// SPDX-License-Identifier: GPL-2.0 /* * R-Car SYSC Power management support * * Copyright (C) 2014 Magnus Damm * Copyright (C) 2015-2017 Glider bvba */ #include #include #include #include #include #include #include #include #include #include #include #include "rcar-sysc.h" /* SYSC Common */ #define SYSCSR 0x00 /* SYSC Status Register */ #define SYSCISR 0x04 /* Interrupt Status Register */ #define SYSCISCR 0x08 /* Interrupt Status Clear Register */ #define SYSCIER 0x0c /* Interrupt Enable Register */ #define SYSCIMR 0x10 /* Interrupt Mask Register */ /* SYSC Status Register */ #define SYSCSR_PONENB 1 /* Ready for power resume requests */ #define SYSCSR_POFFENB 0 /* Ready for power shutoff requests */ /* * Power Control Register Offsets inside the register block for each domain * Note: The "CR" registers for ARM cores exist on H1 only * Use WFI to power off, CPG/APMU to resume ARM cores on R-Car Gen2 * Use PSCI on R-Car Gen3 */ #define PWRSR_OFFS 0x00 /* Power Status Register */ #define PWROFFCR_OFFS 0x04 /* Power Shutoff Control Register */ #define PWROFFSR_OFFS 0x08 /* Power Shutoff Status Register */ #define PWRONCR_OFFS 0x0c /* Power Resume Control Register */ #define PWRONSR_OFFS 0x10 /* Power Resume Status Register */ #define PWRER_OFFS 0x14 /* Power Shutoff/Resume Error */ #define SYSCSR_TIMEOUT 100 #define SYSCSR_DELAY_US 1 #define PWRER_RETRIES 100 #define PWRER_DELAY_US 1 #define SYSCISR_TIMEOUT 1000 #define SYSCISR_DELAY_US 1 #define RCAR_PD_ALWAYS_ON 32 /* Always-on power area */ struct rcar_sysc_ch { u16 chan_offs; u8 chan_bit; u8 isr_bit; }; static void __iomem *rcar_sysc_base; static DEFINE_SPINLOCK(rcar_sysc_lock); /* SMP CPUs + I/O devices */ static u32 rcar_sysc_extmask_offs, rcar_sysc_extmask_val; static int rcar_sysc_pwr_on_off(const struct rcar_sysc_ch *sysc_ch, bool on) { unsigned int sr_bit, reg_offs; u32 val; int ret; if (on) { sr_bit = SYSCSR_PONENB; reg_offs = PWRONCR_OFFS; } else { sr_bit = SYSCSR_POFFENB; reg_offs = PWROFFCR_OFFS; } /* Wait until SYSC is ready to accept a power request */ ret = readl_poll_timeout_atomic(rcar_sysc_base + SYSCSR, val, val & BIT(sr_bit), SYSCSR_DELAY_US, SYSCSR_TIMEOUT); if (ret) return -EAGAIN; /* Submit power shutoff or power resume request */ iowrite32(BIT(sysc_ch->chan_bit), rcar_sysc_base + sysc_ch->chan_offs + reg_offs); return 0; } static int rcar_sysc_power(const struct rcar_sysc_ch *sysc_ch, bool on) { unsigned int isr_mask = BIT(sysc_ch->isr_bit); unsigned int chan_mask = BIT(sysc_ch->chan_bit); unsigned int status, k; unsigned long flags; int ret; spin_lock_irqsave(&rcar_sysc_lock, flags); /* * Mask external power requests for CPU or 3DG domains */ if (rcar_sysc_extmask_val) { iowrite32(rcar_sysc_extmask_val, rcar_sysc_base + rcar_sysc_extmask_offs); } /* * The interrupt source needs to be enabled, but masked, to prevent the * CPU from receiving it. */ iowrite32(ioread32(rcar_sysc_base + SYSCIMR) | isr_mask, rcar_sysc_base + SYSCIMR); iowrite32(ioread32(rcar_sysc_base + SYSCIER) | isr_mask, rcar_sysc_base + SYSCIER); iowrite32(isr_mask, rcar_sysc_base + SYSCISCR); /* Submit power shutoff or resume request until it was accepted */ for (k = 0; k < PWRER_RETRIES; k++) { ret = rcar_sysc_pwr_on_off(sysc_ch, on); if (ret) goto out; status = ioread32(rcar_sysc_base + sysc_ch->chan_offs + PWRER_OFFS); if (!(status & chan_mask)) break; udelay(PWRER_DELAY_US); } if (k == PWRER_RETRIES) { ret = -EIO; goto out; } /* Wait until the power shutoff or resume request has completed * */ ret = readl_poll_timeout_atomic(rcar_sysc_base + SYSCISR, status, status & isr_mask, SYSCISR_DELAY_US, SYSCISR_TIMEOUT); if (ret) ret = -EIO; iowrite32(isr_mask, rcar_sysc_base + SYSCISCR); out: if (rcar_sysc_extmask_val) iowrite32(0, rcar_sysc_base + rcar_sysc_extmask_offs); spin_unlock_irqrestore(&rcar_sysc_lock, flags); pr_debug("sysc power %s domain %d: %08x -> %d\n", on ? "on" : "off", sysc_ch->isr_bit, ioread32(rcar_sysc_base + SYSCISR), ret); return ret; } static bool rcar_sysc_power_is_off(const struct rcar_sysc_ch *sysc_ch) { unsigned int st; st = ioread32(rcar_sysc_base + sysc_ch->chan_offs + PWRSR_OFFS); if (st & BIT(sysc_ch->chan_bit)) return true; return false; } struct rcar_sysc_pd { struct generic_pm_domain genpd; struct rcar_sysc_ch ch; unsigned int flags; char name[]; }; static inline struct rcar_sysc_pd *to_rcar_pd(struct generic_pm_domain *d) { return container_of(d, struct rcar_sysc_pd, genpd); } static int rcar_sysc_pd_power_off(struct generic_pm_domain *genpd) { struct rcar_sysc_pd *pd = to_rcar_pd(genpd); pr_debug("%s: %s\n", __func__, genpd->name); return rcar_sysc_power(&pd->ch, false); } static int rcar_sysc_pd_power_on(struct generic_pm_domain *genpd) { struct rcar_sysc_pd *pd = to_rcar_pd(genpd); pr_debug("%s: %s\n", __func__, genpd->name); return rcar_sysc_power(&pd->ch, true); } static bool has_cpg_mstp; static int __init rcar_sysc_pd_setup(struct rcar_sysc_pd *pd) { struct generic_pm_domain *genpd = &pd->genpd; const char *name = pd->genpd.name; int error; if (pd->flags & PD_CPU) { /* * This domain contains a CPU core and therefore it should * only be turned off if the CPU is not in use. */ pr_debug("PM domain %s contains %s\n", name, "CPU"); genpd->flags |= GENPD_FLAG_ALWAYS_ON; } else if (pd->flags & PD_SCU) { /* * This domain contains an SCU and cache-controller, and * therefore it should only be turned off if the CPU cores are * not in use. */ pr_debug("PM domain %s contains %s\n", name, "SCU"); genpd->flags |= GENPD_FLAG_ALWAYS_ON; } else if (pd->flags & PD_NO_CR) { /* * This domain cannot be turned off. */ genpd->flags |= GENPD_FLAG_ALWAYS_ON; } if (!(pd->flags & (PD_CPU | PD_SCU))) { /* Enable Clock Domain for I/O devices */ genpd->flags |= GENPD_FLAG_PM_CLK | GENPD_FLAG_ACTIVE_WAKEUP; if (has_cpg_mstp) { genpd->attach_dev = cpg_mstp_attach_dev; genpd->detach_dev = cpg_mstp_detach_dev; } else { genpd->attach_dev = cpg_mssr_attach_dev; genpd->detach_dev = cpg_mssr_detach_dev; } } genpd->power_off = rcar_sysc_pd_power_off; genpd->power_on = rcar_sysc_pd_power_on; if (pd->flags & (PD_CPU | PD_NO_CR)) { /* Skip CPUs (handled by SMP code) and areas without control */ pr_debug("%s: Not touching %s\n", __func__, genpd->name); goto finalize; } if (!rcar_sysc_power_is_off(&pd->ch)) { pr_debug("%s: %s is already powered\n", __func__, genpd->name); goto finalize; } rcar_sysc_power(&pd->ch, true); finalize: error = pm_genpd_init(genpd, &simple_qos_governor, false); if (error) pr_err("Failed to init PM domain %s: %d\n", name, error); return error; } static const struct of_device_id rcar_sysc_matches[] __initconst = { #ifdef CONFIG_SYSC_R8A7742 { .compatible = "renesas,r8a7742-sysc", .data = &r8a7742_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7743 { .compatible = "renesas,r8a7743-sysc", .data = &r8a7743_sysc_info }, /* RZ/G1N is identical to RZ/G2M w.r.t. power domains. */ { .compatible = "renesas,r8a7744-sysc", .data = &r8a7743_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7745 { .compatible = "renesas,r8a7745-sysc", .data = &r8a7745_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77470 { .compatible = "renesas,r8a77470-sysc", .data = &r8a77470_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A774A1 { .compatible = "renesas,r8a774a1-sysc", .data = &r8a774a1_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A774B1 { .compatible = "renesas,r8a774b1-sysc", .data = &r8a774b1_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A774C0 { .compatible = "renesas,r8a774c0-sysc", .data = &r8a774c0_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A774E1 { .compatible = "renesas,r8a774e1-sysc", .data = &r8a774e1_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7779 { .compatible = "renesas,r8a7779-sysc", .data = &r8a7779_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7790 { .compatible = "renesas,r8a7790-sysc", .data = &r8a7790_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7791 { .compatible = "renesas,r8a7791-sysc", .data = &r8a7791_sysc_info }, /* R-Car M2-N is identical to R-Car M2-W w.r.t. power domains. */ { .compatible = "renesas,r8a7793-sysc", .data = &r8a7791_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7792 { .compatible = "renesas,r8a7792-sysc", .data = &r8a7792_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7794 { .compatible = "renesas,r8a7794-sysc", .data = &r8a7794_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A7795 { .compatible = "renesas,r8a7795-sysc", .data = &r8a7795_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77960 { .compatible = "renesas,r8a7796-sysc", .data = &r8a77960_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77961 { .compatible = "renesas,r8a77961-sysc", .data = &r8a77961_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77965 { .compatible = "renesas,r8a77965-sysc", .data = &r8a77965_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77970 { .compatible = "renesas,r8a77970-sysc", .data = &r8a77970_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77980 { .compatible = "renesas,r8a77980-sysc", .data = &r8a77980_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77990 { .compatible = "renesas,r8a77990-sysc", .data = &r8a77990_sysc_info }, #endif #ifdef CONFIG_SYSC_R8A77995 { .compatible = "renesas,r8a77995-sysc", .data = &r8a77995_sysc_info }, #endif { /* sentinel */ } }; struct rcar_pm_domains { struct genpd_onecell_data onecell_data; struct generic_pm_domain *domains[RCAR_PD_ALWAYS_ON + 1]; }; static struct genpd_onecell_data *rcar_sysc_onecell_data; static int __init rcar_sysc_pd_init(void) { const struct rcar_sysc_info *info; const struct of_device_id *match; struct rcar_pm_domains *domains; struct device_node *np; void __iomem *base; unsigned int i; int error; np = of_find_matching_node_and_match(NULL, rcar_sysc_matches, &match); if (!np) return -ENODEV; info = match->data; if (info->init) { error = info->init(); if (error) goto out_put; } has_cpg_mstp = of_find_compatible_node(NULL, NULL, "renesas,cpg-mstp-clocks"); base = of_iomap(np, 0); if (!base) { pr_warn("%pOF: Cannot map regs\n", np); error = -ENOMEM; goto out_put; } rcar_sysc_base = base; /* Optional External Request Mask Register */ rcar_sysc_extmask_offs = info->extmask_offs; rcar_sysc_extmask_val = info->extmask_val; domains = kzalloc(sizeof(*domains), GFP_KERNEL); if (!domains) { error = -ENOMEM; goto out_put; } domains->onecell_data.domains = domains->domains; domains->onecell_data.num_domains = ARRAY_SIZE(domains->domains); rcar_sysc_onecell_data = &domains->onecell_data; for (i = 0; i < info->num_areas; i++) { const struct rcar_sysc_area *area = &info->areas[i]; struct rcar_sysc_pd *pd; if (!area->name) { /* Skip NULLified area */ continue; } pd = kzalloc(sizeof(*pd) + strlen(area->name) + 1, GFP_KERNEL); if (!pd) { error = -ENOMEM; goto out_put; } strcpy(pd->name, area->name); pd->genpd.name = pd->name; pd->ch.chan_offs = area->chan_offs; pd->ch.chan_bit = area->chan_bit; pd->ch.isr_bit = area->isr_bit; pd->flags = area->flags; error = rcar_sysc_pd_setup(pd); if (error) goto out_put; domains->domains[area->isr_bit] = &pd->genpd; if (area->parent < 0) continue; error = pm_genpd_add_subdomain(domains->domains[area->parent], &pd->genpd); if (error) { pr_warn("Failed to add PM subdomain %s to parent %u\n", area->name, area->parent); goto out_put; } } error = of_genpd_add_provider_onecell(np, &domains->onecell_data); out_put: of_node_put(np); return error; } early_initcall(rcar_sysc_pd_init); void __init rcar_sysc_nullify(struct rcar_sysc_area *areas, unsigned int num_areas, u8 id) { unsigned int i; for (i = 0; i < num_areas; i++) if (areas[i].isr_bit == id) { areas[i].name = NULL; return; } } #ifdef CONFIG_ARCH_R8A7779 static int rcar_sysc_power_cpu(unsigned int idx, bool on) { struct generic_pm_domain *genpd; struct rcar_sysc_pd *pd; unsigned int i; if (!rcar_sysc_onecell_data) return -ENODEV; for (i = 0; i < rcar_sysc_onecell_data->num_domains; i++) { genpd = rcar_sysc_onecell_data->domains[i]; if (!genpd) continue; pd = to_rcar_pd(genpd); if (!(pd->flags & PD_CPU) || pd->ch.chan_bit != idx) continue; return rcar_sysc_power(&pd->ch, on); } return -ENOENT; } int rcar_sysc_power_down_cpu(unsigned int cpu) { return rcar_sysc_power_cpu(cpu, false); } int rcar_sysc_power_up_cpu(unsigned int cpu) { return rcar_sysc_power_cpu(cpu, true); } #endif /* CONFIG_ARCH_R8A7779 */