor_id = le32_to_cpu(request->data.ara_vend_id); intf->product_id = le32_to_cpu(request->data.ara_prod_id); intf->serial_number = le64_to_cpu(request->data.serial_number); ret = gb_svc_read_and_clear_module_boot_status(intf); if (ret) { dev_err(&svc->dev, "failed to clear boot status of interface %u: %d\n", intf_id, ret); goto destroy_interface; } /* * Create a device id for the interface: * - device id 0 (GB_DEVICE_ID_SVC) belongs to the SVC * - device id 1 (GB_DEVICE_ID_AP) belongs to the AP * * XXX Do we need to allocate device ID for SVC or the AP here? And what * XXX about an AP with multiple interface blocks? */ device_id = ida_simple_get(&svc->device_id_map, GB_DEVICE_ID_MODULES_START, 0, GFP_KERNEL); if (device_id < 0) { ret = device_id; dev_err(&svc->dev, "failed to allocate device id for interface %u: %d\n", intf_id, ret); goto destroy_interface; } ret = gb_svc_intf_device_id(svc, intf_id, device_id); if (ret) { dev_err(&svc->dev, "failed to set device id %u for interface %u: %d\n", device_id, intf_id, ret); goto ida_put; } /* * Create a two-way route between the AP and the new interface */ ret = gb_svc_route_create(svc, svc->ap_intf_id, GB_DEVICE_ID_AP, intf_id, device_id); if (ret) { dev_err(&svc->dev, "failed to create route to interface %u (device id %u): %d\n", intf_id, device_id, ret); goto svc_id_free; } ret = gb_interface_init(intf, device_id); if (ret) { dev_err(&svc->dev, "failed to initialize interface %u (device id %u): %d\n", intf_id, device_id, ret); goto destroy_route; } return; destroy_route: gb_svc_route_destroy(svc, svc->ap_intf_id, intf_id); svc_id_free: /* * XXX Should we tell SVC that this id doesn't belong to interface * XXX anymore. */ ida_put: ida_simple_remove(&svc->device_id_map, device_id); destroy_interface: gb_interface_remove(intf); } static void gb_svc_process_intf_hot_unplug(struct gb_operation *operation) { struct gb_svc *svc = operation->connection->private; struct gb_svc_intf_hot_unplug_request *request; struct gb_host_device *hd = operation->connection->hd; struct gb_interface *intf; u8 intf_id; /* The request message size has already been verified. */ request = operation->request->payload; intf_id = request->intf_id; dev_dbg(&svc->dev, "%s - id = %u\n", __func__, intf_id); intf = gb_interface_find(hd, intf_id); if (!intf) { dev_warn(&svc->dev, "could not find hot-unplug interface %u\n", intf_id); return; } gb_svc_intf_remove(svc, intf); } static void gb_svc_process_deferred_request(struct work_struct *work) { struct gb_svc_deferred_request *dr; struct gb_operation *operation; struct gb_svc *svc; u8 type; dr = container_of(work, struct gb_svc_deferred_request, work); operation = dr->operation; svc = operation->connection->private; type = operation->request->header->type; switch (type) { case GB_SVC_TYPE_INTF_HOTPLUG: gb_svc_process_intf_hotplug(operation); break; case GB_SVC_TYPE_INTF_HOT_UNPLUG: gb_svc_process_intf_hot_unplug(operation); break; default: dev_err(&svc->dev, "bad deferred request type: 0x%02x\n", type); } gb_operation_put(operation); kfree(dr); } static int gb_svc_queue_deferred_request(struct gb_operation *operation) { struct gb_svc *svc = operation->connection->private; struct gb_svc_deferred_request *dr; dr = kmalloc(sizeof(*dr), GFP_KERNEL); if (!dr) return -ENOMEM; gb_operation_get(operation); dr->operation = operation; INIT_WORK(&dr->work, gb_svc_process_deferred_request); queue_work(svc->wq, &dr->work); return 0; } /* * Bringing up a module can be time consuming, as that may require lots of * initialization on the module side. Over that, we may also need to download * the firmware first and flash that on the module. * * In order not to make other svc events wait for all this to finish, * handle most of module hotplug stuff outside of the hotplug callback, with * help of a workqueue. */ static int gb_svc_intf_hotplug_recv(struct gb_operation *op) { struct gb_svc *svc = op->connection->private; struct gb_svc_intf_hotplug_request *request; if (op->request->payload_size < sizeof(*request)) { dev_warn(&svc->dev, "short hotplug request received (%zu < %zu)\n", op->request->payload_size, sizeof(*request)); return -EINVAL; } request = op->request->payload; dev_dbg(&svc->dev, "%s - id = %u\n", __func__, request->intf_id); return gb_svc_queue_deferred_request(op); } static int gb_svc_intf_hot_unplug_recv(struct gb_operation *op) { struct gb_svc *svc = op->connection->private; struct gb_svc_intf_hot_unplug_request *request; if (op->request->payload_size < sizeof(*request)) { dev_warn(&svc->dev, "short hot unplug request received (%zu < %zu)\n", op->request->payload_size, sizeof(*request)); return -EINVAL; } request = op->request->payload; dev_dbg(&svc->dev, "%s - id = %u\n", __func__, request->intf_id); return gb_svc_queue_deferred_request(op); } static int gb_svc_intf_reset_recv(struct gb_operation *op) { struct gb_svc *svc = op->connection->private; struct gb_message *request = op->request; struct gb_svc_intf_reset_request *reset; u8 intf_id; if (request->payload_size < sizeof(*reset)) { dev_warn(&svc->dev, "short reset request received (%zu < %zu)\n", request->payload_size, sizeof(*reset)); return -EINVAL; } reset = request->payload; intf_id = reset->intf_id; /* FIXME Reset the interface here */ return 0; } static int gb_svc_key_code_map(struct gb_svc *svc, u16 key_code, u16 *code) { switch (key_code) { case GB_KEYCODE_ARA: *code = SVC_KEY_ARA_BUTTON; break; default: dev_warn(&svc->dev, "unknown keycode received: %u\n", key_code); return -EINVAL; } return 0; } static int gb_svc_key_event_recv(struct gb_operation *op) { struct gb_svc *svc = op->connection->private; struct gb_message *request = op->request; struct gb_svc_key_event_request *key; u16 code; u8 event; int ret; if (request->payload_size < sizeof(*key)) { dev_warn(&svc->dev, "short key request received (%zu < %zu)\n", request->payload_size, sizeof(*key)); return -EINVAL; } key = request->payload; ret = gb_svc_key_code_map(svc, le16_to_cpu(key->key_code), &code); if (ret < 0) return ret; event = key->key_event; if ((event != GB_SVC_KEY_PRESSED) && (event != GB_SVC_KEY_RELEASED)) { dev_warn(&svc->dev, "unknown key event received: %u\n", event); return -EINVAL; } input_report_key(svc->input, code, (event == GB_SVC_KEY_PRESSED)); input_sync(svc->input); return 0; } static int gb_svc_request_handler(struct gb_operation *op) { struct gb_connection *connection = op->connection; struct gb_svc *svc = connection->private; u8 type = op->type; int ret = 0; /* * SVC requests need to follow a specific order (at least initially) and * below code takes care of enforcing that. The expected order is: * - PROTOCOL_VERSION * - SVC_HELLO * - Any other request, but the earlier two. * * Incoming requests are guaranteed to be serialized and so we don't * need to protect 'state' for any races. */ switch (type) { case GB_REQUEST_TYPE_PROTOCOL_VERSION: if (svc->state != GB_SVC_STATE_RESET) ret = -EINVAL; break; case GB_SVC_TYPE_SVC_HELLO: if (svc->state != GB_SVC_STATE_PROTOCOL_VERSION) ret = -EINVAL; break; default: if (svc->state != GB_SVC_STATE_SVC_HELLO) ret = -EINVAL; break; } if (ret) { dev_warn(&svc->dev, "unexpected request 0x%02x received (state %u)\n", type, svc->state); return ret; } switch (type) { case GB_REQUEST_TYPE_PROTOCOL_VERSION: ret = gb_svc_version_request(op); if (!ret) svc->state = GB_SVC_STATE_PROTOCOL_VERSION; return ret; case GB_SVC_TYPE_SVC_HELLO: ret = gb_svc_hello(op); if (!ret) svc->state = GB_SVC_STATE_SVC_HELLO; return ret; case GB_SVC_TYPE_INTF_HOTPLUG: return gb_svc_intf_hotplug_recv(op); case GB_SVC_TYPE_INTF_HOT_UNPLUG: return gb_svc_intf_hot_unplug_recv(op); case GB_SVC_TYPE_INTF_RESET: return gb_svc_intf_reset_recv(op); case GB_SVC_TYPE_KEY_EVENT: return gb_svc_key_event_recv(op); default: dev_warn(&svc->dev, "unsupported request 0x%02x\n", type); return -EINVAL; } } static struct input_dev *gb_svc_input_create(struct gb_svc *svc) { struct input_dev *input_dev; input_dev = input_allocate_device(); if (!input_dev) return ERR_PTR(-ENOMEM); input_dev->name = dev_name(&svc->dev); svc->input_phys = kasprintf(GFP_KERNEL, "greybus-%s/input0", input_dev->name); if (!svc->input_phys) goto err_free_input; input_dev->phys = svc->input_phys; input_dev->dev.parent = &svc->dev; input_set_drvdata(input_dev, svc); input_set_capability(input_dev, EV_KEY, SVC_KEY_ARA_BUTTON); return input_dev; err_free_input: input_free_device(svc->input); return ERR_PTR(-ENOMEM); } static void gb_svc_release(struct device *dev) { struct gb_svc *svc = to_gb_svc(dev); if (svc->connection) gb_connection_destroy(svc->connection); ida_destroy(&svc->device_id_map); destroy_workqueue(svc->wq); kfree(svc->input_phys); kfree(svc); } struct device_type greybus_svc_type = { .name = "greybus_svc", .release = gb_svc_release, }; struct gb_svc *gb_svc_create(struct gb_host_device *hd) { struct gb_svc *svc; svc = kzalloc(sizeof(*svc), GFP_KERNEL); if (!svc) return NULL; svc->wq = alloc_workqueue("%s:svc", WQ_UNBOUND, 1, dev_name(&hd->dev)); if (!svc->wq) { kfree(svc); return NULL; } svc->dev.parent = &hd->dev; svc->dev.bus = &greybus_bus_type; svc->dev.type = &greybus_svc_type; svc->dev.groups = svc_groups; svc->dev.dma_mask = svc->dev.parent->dma_mask; device_initialize(&svc->dev); dev_set_name(&svc->dev, "%d-svc", hd->bus_id); ida_init(&svc->device_id_map); svc->state = GB_SVC_STATE_RESET; svc->hd = hd; svc->input = gb_svc_input_create(svc); if (IS_ERR(svc->input)) { dev_err(&svc->dev, "failed to create input device: %ld\n", PTR_ERR(svc->input)); goto err_put_device; } svc->connection = gb_connection_create_static(hd, GB_SVC_CPORT_ID, GREYBUS_PROTOCOL_SVC); if (!svc->connection) { dev_err(&svc->dev, "failed to create connection\n"); goto err_free_input; } svc->connection->private = svc; return svc; err_free_input: input_free_device(svc->input); err_put_device: put_device(&svc->dev); return NULL; } int gb_svc_add(struct gb_svc *svc) { int ret; /* * The SVC protocol is currently driven by the SVC, so the SVC device * is added from the connection request handler when enough * information has been received. */ ret = gb_connection_enable(svc->connection, gb_svc_request_handler); if (ret) return ret; return 0; } void gb_svc_del(struct gb_svc *svc) { gb_connection_disable(svc->connection); /* * The SVC device and input device may have been registered * from the request handler. */ if (device_is_registered(&svc->dev)) { input_unregister_device(svc->input); device_del(&svc->dev); } flush_workqueue(svc->wq); } void gb_svc_put(struct gb_svc *svc) { put_device(&svc->dev); }