/* * Copyright (c) 2005-2014 Brocade Communications Systems, Inc. * Copyright (c) 2014- QLogic Corporation. * All rights reserved * www.qlogic.com * * Linux driver for QLogic BR-series Fibre Channel Host Bus Adapter. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License (GPL) Version 2 as * published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ /* * bfad.c Linux driver PCI interface module. */ #include #include #include #include #include #include #include #include #include #include #include "bfad_drv.h" #include "bfad_im.h" #include "bfa_fcs.h" #include "bfa_defs.h" #include "bfa.h" BFA_TRC_FILE(LDRV, BFAD); DEFINE_MUTEX(bfad_mutex); LIST_HEAD(bfad_list); static int bfad_inst; static int num_sgpgs_parm; int supported_fc4s; char *host_name, *os_name, *os_patch; int num_rports, num_ios, num_tms; int num_fcxps, num_ufbufs; int reqq_size, rspq_size, num_sgpgs; int rport_del_timeout = BFA_FCS_RPORT_DEF_DEL_TIMEOUT; int bfa_lun_queue_depth = BFAD_LUN_QUEUE_DEPTH; int bfa_io_max_sge = BFAD_IO_MAX_SGE; int bfa_log_level = 3; /* WARNING log level */ int ioc_auto_recover = BFA_TRUE; int bfa_linkup_delay = -1; int fdmi_enable = BFA_TRUE; int pcie_max_read_reqsz; int bfa_debugfs_enable = 1; int msix_disable_cb = 0, msix_disable_ct = 0; int max_xfer_size = BFAD_MAX_SECTORS >> 1; int max_rport_logins = BFA_FCS_MAX_RPORT_LOGINS; /* Firmware releated */ u32 bfi_image_cb_size, bfi_image_ct_size, bfi_image_ct2_size; u32 *bfi_image_cb, *bfi_image_ct, *bfi_image_ct2; #define BFAD_FW_FILE_CB "cbfw-3.2.5.1.bin" #define BFAD_FW_FILE_CT "ctfw-3.2.5.1.bin" #define BFAD_FW_FILE_CT2 "ct2fw-3.2.5.1.bin" static u32 *bfad_load_fwimg(struct pci_dev *pdev); static void bfad_free_fwimg(void); static void bfad_read_firmware(struct pci_dev *pdev, u32 **bfi_image, u32 *bfi_image_size, char *fw_name); static const char *msix_name_ct[] = { "ctrl", "cpe0", "cpe1", "cpe2", "cpe3", "rme0", "rme1", "rme2", "rme3" }; static const char *msix_name_cb[] = { "cpe0", "cpe1", "cpe2", "cpe3", "rme0", "rme1", "rme2", "rme3", "eemc", "elpu0", "elpu1", "epss", "mlpu" }; MODULE_FIRMWARE(BFAD_FW_FILE_CB); MODULE_FIRMWARE(BFAD_FW_FILE_CT); MODULE_FIRMWARE(BFAD_FW_FILE_CT2); module_param(os_name, charp, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(os_name, "OS name of the hba host machine"); module_param(os_patch, charp, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(os_patch, "OS patch level of the hba host machine"); module_param(host_name, charp, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(host_name, "Hostname of the hba host machine"); module_param(num_rports, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(num_rports, "Max number of rports supported per port " "(physical/logical), default=1024"); module_param(num_ios, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(num_ios, "Max number of ioim requests, default=2000"); module_param(num_tms, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(num_tms, "Max number of task im requests, default=128"); module_param(num_fcxps, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(num_fcxps, "Max number of fcxp requests, default=64"); module_param(num_ufbufs, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(num_ufbufs, "Max number of unsolicited frame " "buffers, default=64"); module_param(reqq_size, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(reqq_size, "Max number of request queue elements, " "default=256"); module_param(rspq_size, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(rspq_size, "Max number of response queue elements, " "default=64"); module_param(num_sgpgs, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(num_sgpgs, "Number of scatter/gather pages, default=2048"); module_param(rport_del_timeout, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(rport_del_timeout, "Rport delete timeout, default=90 secs, " "Range[>0]"); module_param(bfa_lun_queue_depth, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(bfa_lun_queue_depth, "Lun queue depth, default=32, Range[>0]"); module_param(bfa_io_max_sge, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(bfa_io_max_sge, "Max io scatter/gather elements, default=255"); module_param(bfa_log_level, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(bfa_log_level, "Driver log level, default=3, " "Range[Critical:1|Error:2|Warning:3|Info:4]"); module_param(ioc_auto_recover, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(ioc_auto_recover, "IOC auto recovery, default=1, " "Range[off:0|on:1]"); module_param(bfa_linkup_delay, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(bfa_linkup_delay, "Link up delay, default=30 secs for " "boot port. Otherwise 10 secs in RHEL4 & 0 for " "[RHEL5, SLES10, ESX40] Range[>0]"); module_param(msix_disable_cb, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(msix_disable_cb, "Disable Message Signaled Interrupts for QLogic-415/425/815/825 cards, default=0 Range[false:0|true:1]"); module_param(msix_disable_ct, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(msix_disable_ct, "Disable Message Signaled Interrupts if possible for QLogic-1010/1020/804/1007/902/1741 cards, default=0, Range[false:0|true:1]"); module_param(fdmi_enable, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(fdmi_enable, "Enables fdmi registration, default=1, " "Range[false:0|true:1]"); module_param(pcie_max_read_reqsz, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(pcie_max_read_reqsz, "PCIe max read request size, default=0 " "(use system setting), Range[128|256|512|1024|2048|4096]"); module_param(bfa_debugfs_enable, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(bfa_debugfs_enable, "Enables debugfs feature, default=1," " Range[false:0|true:1]"); module_param(max_xfer_size, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(max_xfer_size, "default=32MB," " Range[64k|128k|256k|512k|1024k|2048k]"); module_param(max_rport_logins, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(max_rport_logins, "Max number of logins to initiator and target rports on a port (physical/logical), default=1024"); static void bfad_sm_uninit(struct bfad_s *bfad, enum bfad_sm_event event); static void bfad_sm_created(struct bfad_s *bfad, enum bfad_sm_event event); static void bfad_sm_initializing(struct bfad_s *bfad, enum bfad_sm_event event); static void bfad_sm_operational(struct bfad_s *bfad, enum bfad_sm_event event); static void bfad_sm_stopping(struct bfad_s *bfad, enum bfad_sm_event event); static void bfad_sm_failed(struct bfad_s *bfad, enum bfad_sm_event event); static void bfad_sm_fcs_exit(struct bfad_s *bfad, enum bfad_sm_event event); /* * Beginning state for the driver instance, awaiting the pci_probe event */ static void bfad_sm_uninit(struct bfad_s *bfad, enum bfad_sm_event event) { bfa_trc(bfad, event); switch (event) { case BFAD_E_CREATE: bfa_sm_set_state(bfad, bfad_sm_created); bfad->bfad_tsk = kthread_create(bfad_worker, (void *) bfad, "%s", "bfad_worker"); if (IS_ERR(bfad->bfad_tsk)) { printk(KERN_INFO "bfad[%d]: Kernel thread " "creation failed!\n", bfad->inst_no); bfa_sm_send_event(bfad, BFAD_E_KTHREAD_CREATE_FAILED); } bfa_sm_send_event(bfad, BFAD_E_INIT); break; case BFAD_E_STOP: /* Ignore stop; already in uninit */ break; default: bfa_sm_fault(bfad, event); } } /* * Driver Instance is created, awaiting event INIT to initialize the bfad */ static void bfad_sm_created(struct bfad_s *bfad, enum bfad_sm_event event) { unsigned long flags; bfa_status_t ret; bfa_trc(bfad, event); switch (event) { case BFAD_E_INIT: bfa_sm_set_state(bfad, bfad_sm_initializing); init_completion(&bfad->comp); /* Enable Interrupt and wait bfa_init completion */ if (bfad_setup_intr(bfad)) { printk(KERN_WARNING "bfad%d: bfad_setup_intr failed\n", bfad->inst_no); bfa_sm_send_event(bfad, BFAD_E_INIT_FAILED); break; } spin_lock_irqsave(&bfad->bfad_lock, flags); bfa_iocfc_init(&bfad->bfa); spin_unlock_irqrestore(&bfad->bfad_lock, flags); /* Set up interrupt handler for each vectors */ if ((bfad->bfad_flags & BFAD_MSIX_ON) && bfad_install_msix_handler(bfad)) { printk(KERN_WARNING "%s: install_msix failed, bfad%d\n", __func__, bfad->inst_no); } bfad_init_timer(bfad); wait_for_completion(&bfad->comp); if ((bfad->bfad_flags & BFAD_HAL_INIT_DONE)) { bfa_sm_send_event(bfad, BFAD_E_INIT_SUCCESS); } else { printk(KERN_WARNING "bfa %s: bfa init failed\n", bfad->pci_name); spin_lock_irqsave(&bfad->bfad_lock, flags); bfa_fcs_init(&bfad->bfa_fcs); spin_unlock_irqrestore(&bfad->bfad_lock, flags); ret = bfad_cfg_pport(bfad, BFA_LPORT_ROLE_FCP_IM); if (ret != BFA_STATUS_OK) { init_completion(&bfad->comp); spin_lock_irqsave(&bfad->bfad_lock, flags); bfad->pport.flags |= BFAD_PORT_DELETE; bfa_fcs_exit(&bfad->bfa_fcs); spin_unlock_irqrestore(&bfad->bfad_lock, flags); wait_for_completion(&bfad->comp); bfa_sm_send_event(bfad, BFAD_E_INIT_FAILED); break; } bfad->bfad_flags |= BFAD_HAL_INIT_FAIL; bfa_sm_send_event(bfad, BFAD_E_HAL_INIT_FAILED); } break; case BFAD_E_KTHREAD_CREATE_FAILED: bfa_sm_set_state(bfad, bfad_sm_uninit); break; default: bfa_sm_fault(bfad, event); } } static void bfad_sm_initializing(struct bfad_s *bfad, enum bfad_sm_event event) { int retval; unsigned long flags; bfa_trc(bfad, event); switch (event) { case BFAD_E_INIT_SUCCESS: kthread_stop(bfad->bfad_tsk); spin_lock_irqsave(&bfad->bfad_lock, flags); bfad->bfad_tsk = NULL; spin_unlock_irqrestore(&bfad->bfad_lock, flags); retval = bfad_start_ops(bfad); if (retval != BFA_STATUS_OK) { bfa_sm_set_state(bfad, bfad_sm_failed); break; } bfa_sm_set_state(bfad, bfad_sm_operational); break; case BFAD_E_INIT_FAILED: bfa_sm_set_state(bfad, bfad_sm_uninit); kthread_stop(bfad->bfad_tsk); spin_lock_irqsave(&bfad->bfad_lock, flags); bfad->bfad_tsk = NULL; spin_unlock_irqrestore(&bfad->bfad_lock, flags); break; case BFAD_E_HAL_INIT_FAILED: bfa_sm_set_state(bfad, bfad_sm_failed); break; default: bfa_sm_fault(bfad, event); } } static void bfad_sm_failed(struct bfad_s *bfad, enum bfad_sm_event event) { int retval; bfa_trc(bfad, event); switch (event) { case BFAD_E_INIT_SUCCESS: retval = bfad_start_ops(bfad); if (retval != BFA_STATUS_OK) break; bfa_sm_set_state(bfad, bfad_sm_operational); break; case BFAD_E_STOP: bfa_sm_set_state(bfad, bfad_sm_fcs_exit); bfa_sm_send_event(bfad, BFAD_E_FCS_EXIT_COMP); break; case BFAD_E_EXIT_COMP: bfa_sm_set_state(bfad, bfad_sm_uninit); bfad_remove_intr(bfad); del_timer_sync(&bfad->hal_tmo); break; default: bfa_sm_fault(bfad, event); } } static void bfad_sm_operational(struct bfad_s *bfad, enum bfad_sm_event event) { bfa_trc(bfad, event); switch (event) { case BFAD_E_STOP: bfa_sm_set_state(bfad, bfad_sm_fcs_exit); bfad_fcs_stop(bfad); break; default: bfa_sm_fault(bfad, event); } } static void bfad_sm_fcs_exit(struct bfad_s *bfad, enum bfad_sm_event event) { bfa_trc(bfad, event); switch (event) { case BFAD_E_FCS_EXIT_COMP: bfa_sm_set_state(bfad, bfad_sm_stopping); bfad_stop(bfad); break; default: bfa_sm_fault(bfad, event); } } static void bfad_sm_stopping(struct bfad_s *bfad, enum bfad_sm_event event) { bfa_trc(bfad, event); switch (event) { case BFAD_E_EXIT_COMP: bfa_sm_set_state(bfad, bfad_sm_uninit); bfad_remove_intr(bfad); del_timer_sync(&bfad->hal_tmo); bfad_im_probe_undo(bfad); bfad->bfad_flags &= ~BFAD_FC4_PROBE_DONE; bfad_uncfg_pport(bfad); break; default: bfa_sm_fault(bfad, event); break; } } /* * BFA callbacks */ void bfad_hcb_comp(void *arg, bfa_status_t status) { struct bfad_hal_comp *fcomp = (struct bfad_hal_comp *)arg; fcomp->status = status; complete(&fcomp->comp); } /* * bfa_init callback */ void bfa_cb_init(void *drv, bfa_status_t init_status) { struct bfad_s *bfad = drv; if (init_status == BFA_STATUS_OK) { bfad->bfad_flags |= BFAD_HAL_INIT_DONE; /* * If BFAD_HAL_INIT_FAIL flag is set: * Wake up the kernel thread to start * the bfad operations after HAL init done */ if ((bfad->bfad_flags & BFAD_HAL_INIT_FAIL)) { bfad->bfad_flags &= ~BFAD_HAL_INIT_FAIL; wake_up_process(bfad->bfad_tsk); } } complete(&bfad->comp); } /* * BFA_FCS callbacks */ struct bfad_port_s * bfa_fcb_lport_new(struct bfad_s *bfad, struct bfa_fcs_lport_s *port, enum bfa_lport_role roles, struct bfad_vf_s *vf_drv, struct bfad_vport_s *vp_drv) { bfa_status_t rc; struct bfad_port_s *port_drv; if (!vp_drv && !vf_drv) { port_drv = &bfad->pport; port_drv->pvb_type = BFAD_PORT_PHYS_BASE; } else if (!vp_drv && vf_drv) { port_drv = &vf_drv->base_port; port_drv->pvb_type = BFAD_PORT_VF_BASE; } else if (vp_drv && !vf_drv) { port_drv = &vp_drv->drv_port; port_drv->pvb_type = BFAD_PORT_PHYS_VPORT; } else { port_drv = &vp_drv->drv_port; port_drv->pvb_type = BFAD_PORT_VF_VPORT; } port_drv->fcs_port = port; port_drv->roles = roles; if (roles & BFA_LPORT_ROLE_FCP_IM) { rc = bfad_im_port_new(bfad, port_drv); if (rc != BFA_STATUS_OK) { bfad_im_port_delete(bfad, port_drv); port_drv = NULL; } } return port_drv; } /* * FCS RPORT alloc callback, after successful PLOGI by FCS */ bfa_status_t bfa_fcb_rport_alloc(struct bfad_s *bfad, struct bfa_fcs_rport_s **rport, struct bfad_rport_s **rport_drv) { bfa_status_t rc = BFA_STATUS_OK; *rport_drv = kzalloc(sizeof(struct bfad_rport_s), GFP_ATOMIC); if (*rport_drv == NULL) { rc = BFA_STATUS_ENOMEM; goto ext; } *rport = &(*rport_drv)->fcs_rport; ext: return rc; } /* * FCS PBC VPORT Create */ void bfa_fcb_pbc_vport_create(struct bfad_s *bfad, struct bfi_pbc_vport_s pbc_vport) { struct bfa_lport_cfg_s port_cfg = {0}; struct bfad_vport_s *vport; int rc; vport = kzalloc(sizeof(struct bfad_vport_s), GFP_ATOMIC); if (!vport) { bfa_trc(bfad, 0); return; } vport->drv_port.bfad = bfad; port_cfg.roles = BFA_LPORT_ROLE_FCP_IM; port_cfg.pwwn = pbc_vport.vp_pwwn; port_cfg.nwwn = pbc_vport.vp_nwwn; port_cfg.preboot_vp = BFA_TRUE; rc = bfa_fcs_pbc_vport_create(&vport->fcs_vport, &bfad->bfa_fcs, 0, &port_cfg, vport); if (rc != BFA_STATUS_OK) { bfa_trc(bfad, 0); return; } list_add_tail(&vport->list_entry, &bfad->pbc_vport_list); } void bfad_hal_mem_release(struct bfad_s *bfad) { struct bfa_meminfo_s *hal_meminfo = &bfad->meminfo; struct bfa_mem_dma_s *dma_info, *dma_elem; struct bfa_mem_kva_s *kva_info, *kva_elem; struct list_head *dm_qe, *km_qe; dma_info = &hal_meminfo->dma_info; kva_info = &hal_meminfo->kva_info; /* Iterate through the KVA meminfo queue */ list_for_each(km_qe, &kva_info->qe) { kva_elem = (struct bfa_mem_kva_s *) km_qe; vfree(kva_elem->kva); } /* Iterate through the DMA meminfo queue */ list_for_each(dm_qe, &dma_info->qe) { dma_elem = (struct bfa_mem_dma_s *) dm_qe; dma_free_coherent(&bfad->pcidev->dev, dma_elem->mem_len, dma_elem->kva, (dma_addr_t) dma_elem->dma); } memset(hal_meminfo, 0, sizeof(struct bfa_meminfo_s)); } void bfad_update_hal_cfg(struct bfa_iocfc_cfg_s *bfa_cfg) { if (num_rports > 0) bfa_cfg->fwcfg.num_rports = num_rports; if (num_ios > 0) bfa_cfg->fwcfg.num_ioim_reqs = num_ios; if (num_tms > 0) bfa_cfg->fwcfg.num_tskim_reqs = num_tms; if (num_fcxps > 0 && num_fcxps <= BFA_FCXP_MAX) bfa_cfg->fwcfg.num_fcxp_reqs = num_fcxps; if (num_ufbufs > 0 && num_ufbufs <= BFA_UF_MAX) bfa_cfg->fwcfg.num_uf_bufs = num_ufbufs; if (reqq_size > 0) bfa_cfg->drvcfg.num_reqq_elems = reqq_size; if (rspq_size > 0) bfa_cfg->drvcfg.num_rspq_elems = rspq_size; if (num_sgpgs > 0 && num_sgpgs <= BFA_SGPG_MAX) bfa_cfg->drvcfg.num_sgpgs = num_sgpgs; /* * populate the hal values back to the driver for sysfs use. * otherwise, the default values will be shown as 0 in sysfs */ num_rports = bfa_cfg->fwcfg.num_rports; num_ios = bfa_cfg->fwcfg.num_ioim_reqs; num_tms = bfa_cfg->fwcfg.num_tskim_reqs; num_fcxps = bfa_cfg->fwcfg.num_fcxp_reqs; num_ufbufs = bfa_cfg->fwcfg.num_uf_bufs; reqq_size = bfa_cfg->drvcfg.num_reqq_elems; rspq_size = bfa_cfg->drvcfg.num_rspq_elems; num_sgpgs = bfa_cfg->drvcfg.num_sgpgs; } bfa_status_t bfad_hal_mem_alloc(struct bfad_s *bfad) { struct bfa_meminfo_s *hal_meminfo = &bfad->meminfo; struct bfa_mem_dma_s *dma_info, *dma_elem; struct bfa_mem_kva_s *kva_info, *kva_elem; struct list_head *dm_qe, *km_qe; bfa_status_t rc = BFA_STATUS_OK; dma_addr_t phys_addr; bfa_cfg_get_default(&bfad->ioc_cfg); bfad_update_hal_cfg(&bfad->ioc_cfg); bfad->cfg_data.ioc_queue_depth = bfad->ioc_cfg.fwcfg.num_ioim_reqs; bfa_cfg_get_meminfo(&bfad->ioc_cfg, hal_meminfo, &bfad->bfa); dma_info = &hal_meminfo->dma_info; kva_info = &hal_meminfo->kva_info; /* Iterate through the KVA meminfo queue */ list_for_each(km_qe, &kva_info->qe) { kva_elem = (struct bfa_mem_kva_s *) km_qe; kva_elem->kva = vzalloc(kva_elem->mem_len); if (kva_elem->kva == NULL) { bfad_hal_mem_release(bfad); rc = BFA_STATUS_ENOMEM; goto ext; } } /* Iterate through the DMA meminfo queue */ list_for_each(dm_qe, &dma_info->qe) { dma_elem = (struct bfa_mem_dma_s *) dm_qe; dma_elem->kva = dma_alloc_coherent(&bfad->pcidev->dev, dma_elem->mem_len, &phys_addr, GFP_KERNEL); if (dma_elem->kva == NULL) { bfad_hal_mem_release(bfad); rc = BFA_STATUS_ENOMEM; goto ext; } dma_elem->dma = phys_addr; memset(dma_elem->kva, 0, dma_elem->mem_len); } ext: return rc; } /* * Create a vport under a vf. */ bfa_status_t bfad_vport_create(struct bfad_s *bfad, u16 vf_id, struct bfa_lport_cfg_s *port_cfg, struct device *dev) { struct bfad_vport_s *vport; int rc = BFA_STATUS_OK; unsigned long flags; struct completion fcomp; vport = kzalloc(sizeof(struct bfad_vport_s), GFP_KERNEL); if (!vport) { rc = BFA_STATUS_ENOMEM; goto ext; } vport->drv_port.bfad = bfad; spin_lock_irqsave(&bfad->bfad_lock, flags); rc = bfa_fcs_vport_create(&vport->fcs_vport, &bfad->bfa_fcs, vf_id, port_cfg, vport); spin_unlock_irqrestore(&bfad->bfad_lock, flags); if (rc != BFA_STATUS_OK) goto ext_free_vport; if (port_cfg->roles & BFA_LPORT_ROLE_FCP_IM) { rc = bfad_im_scsi_host_alloc(bfad, vport->drv_port.im_port, dev); if (rc != BFA_STATUS_OK) goto ext_free_fcs_vport; } spin_lock_irqsave(&bfad->bfad_lock, flags); bfa_fcs_vport_start(&vport->fcs_vport); list_add_tail(&vport->list_entry, &bfad->vport_list); spin_unlock_irqrestore(&bfad->bfad_lock, flags); return BFA_STATUS_OK; ext_free_fcs_vport: spin_lock_irqsave(&bfad->bfad_lock, flags); vport->comp_del = &fcomp; init_completion(vport->comp_del); bfa_fcs_vport_delete(&vport->fcs_vport); spin_unlock_irqrestore(&bfad->bfad_lock, flags); wait_for_completion(vport->comp_del); ext_free_vport: kfree(vport); ext: return rc; } void bfad_bfa_tmo(struct timer_list *t) { struct bfad_s *bfad = from_timer(bfad, t, hal_tmo); unsigned long flags; struct list_head doneq; spin_lock_irqsave(&bfad->bfad_lock, flags); bfa_timer_beat(&bfad->bfa.timer_mod); bfa_comp_deq(&bfad->bfa, &doneq); spin_unlock_irqrestore(&bfad->bfad_lock, flags); if (!list_empty(&doneq)) { bfa_comp_process(&bfad->bfa, &doneq); spin_lock_irqsave(&bfad->bfad_lock, flags); bfa_comp_free(&bfad->bfa, &doneq); spin_unlock_irqrestore(&bfad->bfad_lock, flags); } mod_timer(&bfad->hal_tmo, jiffies + msecs_to_jiffies(BFA_TIMER_FREQ)); } void bfad_init_timer(struct bfad_s *bfad) { timer_setup(&bfad->hal_tmo, bfad_bfa_tmo, 0); mod_timer(&bfad->hal_tmo, jiffies + msecs_to_jiffies(BFA_TIMER_FREQ)); } int bfad_pci_init(struct pci_dev *pdev, struct bfad_s *bfad) { int rc = -ENODEV; if (pci_enable_device(pdev)) { printk(KERN_ERR "pci_enable_device fail %p\n", pdev); goto out; } if (pci_request_regions(pdev, BFAD_DRIVER_NAME)) goto out_disable_device; pci_set_master(pdev); rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (rc) rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (rc) { rc = -ENODEV; printk(KERN_ERR "dma_set_mask_and_coherent fail %p\n", pdev); goto out_release_region; } /* Enable PCIE Advanced Error Recovery (AER) if kernel supports */ pci_enable_pcie_error_reporting(pdev); bfad->pci_bar0_kva = pci_iomap(pdev, 0, pci_resource_len(pdev, 0)); bfad->pci_bar2_kva = pci_iomap(pdev, 2, pci_resource_len(pdev, 2)); if (bfad->pci_bar0_kva == NULL) { printk(KERN_ERR "Fail to map bar0\n"); goto out_release_region; } bfad->hal_pcidev.pci_slot = PCI_SLOT(pdev->devfn); bfad->hal_pcidev.pci_func = PCI_FUNC(pdev->devfn); bfad->hal_pcidev.pci_bar_kva = bfad->pci_bar0_kva; bfad->hal_pcidev.device_id = pdev->device; bfad->hal_pcidev.ssid = pdev->subsystem_device; bfad->pci_name = pci_name(pdev); bfad->pci_attr.vendor_id = pdev->vendor; bfad->pci_attr.device_id = pdev->device; bfad->pci_attr.ssid = pdev->subsystem_device; bfad->pci_attr.ssvid = pdev->subsystem_vendor; bfad->pci_attr.pcifn = PCI_FUNC(pdev->devfn); bfad->pcidev = pdev; /* Adjust PCIe Maximum Read Request Size */ if (pci_is_pcie(pdev) && pcie_max_read_reqsz) { if (pcie_max_read_reqsz >= 128 && pcie_max_read_reqsz <= 4096 && is_power_of_2(pcie_max_read_reqsz)) { int max_rq = pcie_get_readrq(pdev); printk(KERN_WARNING "BFA[%s]: " "pcie_max_read_request_size is %d, " "reset to %d\n", bfad->pci_name, max_rq, pcie_max_read_reqsz); pcie_set_readrq(pdev, pcie_max_read_reqsz); } else { printk(KERN_WARNING "BFA[%s]: invalid " "pcie_max_read_request_size %d ignored\n", bfad->pci_name, pcie_max_read_reqsz); } } pci_save_state(pdev); return 0; out_release_region: pci_release_regions(pdev); out_disable_device: pci_disable_device(pdev); out: return rc; } void bfad_pci_uninit(struct pci_dev *pdev, struct bfad_s *bfad) { pci_iounmap(pdev, bfad->pci_bar0_kva); pci_iounmap(pdev, bfad->pci_bar2_kva); pci_release_regions(pdev); /* Disable PCIE Advanced Error Recovery (AER) */ pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } bfa_status_t bfad_drv_init(struct bfad_s *bfad) { bfa_status_t rc; unsigned long flags; bfad->cfg_data.rport_del_timeout = rport_del_timeout; bfad->cfg_data.lun_queue_depth = bfa_lun_queue_depth; bfad->cfg_data.io_max_sge = bfa_io_max_sge; bfad->cfg_data.binding_method = FCP_PWWN_BINDING; rc = bfad_hal_mem_alloc(bfad); if (rc != BFA_STATUS_OK) { printk(KERN_WARNING "bfad%d bfad_hal_mem_alloc failure\n", bfad->inst_no); printk(KERN_WARNING "Not enough memory to attach all QLogic BR-series HBA ports. System may need more memory.\n"); return BFA_STATUS_FAILED; } bfad->bfa.trcmod = bfad->trcmod; bfad->bfa.plog = &bfad->plog_buf; bfa_plog_init(&bfad->plog_buf); bfa_plog_str(&bfad->plog_buf, BFA_PL_MID_DRVR, BFA_PL_EID_DRIVER_START, 0, "Driver Attach"); bfa_attach(&bfad->bfa, bfad, &bfad->ioc_cfg, &bfad->meminfo, &bfad->hal_pcidev); /* FCS INIT */ spin_lock_irqsave(&bfad->bfad_lock, flags); bfad->bfa_fcs.trcmod = bfad->trcmod; bfa_fcs_attach(&bfad->bfa_fcs, &bfad->bfa, bfad, BFA_FALSE); bfad->bfa_fcs.fdmi_enabled = fdmi_enable; spin_unlock_irqrestore(&bfad->bfad_lock, flags); bfad->bfad_flags |= BFAD_DRV_INIT_DONE; return BFA_STATUS_OK; } void bfad_drv_uninit(struct bfad_s *bfad) { unsigned long flags; spin_lock_irqsave(&bfad->bfad_lock, flags); init_completion(&bfad->comp); bfa_iocfc_stop(&bfad->bfa); spin_unlock_irqrestore(&bfad->bfad_lock, flags); wait_for_completion(&bfad->comp); del_timer_sync(&bfad->hal_tmo); bfa_isr_disable(&bfad->bfa); bfa_detach(&bfad->bfa); bfad_remove_intr(bfad); bfad_hal_mem_release(bfad); bfad->bfad_flags &= ~BFAD_DRV_INIT_DONE; } void bfad_drv_start(struct bfad_s *bfad) { unsigned long flags; spin_lock_irqsave(&bfad->bfad_lock, flags); bfa_iocfc_start(&bfad->bfa); bfa_fcs_pbc_vport_init(&bfad->bfa_fcs); bfa_fcs_fabric_modstart(&bfad->bfa_fcs); bfad->bfad_flags |= BFAD_HAL_START_DONE; spin_unlock_irqrestore(&bfad->bfad_lock, flags); if (bfad->im) flush_workqueue(bfad->im->drv_workq); } void bfad_fcs_stop(struct bfad_s *bfad) { unsigned long flags; spin_lock_irqsave(&bfad->bfad_lock, flags); init_completion(&bfad->comp); bfad->pport.flags |= BFAD_PORT_DELETE; bfa_fcs_exit(&bfad->bfa_fcs); spin_unlock_irqrestore(&bfad->bfad_lock, flags); wait_for_completion(&bfad->comp); bfa_sm_send_event(bfad, BFAD_E_FCS_EXIT_COMP); } void bfad_stop(struct bfad_s *bfad) { unsigned long flags; spin_lock_irqsave(&bfad->bfad_lock, flags); init_completion(&bfad->comp); bfa_iocfc_stop(&bfad->bfa); bfad->bfad_flags &= ~BFAD_HAL_START_DONE; spin_unlock_irqrestore(&bfad->bfad_lock, flags); wait_for_completion(&bfad->comp); bfa_sm_send_event(bfad, BFAD_E_EXIT_COMP); } bfa_status_t bfad_cfg_pport(struct bfad_s *bfad, enum bfa_lport_role role) { int rc = BFA_STATUS_OK; /* Allocate scsi_host for the physical port */ if ((supported_fc4s & BFA_LPORT_ROLE_FCP_IM) && (role & BFA_LPORT_ROLE_FCP_IM)) { if (bfad->pport.im_port == NULL) { rc = BFA_STATUS_FAILED; goto out; } rc = bfad_im_scsi_host_alloc(bfad, bfad->pport.im_port, &bfad->pcidev->dev); if (rc != BFA_STATUS_OK) goto out; bfad->pport.roles |= BFA_LPORT_ROLE_FCP_IM; } bfad->bfad_flags |= BFAD_CFG_PPORT_DONE; out: return rc; } void bfad_uncfg_pport(struct bfad_s *bfad) { if ((supported_fc4s & BFA_LPORT_ROLE_FCP_IM) && (bfad->pport.roles & BFA_LPORT_ROLE_FCP_IM)) { bfad_im_scsi_host_free(bfad, bfad->pport.im_port); bfad_im_port_clean(bfad->pport.im_port); kfree(bfad->pport.im_port); bfad->pport.roles &= ~BFA_LPORT_ROLE_FCP_IM; } bfad->bfad_flags &= ~BFAD_CFG_PPORT_DONE; } bfa_status_t bfad_start_ops(struct bfad_s *bfad) { int retval; unsigned long flags; struct bfad_vport_s *vport, *vport_new; struct bfa_fcs_driver_info_s driver_info; /* Limit min/max. xfer size to [64k-32MB] */ if (max_xfer_size < BFAD_MIN_SECTORS >> 1) max_xfer_size = BFAD_MIN_SECTORS >> 1; if (max_xfer_size > BFAD_MAX_SECTORS >> 1) max_xfer_size = BFAD_MAX_SECTORS >> 1; /* Fill the driver_info info to fcs*/ memset(&driver_info, 0, sizeof(driver_info)); strlcpy(driver_info.version, BFAD_DRIVER_VERSION, sizeof(driver_info.version)); if (host_name) strlcpy(driver_info.host_machine_name, host_name, sizeof(driver_info.host_machine_name)); if (os_name) strlcpy(driver_info.host_os_name, os_name, sizeof(driver_info.host_os_name)); if (os_patch) strlcpy(driver_info.host_os_patch, os_patch, sizeof(driver_info.host_os_patch)); strlcpy(driver_info.os_device_name, bfad->pci_name, sizeof(driver_info.os_device_name)); /* FCS driver info init */ spin_lock_irqsave(&bfad->bfad_lock, flags); bfa_fcs_driver_info_init(&bfad->bfa_fcs, &driver_info); if (bfad->bfad_flags & BFAD_CFG_PPORT_DONE) bfa_fcs_update_cfg(&bfad->bfa_fcs); else bfa_fcs_init(&bfad->bfa_fcs); spin_unlock_irqrestore(&bfad->bfad_lock, flags); if (!(bfad->bfad_flags & BFAD_CFG_PPORT_DONE)) { retval = bfad_cfg_pport(bfad, BFA_LPORT_ROLE_FCP_IM); if (retval != BFA_STATUS_OK) return BFA_STATUS_FAILED; } /* Setup fc host fixed attribute if the lk supports */ bfad_fc_host_init(bfad->pport.im_port); /* BFAD level FC4 IM specific resource allocation */ retval = bfad_im_probe(bfad); if (retval != BFA_STATUS_OK) { printk(KERN_WARNING "bfad_im_probe failed\n"); if (bfa_sm_cmp_state(bfad, bfad_sm_initializing)) bfa_sm_set_state(bfad, bfad_sm_failed); return BFA_STATUS_FAILED; } else bfad->bfad_flags |= BFAD_FC4_PROBE_DONE; bfad_drv_start(bfad); /* Complete pbc vport create */ list_for_each_entry_safe(vport, vport_new, &bfad->pbc_vport_list, list_entry) { struct fc_vport_identifiers vid; struct fc_vport *fc_vport; char pwwn_buf[BFA_STRING_32]; memset(&vid, 0, sizeof(vid)); vid.roles = FC_PORT_ROLE_FCP_INITIATOR; vid.vport_type = FC_PORTTYPE_NPIV; vid.disable = false; vid.node_name = wwn_to_u64((u8 *) (&((vport->fcs_vport).lport.port_cfg.nwwn))); vid.port_name = wwn_to_u64((u8 *) (&((vport->fcs_vport).lport.port_cfg.pwwn))); fc_vport = fc_vport_create(bfad->pport.im_port->shost, 0, &vid); if (!fc_vport) { wwn2str(pwwn_buf, vid.port_name); printk(KERN_WARNING "bfad%d: failed to create pbc vport" " %s\n", bfad->inst_no, pwwn_buf); } list_del(&vport->list_entry); kfree(vport); } /* * If bfa_linkup_delay is set to -1 default; try to retrive the * value using the bfad_get_linkup_delay(); else use the * passed in module param value as the bfa_linkup_delay. */ if (bfa_linkup_delay < 0) { bfa_linkup_delay = bfad_get_linkup_delay(bfad); bfad_rport_online_wait(bfad); bfa_linkup_delay = -1; } else bfad_rport_online_wait(bfad); BFA_LOG(KERN_INFO, bfad, bfa_log_level, "bfa device claimed\n"); return BFA_STATUS_OK; } int bfad_worker(void *ptr) { struct bfad_s *bfad = ptr; unsigned long flags; if (kthread_should_stop()) return 0; /* Send event BFAD_E_INIT_SUCCESS */ bfa_sm_send_event(bfad, BFAD_E_INIT_SUCCESS); spin_lock_irqsave(&bfad->bfad_lock, flags); bfad->bfad_tsk = NULL; spin_unlock_irqrestore(&bfad->bfad_lock, flags); return 0; } /* * BFA driver interrupt functions */ irqreturn_t bfad_intx(int irq, void *dev_id) { struct bfad_s *bfad = dev_id; struct list_head doneq; unsigned long flags; bfa_boolean_t rc; spin_lock_irqsave(&bfad->bfad_lock, flags); rc = bfa_intx(&bfad->bfa); if (!rc) { spin_unlock_irqrestore(&bfad->bfad_lock, flags); return IRQ_NONE; } bfa_comp_deq(&bfad->bfa, &doneq); spin_unlock_irqrestore(&bfad->bfad_lock, flags); if (!list_empty(&doneq)) { bfa_comp_process(&bfad->bfa, &doneq); spin_lock_irqsave(&bfad->bfad_lock, flags); bfa_comp_free(&bfad->bfa, &doneq); spin_unlock_irqrestore(&bfad->bfad_lock, flags); } return IRQ_HANDLED; } static irqreturn_t bfad_msix(int irq, void *dev_id) { struct bfad_msix_s *vec = dev_id; struct bfad_s *bfad = vec->bfad; struct list_head doneq; unsigned long flags; spin_lock_irqsave(&bfad->bfad_lock, flags); bfa_msix(&bfad->bfa, vec->msix.entry); bfa_comp_deq(&bfad->bfa, &doneq); spin_unlock_irqrestore(&bfad->bfad_lock, flags); if (!list_empty(&doneq)) { bfa_comp_process(&bfad->bfa, &doneq); spin_lock_irqsave(&bfad->bfad_lock, flags); bfa_comp_free(&bfad->bfa, &doneq); spin_unlock_irqrestore(&bfad->bfad_lock, flags); } return IRQ_HANDLED; } /* * Initialize the MSIX entry table. */ static void bfad_init_msix_entry(struct bfad_s *bfad, struct msix_entry *msix_entries, int mask, int max_bit) { int i; int match = 0x00000001; for (i = 0, bfad->nvec = 0; i < MAX_MSIX_ENTRY; i++) { if (mask & match) { bfad->msix_tab[bfad->nvec].msix.entry = i; bfad->msix_tab[bfad->nvec].bfad = bfad; msix_entries[bfad->nvec].entry = i; bfad->nvec++; } match <<= 1; } } int bfad_install_msix_handler(struct bfad_s *bfad) { int i, error = 0; for (i = 0; i < bfad->nvec; i++) { sprintf(bfad->msix_tab[i].name, "bfa-%s-%s", bfad->pci_name, ((bfa_asic_id_cb(bfad->hal_pcidev.device_id)) ? msix_name_cb[i] : msix_name_ct[i])); error = request_irq(bfad->msix_tab[i].msix.vector, (irq_handler_t) bfad_msix, 0, bfad->msix_tab[i].name, &bfad->msix_tab[i]); bfa_trc(bfad, i); bfa_trc(bfad, bfad->msix_tab[i].msix.vector); if (error) { int j; for (j = 0; j < i; j++) free_irq(bfad->msix_tab[j].msix.vector, &bfad->msix_tab[j]); bfad->bfad_flags &= ~BFAD_MSIX_ON; pci_disable_msix(bfad->pcidev); return 1; } } return 0; } /* * Setup MSIX based interrupt. */ int bfad_setup_intr(struct bfad_s *bfad) { int error; u32 mask = 0, i, num_bit = 0, max_bit = 0; struct msix_entry msix_entries[MAX_MSIX_ENTRY]; struct pci_dev *pdev = bfad->pcidev; u16 reg; /* Call BFA to get the msix map for this PCI function. */ bfa_msix_getvecs(&bfad->bfa, &mask, &num_bit, &max_bit); /* Set up the msix entry table */ bfad_init_msix_entry(bfad, msix_entries, mask, max_bit); if ((bfa_asic_id_ctc(pdev->device) && !msix_disable_ct) || (bfa_asic_id_cb(pdev->device) && !msix_disable_cb)) { error = pci_enable_msix_exact(bfad->pcidev, msix_entries, bfad->nvec); /* In CT1 & CT2, try to allocate just one vector */ if (error == -ENOSPC && bfa_asic_id_ctc(pdev->device)) { printk(KERN_WARNING "bfa %s: trying one msix " "vector failed to allocate %d[%d]\n", bfad->pci_name, bfad->nvec, error); bfad->nvec = 1; error = pci_enable_msix_exact(bfad->pcidev, msix_entries, 1); } if (error) { printk(KERN_WARNING "bfad%d: " "pci_enable_msix_exact failed (%d), " "use line based.\n", bfad->inst_no, error); goto line_based; } /* Disable INTX in MSI-X mode */ pci_read_config_word(pdev, PCI_COMMAND, ®); if (!(reg & PCI_COMMAND_INTX_DISABLE)) pci_write_config_word(pdev, PCI_COMMAND, reg | PCI_COMMAND_INTX_DISABLE); /* Save the vectors */ for (i = 0; i < bfad->nvec; i++) { bfa_trc(bfad, msix_entries[i].vector); bfad->msix_tab[i].msix.vector = msix_entries[i].vector; } bfa_msix_init(&bfad->bfa, bfad->nvec); bfad->bfad_flags |= BFAD_MSIX_ON; return 0; } line_based: error = request_irq(bfad->pcidev->irq, (irq_handler_t)bfad_intx, BFAD_IRQ_FLAGS, BFAD_DRIVER_NAME, bfad); if (error) return error; bfad->bfad_flags |= BFAD_INTX_ON; return 0; } void bfad_remove_intr(struct bfad_s *bfad) { int i; if (bfad->bfad_flags & BFAD_MSIX_ON) { for (i = 0; i < bfad->nvec; i++) free_irq(bfad->msix_tab[i].msix.vector, &bfad->msix_tab[i]); pci_disable_msix(bfad->pcidev); bfad->bfad_flags &= ~BFAD_MSIX_ON; } else if (bfad->bfad_flags & BFAD_INTX_ON) { free_irq(bfad->pcidev->irq, bfad); } } /* * PCI probe entry. */ int bfad_pci_probe(struct pci_dev *pdev, const struct pci_device_id *pid) { struct bfad_s *bfad; int error = -ENODEV, retval, i; /* For single port cards - only claim function 0 */ if ((pdev->device == BFA_PCI_DEVICE_ID_FC_8G1P) && (PCI_FUNC(pdev->devfn) != 0)) return -ENODEV; bfad = kzalloc(sizeof(struct bfad_s), GFP_KERNEL); if (!bfad) { error = -ENOMEM; goto out; } bfad->trcmod = kzalloc(sizeof(struct bfa_trc_mod_s), GFP_KERNEL); if (!bfad->trcmod) { printk(KERN_WARNING "Error alloc trace buffer!\n"); error = -ENOMEM; goto out_alloc_trace_failure; } /* TRACE INIT */ bfa_trc_init(bfad->trcmod); bfa_trc(bfad, bfad_inst); /* AEN INIT */ INIT_LIST_HEAD(&bfad->free_aen_q); INIT_LIST_HEAD(&bfad->active_aen_q); for (i = 0; i < BFA_AEN_MAX_ENTRY; i++) list_add_tail(&bfad->aen_list[i].qe, &bfad->free_aen_q); if (!(bfad_load_fwimg(pdev))) { kfree(bfad->trcmod); goto out_alloc_trace_failure; } retval = bfad_pci_init(pdev, bfad); if (retval) { printk(KERN_WARNING "bfad_pci_init failure!\n"); error = retval; goto out_pci_init_failure; } mutex_lock(&bfad_mutex); bfad->inst_no = bfad_inst++; list_add_tail(&bfad->list_entry, &bfad_list); mutex_unlock(&bfad_mutex); /* Initializing the state machine: State set to uninit */ bfa_sm_set_state(bfad, bfad_sm_uninit); spin_lock_init(&bfad->bfad_lock); spin_lock_init(&bfad->bfad_aen_spinlock); pci_set_drvdata(pdev, bfad); bfad->ref_count = 0; bfad->pport.bfad = bfad; INIT_LIST_HEAD(&bfad->pbc_vport_list); INIT_LIST_HEAD(&bfad->vport_list); /* Setup the debugfs node for this bfad */ if (bfa_debugfs_enable) bfad_debugfs_init(&bfad->pport); retval = bfad_drv_init(bfad); if (retval != BFA_STATUS_OK) goto out_drv_init_failure; bfa_sm_send_event(bfad, BFAD_E_CREATE); if (bfa_sm_cmp_state(bfad, bfad_sm_uninit)) goto out_bfad_sm_failure; return 0; out_bfad_sm_failure: bfad_hal_mem_release(bfad); out_drv_init_failure: /* Remove the debugfs node for this bfad */ kfree(bfad->regdata); bfad_debugfs_exit(&bfad->pport); mutex_lock(&bfad_mutex); bfad_inst--; list_del(&bfad->list_entry); mutex_unlock(&bfad_mutex); bfad_pci_uninit(pdev, bfad); out_pci_init_failure: kfree(bfad->trcmod); out_alloc_trace_failure: kfree(bfad); out: return error; } /* * PCI remove entry. */ void bfad_pci_remove(struct pci_dev *pdev) { struct bfad_s *bfad = pci_get_drvdata(pdev); unsigned long flags; bfa_trc(bfad, bfad->inst_no); spin_lock_irqsave(&bfad->bfad_lock, flags); if (bfad->bfad_tsk != NULL) { spin_unlock_irqrestore(&bfad->bfad_lock, flags); kthread_stop(bfad->bfad_tsk); } else { spin_unlock_irqrestore(&bfad->bfad_lock, flags); } /* Send Event BFAD_E_STOP */ bfa_sm_send_event(bfad, BFAD_E_STOP); /* Driver detach and dealloc mem */ spin_lock_irqsave(&bfad->bfad_lock, flags); bfa_detach(&bfad->bfa); spin_unlock_irqrestore(&bfad->bfad_lock, flags); bfad_hal_mem_release(bfad); /* Remove the debugfs node for this bfad */ kfree(bfad->regdata); bfad_debugfs_exit(&bfad->pport); /* Cleaning the BFAD instance */ mutex_lock(&bfad_mutex); bfad_inst--; list_del(&bfad->list_entry); mutex_unlock(&bfad_mutex); bfad_pci_uninit(pdev, bfad); kfree(bfad->trcmod); kfree(bfad); } /* * PCI Error Recovery entry, error detected. */ static pci_ers_result_t bfad_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct bfad_s *bfad = pci_get_drvdata(pdev); unsigned long flags; pci_ers_result_t ret = PCI_ERS_RESULT_NONE; dev_printk(KERN_ERR, &pdev->dev, "error detected state: %d - flags: 0x%x\n", state, bfad->bfad_flags); switch (state) { case pci_channel_io_normal: /* non-fatal error */ spin_lock_irqsave(&bfad->bfad_lock, flags); bfad->bfad_flags &= ~BFAD_EEH_BUSY; /* Suspend/fail all bfa operations */ bfa_ioc_suspend(&bfad->bfa.ioc); spin_unlock_irqrestore(&bfad->bfad_lock, flags); del_timer_sync(&bfad->hal_tmo); ret = PCI_ERS_RESULT_CAN_RECOVER; break; case pci_channel_io_frozen: /* fatal error */ init_completion(&bfad->comp); spin_lock_irqsave(&bfad->bfad_lock, flags); bfad->bfad_flags |= BFAD_EEH_BUSY; /* Suspend/fail all bfa operations */ bfa_ioc_suspend(&bfad->bfa.ioc); bfa_fcs_stop(&bfad->bfa_fcs); spin_unlock_irqrestore(&bfad->bfad_lock, flags); wait_for_completion(&bfad->comp); bfad_remove_intr(bfad); del_timer_sync(&bfad->hal_tmo); pci_disable_device(pdev); ret = PCI_ERS_RESULT_NEED_RESET; break; case pci_channel_io_perm_failure: /* PCI Card is DEAD */ spin_lock_irqsave(&bfad->bfad_lock, flags); bfad->bfad_flags |= BFAD_EEH_BUSY | BFAD_EEH_PCI_CHANNEL_IO_PERM_FAILURE; spin_unlock_irqrestore(&bfad->bfad_lock, flags); /* If the error_detected handler is called with the reason * pci_channel_io_perm_failure - it will subsequently call * pci_remove() entry point to remove the pci device from the * system - So defer the cleanup to pci_remove(); cleaning up * here causes inconsistent state during pci_remove(). */ ret = PCI_ERS_RESULT_DISCONNECT; break; default: WARN_ON(1); } return ret; } int restart_bfa(struct bfad_s *bfad) { unsigned long flags; struct pci_dev *pdev = bfad->pcidev; bfa_attach(&bfad->bfa, bfad, &bfad->ioc_cfg, &bfad->meminfo, &bfad->hal_pcidev); /* Enable Interrupt and wait bfa_init completion */ if (bfad_setup_intr(bfad)) { dev_printk(KERN_WARNING, &pdev->dev, "%s: bfad_setup_intr failed\n", bfad->pci_name); bfa_sm_send_event(bfad, BFAD_E_INIT_FAILED); return -1; } init_completion(&bfad->comp); spin_lock_irqsave(&bfad->bfad_lock, flags); bfa_iocfc_init(&bfad->bfa); spin_unlock_irqrestore(&bfad->bfad_lock, flags); /* Set up interrupt handler for each vectors */ if ((bfad->bfad_flags & BFAD_MSIX_ON) && bfad_install_msix_handler(bfad)) dev_printk(KERN_WARNING, &pdev->dev, "%s: install_msix failed.\n", bfad->pci_name); bfad_init_timer(bfad); wait_for_completion(&bfad->comp); bfad_drv_start(bfad); return 0; } /* * PCI Error Recovery entry, re-initialize the chip. */ static pci_ers_result_t bfad_pci_slot_reset(struct pci_dev *pdev) { struct bfad_s *bfad = pci_get_drvdata(pdev); u8 byte; int rc; dev_printk(KERN_ERR, &pdev->dev, "bfad_pci_slot_reset flags: 0x%x\n", bfad->bfad_flags); if (pci_enable_device(pdev)) { dev_printk(KERN_ERR, &pdev->dev, "Cannot re-enable " "PCI device after reset.\n"); return PCI_ERS_RESULT_DISCONNECT; } pci_restore_state(pdev); /* * Read some byte (e.g. DMA max. payload size which can't * be 0xff any time) to make sure - we did not hit another PCI error * in the middle of recovery. If we did, then declare permanent failure. */ pci_read_config_byte(pdev, 0x68, &byte); if (byte == 0xff) { dev_printk(KERN_ERR, &pdev->dev, "slot_reset failed ... got another PCI error !\n"); goto out_disable_device; } pci_save_state(pdev); pci_set_master(pdev); rc = dma_set_mask_and_coherent(&bfad->pcidev->dev, DMA_BIT_MASK(64)); if (rc) rc = dma_set_mask_and_coherent(&bfad->pcidev->dev, DMA_BIT_MASK(32)); if (rc) goto out_disable_device; if (restart_bfa(bfad) == -1) goto out_disable_device; pci_enable_pcie_error_reporting(pdev); dev_printk(KERN_WARNING, &pdev->dev, "slot_reset completed flags: 0x%x!\n", bfad->bfad_flags); return PCI_ERS_RESULT_RECOVERED; out_disable_device: pci_disable_device(pdev); return PCI_ERS_RESULT_DISCONNECT; } static pci_ers_result_t bfad_pci_mmio_enabled(struct pci_dev *pdev) { unsigned long flags; struct bfad_s *bfad = pci_get_drvdata(pdev); dev_printk(KERN_INFO, &pdev->dev, "mmio_enabled\n"); /* Fetch FW diagnostic information */ bfa_ioc_debug_save_ftrc(&bfad->bfa.ioc); /* Cancel all pending IOs */ spin_lock_irqsave(&bfad->bfad_lock, flags); init_completion(&bfad->comp); bfa_fcs_stop(&bfad->bfa_fcs); spin_unlock_irqrestore(&bfad->bfad_lock, flags); wait_for_completion(&bfad->comp); bfad_remove_intr(bfad); del_timer_sync(&bfad->hal_tmo); pci_disable_device(pdev); return PCI_ERS_RESULT_NEED_RESET; } static void bfad_pci_resume(struct pci_dev *pdev) { unsigned long flags; struct bfad_s *bfad = pci_get_drvdata(pdev); dev_printk(KERN_WARNING, &pdev->dev, "resume\n"); /* wait until the link is online */ bfad_rport_online_wait(bfad); spin_lock_irqsave(&bfad->bfad_lock, flags); bfad->bfad_flags &= ~BFAD_EEH_BUSY; spin_unlock_irqrestore(&bfad->bfad_lock, flags); } struct pci_device_id bfad_id_table[] = { { .vendor = BFA_PCI_VENDOR_ID_BROCADE, .device = BFA_PCI_DEVICE_ID_FC_8G2P, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }, { .vendor = BFA_PCI_VENDOR_ID_BROCADE, .device = BFA_PCI_DEVICE_ID_FC_8G1P, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }, { .vendor = BFA_PCI_VENDOR_ID_BROCADE, .device = BFA_PCI_DEVICE_ID_CT, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .class = (PCI_CLASS_SERIAL_FIBER << 8), .class_mask = ~0, }, { .vendor = BFA_PCI_VENDOR_ID_BROCADE, .device = BFA_PCI_DEVICE_ID_CT_FC, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .class = (PCI_CLASS_SERIAL_FIBER << 8), .class_mask = ~0, }, { .vendor = BFA_PCI_VENDOR_ID_BROCADE, .device = BFA_PCI_DEVICE_ID_CT2, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .class = (PCI_CLASS_SERIAL_FIBER << 8), .class_mask = ~0, }, { .vendor = BFA_PCI_VENDOR_ID_BROCADE, .device = BFA_PCI_DEVICE_ID_CT2_QUAD, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .class = (PCI_CLASS_SERIAL_FIBER << 8), .class_mask = ~0, }, {0, 0}, }; MODULE_DEVICE_TABLE(pci, bfad_id_table); /* * PCI error recovery handlers. */ static struct pci_error_handlers bfad_err_handler = { .error_detected = bfad_pci_error_detected, .slot_reset = bfad_pci_slot_reset, .mmio_enabled = bfad_pci_mmio_enabled, .resume = bfad_pci_resume, }; static struct pci_driver bfad_pci_driver = { .name = BFAD_DRIVER_NAME, .id_table = bfad_id_table, .probe = bfad_pci_probe, .remove = bfad_pci_remove, .err_handler = &bfad_err_handler, }; /* * Driver module init. */ static int __init bfad_init(void) { int error = 0; pr_info("QLogic BR-series BFA FC/FCOE SCSI driver - version: %s\n", BFAD_DRIVER_VERSION); if (num_sgpgs > 0) num_sgpgs_parm = num_sgpgs; error = bfad_im_module_init(); if (error) { error = -ENOMEM; printk(KERN_WARNING "bfad_im_module_init failure\n"); goto ext; } if (strcmp(FCPI_NAME, " fcpim") == 0) supported_fc4s |= BFA_LPORT_ROLE_FCP_IM; bfa_auto_recover = ioc_auto_recover; bfa_fcs_rport_set_del_timeout(rport_del_timeout); bfa_fcs_rport_set_max_logins(max_rport_logins); error = pci_register_driver(&bfad_pci_driver); if (error) { printk(KERN_WARNING "pci_register_driver failure\n"); goto ext; } return 0; ext: bfad_im_module_exit(); return error; } /* * Driver module exit. */ static void __exit bfad_exit(void) { pci_unregister_driver(&bfad_pci_driver); bfad_im_module_exit(); bfad_free_fwimg(); } /* Firmware handling */ static void bfad_read_firmware(struct pci_dev *pdev, u32 **bfi_image, u32 *bfi_image_size, char *fw_name) { const struct firmware *fw; if (request_firmware(&fw, fw_name, &pdev->dev)) { printk(KERN_ALERT "Can't locate firmware %s\n", fw_name); *bfi_image = NULL; goto out; } *bfi_image = vmalloc(fw->size); if (NULL == *bfi_image) { printk(KERN_ALERT "Fail to allocate buffer for fw image " "size=%x!\n", (u32) fw->size); goto out; } memcpy(*bfi_image, fw->data, fw->size); *bfi_image_size = fw->size/sizeof(u32); out: release_firmware(fw); } static u32 * bfad_load_fwimg(struct pci_dev *pdev) { if (bfa_asic_id_ct2(pdev->device)) { if (bfi_image_ct2_size == 0) bfad_read_firmware(pdev, &bfi_image_ct2, &bfi_image_ct2_size, BFAD_FW_FILE_CT2); return bfi_image_ct2; } else if (bfa_asic_id_ct(pdev->device)) { if (bfi_image_ct_size == 0) bfad_read_firmware(pdev, &bfi_image_ct, &bfi_image_ct_size, BFAD_FW_FILE_CT); return bfi_image_ct; } else if (bfa_asic_id_cb(pdev->device)) { if (bfi_image_cb_size == 0) bfad_read_firmware(pdev, &bfi_image_cb, &bfi_image_cb_size, BFAD_FW_FILE_CB); return bfi_image_cb; } return NULL; } static void bfad_free_fwimg(void) { if (bfi_image_ct2_size && bfi_image_ct2) vfree(bfi_image_ct2); if (bfi_image_ct_size && bfi_image_ct) vfree(bfi_image_ct); if (bfi_image_cb_size && bfi_image_cb) vfree(bfi_image_cb); } module_init(bfad_init); module_exit(bfad_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("QLogic BR-series Fibre Channel HBA Driver" BFAD_PROTO_NAME); MODULE_AUTHOR("QLogic Corporation"); MODULE_VERSION(BFAD_DRIVER_VERSION);