/* -*- mode: c; c-basic-offset: 8 -*- */ /* NCR (or Symbios) 53c700 and 53c700-66 Driver * * Copyright (C) 2001 by James.Bottomley@HansenPartnership.com **----------------------------------------------------------------------------- ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ** **----------------------------------------------------------------------------- */ /* Notes: * * This driver is designed exclusively for these chips (virtually the * earliest of the scripts engine chips). They need their own drivers * because they are missing so many of the scripts and snazzy register * features of their elder brothers (the 710, 720 and 770). * * The 700 is the lowliest of the line, it can only do async SCSI. * The 700-66 can at least do synchronous SCSI up to 10MHz. * * The 700 chip has no host bus interface logic of its own. However, * it is usually mapped to a location with well defined register * offsets. Therefore, if you can determine the base address and the * irq your board incorporating this chip uses, you can probably use * this driver to run it (although you'll probably have to write a * minimal wrapper for the purpose---see the NCR_D700 driver for * details about how to do this). * * * TODO List: * * 1. Better statistics in the proc fs * * 2. Implement message queue (queues SCSI messages like commands) and make * the abort and device reset functions use them. * */ /* CHANGELOG * * Version 2.8 * * Fixed bad bug affecting tag starvation processing (previously the * driver would hang the system if too many tags starved. Also fixed * bad bug having to do with 10 byte command processing and REQUEST * SENSE (the command would loop forever getting a transfer length * mismatch in the CMD phase). * * Version 2.7 * * Fixed scripts problem which caused certain devices (notably CDRWs) * to hang on initial INQUIRY. Updated NCR_700_readl/writel to use * __raw_readl/writel for parisc compatibility (Thomas * Bogendoerfer). Added missing SCp->request_bufflen initialisation * for sense requests (Ryan Bradetich). * * Version 2.6 * * Following test of the 64 bit parisc kernel by Richard Hirst, * several problems have now been corrected. Also adds support for * consistent memory allocation. * * Version 2.5 * * More Compatibility changes for 710 (now actually works). Enhanced * support for odd clock speeds which constrain SDTR negotiations. * correct cacheline separation for scsi messages and status for * incoherent architectures. Use of the pci mapping functions on * buffers to begin support for 64 bit drivers. * * Version 2.4 * * Added support for the 53c710 chip (in 53c700 emulation mode only---no * special 53c710 instructions or registers are used). * * Version 2.3 * * More endianness/cache coherency changes. * * Better bad device handling (handles devices lying about tag * queueing support and devices which fail to provide sense data on * contingent allegiance conditions) * * Many thanks to Richard Hirst <rhirst@linuxcare.com> for patiently * debugging this driver on the parisc architecture and suggesting * many improvements and bug fixes. * * Thanks also go to Linuxcare Inc. for providing several PARISC * machines for me to debug the driver on. * * Version 2.2 * * Made the driver mem or io mapped; added endian invariance; added * dma cache flushing operations for architectures which need it; * added support for more varied clocking speeds. * * Version 2.1 * * Initial modularisation from the D700. See NCR_D700.c for the rest of * the changelog. * */ #define NCR_700_VERSION "2.8" #include <linux/kernel.h> #include <linux/types.h> #include <linux/string.h> #include <linux/ioport.h> #include <linux/delay.h> #include <linux/spinlock.h> #include <linux/completion.h> #include <linux/init.h> #include <linux/proc_fs.h> #include <linux/blkdev.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/device.h> #include <asm/dma.h> #include <asm/system.h> #include <asm/io.h> #include <asm/pgtable.h> #include <asm/byteorder.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_dbg.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_host.h> #include <scsi/scsi_tcq.h> #include <scsi/scsi_transport.h> #include <scsi/scsi_transport_spi.h> #include "53c700.h" /* NOTE: For 64 bit drivers there are points in the code where we use * a non dereferenceable pointer to point to a structure in dma-able * memory (which is 32 bits) so that we can use all of the structure * operations but take the address at the end. This macro allows us * to truncate the 64 bit pointer down to 32 bits without the compiler * complaining */ #define to32bit(x) ((__u32)((unsigned long)(x))) #ifdef NCR_700_DEBUG #define STATIC #else #define STATIC static #endif MODULE_AUTHOR("James Bottomley"); MODULE_DESCRIPTION("53c700 and 53c700-66 Driver"); MODULE_LICENSE("GPL"); /* This is the script */ #include "53c700_d.h" STATIC int NCR_700_queuecommand(struct scsi_cmnd *, void (*done)(struct scsi_cmnd *)); STATIC int NCR_700_abort(struct scsi_cmnd * SCpnt); STATIC int NCR_700_bus_reset(struct scsi_cmnd * SCpnt); STATIC int NCR_700_host_reset(struct scsi_cmnd * SCpnt); STATIC void NCR_700_chip_setup(struct Scsi_Host *host); STATIC void NCR_700_chip_reset(struct Scsi_Host *host); STATIC int NCR_700_slave_alloc(struct scsi_device *SDpnt); STATIC int NCR_700_slave_configure(struct scsi_device *SDpnt); STATIC void NCR_700_slave_destroy(struct scsi_device *SDpnt); static int NCR_700_change_queue_depth(struct scsi_device *SDpnt, int depth); static int NCR_700_change_queue_type(struct scsi_device *SDpnt, int depth); STATIC struct device_attribute *NCR_700_dev_attrs[]; STATIC struct scsi_transport_template *NCR_700_transport_template = NULL; static char *NCR_700_phase[] = { "", "after selection", "before command phase", "after command phase", "after status phase", "after data in phase", "after data out phase", "during data phase", }; static char *NCR_700_condition[] = { "", "NOT MSG_OUT", "UNEXPECTED PHASE", "NOT MSG_IN", "UNEXPECTED MSG", "MSG_IN", "SDTR_MSG RECEIVED", "REJECT_MSG RECEIVED", "DISCONNECT_MSG RECEIVED", "MSG_OUT", "DATA_IN", }; static char *NCR_700_fatal_messages[] = { "unexpected message after reselection", "still MSG_OUT after message injection", "not MSG_IN after selection", "Illegal message length received", }; static char *NCR_700_SBCL_bits[] = { "IO ", "CD ", "MSG ", "ATN ", "SEL ", "BSY ", "ACK ", "REQ ", }; static char *NCR_700_SBCL_to_phase[] = { "DATA_OUT", "DATA_IN", "CMD_OUT", "STATE", "ILLEGAL PHASE", "ILLEGAL PHASE", "MSG OUT", "MSG IN", }; /* This translates the SDTR message offset and period to a value * which can be loaded into the SXFER_REG. * * NOTE: According to SCSI-2, the true transfer period (in ns) is * actually four times this period value */ static inline __u8 NCR_700_offset_period_to_sxfer(struct NCR_700_Host_Parameters *hostdata, __u8 offset, __u8 period) { int XFERP; __u8 min_xferp = (hostdata->chip710 ? NCR_710_MIN_XFERP : NCR_700_MIN_XFERP); __u8 max_offset = (hostdata->chip710 ? NCR_710_MAX_OFFSET : NCR_700_MAX_OFFSET); if(offset == 0) return 0; if(period < hostdata->min_period) { printk(KERN_WARNING "53c700: Period %dns is less than this chip's minimum, setting to %d\n", period*4, NCR_700_MIN_PERIOD*4); period = hostdata->min_period; } XFERP = (period*4 * hostdata->sync_clock)/1000 - 4; if(offset > max_offset) { printk(KERN_WARNING "53c700: Offset %d exceeds chip maximum, setting to %d\n", offset, max_offset); offset = max_offset; } if(XFERP < min_xferp) { XFERP = min_xferp; } return (offset & 0x0f) | (XFERP & 0x07)<<4; } static inline __u8 NCR_700_get_SXFER(struct scsi_device *SDp) { struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)SDp->host->hostdata[0]; return NCR_700_offset_period_to_sxfer(hostdata, spi_offset(SDp->sdev_target), spi_period(SDp->sdev_target)); } struct Scsi_Host * NCR_700_detect(struct scsi_host_template *tpnt, struct NCR_700_Host_Parameters *hostdata, struct device *dev) { dma_addr_t pScript, pSlots; __u8 *memory; __u32 *script; struct Scsi_Host *host; static int banner = 0; int j; if(tpnt->sdev_attrs == NULL) tpnt->sdev_attrs = NCR_700_dev_attrs; memory = dma_alloc_noncoherent(hostdata->dev, TOTAL_MEM_SIZE, &pScript, GFP_KERNEL); if(memory == NULL) { printk(KERN_ERR "53c700: Failed to allocate memory for driver, detatching\n"); return NULL; } script = (__u32 *)memory; hostdata->msgin = memory + MSGIN_OFFSET; hostdata->msgout = memory + MSGOUT_OFFSET; hostdata->status = memory + STATUS_OFFSET; /* all of these offsets are L1_CACHE_BYTES separated. It is fatal * if this isn't sufficient separation to avoid dma flushing issues */ BUG_ON(!dma_is_consistent(hostdata->dev, pScript) && L1_CACHE_BYTES < dma_get_cache_alignment()); hostdata->slots = (struct NCR_700_command_slot *)(memory + SLOTS_OFFSET); hostdata->dev = dev; pSlots = pScript + SLOTS_OFFSET; /* Fill in the missing routines from the host template */ tpnt->queuecommand = NCR_700_queuecommand; tpnt->eh_abort_handler = NCR_700_abort; tpnt->eh_bus_reset_handler = NCR_700_bus_reset; tpnt->eh_host_reset_handler = NCR_700_host_reset; tpnt->can_queue = NCR_700_COMMAND_SLOTS_PER_HOST; tpnt->sg_tablesize = NCR_700_SG_SEGMENTS; tpnt->cmd_per_lun = NCR_700_CMD_PER_LUN; tpnt->use_clustering = ENABLE_CLUSTERING; tpnt->slave_configure = NCR_700_slave_configure; tpnt->slave_destroy = NCR_700_slave_destroy; tpnt->slave_alloc = NCR_700_slave_alloc; tpnt->change_queue_depth = NCR_700_change_queue_depth; tpnt->change_queue_type = NCR_700_change_queue_type; if(tpnt->name == NULL) tpnt->name = "53c700"; if(tpnt->proc_name == NULL) tpnt->proc_name = "53c700"; host = scsi_host_alloc(tpnt, 4); if (!host) return NULL; memset(hostdata->slots, 0, sizeof(struct NCR_700_command_slot) * NCR_700_COMMAND_SLOTS_PER_HOST); for (j = 0; j < NCR_700_COMMAND_SLOTS_PER_HOST; j++) { dma_addr_t offset = (dma_addr_t)((unsigned long)&hostdata->slots[j].SG[0] - (unsigned long)&hostdata->slots[0].SG[0]); hostdata->slots[j].pSG = (struct NCR_700_SG_List *)((unsigned long)(pSlots + offset)); if(j == 0) hostdata->free_list = &hostdata->slots[j]; else hostdata->slots[j-1].ITL_forw = &hostdata->slots[j]; hostdata->slots[j].state = NCR_700_SLOT_FREE; } for (j = 0; j < ARRAY_SIZE(SCRIPT); j++) script[j] = bS_to_host(SCRIPT[j]); /* adjust all labels to be bus physical */ for (j = 0; j < PATCHES; j++) script[LABELPATCHES[j]] = bS_to_host(pScript + SCRIPT[LABELPATCHES[j]]); /* now patch up fixed addresses. */ script_patch_32(hostdata->dev, script, MessageLocation, pScript + MSGOUT_OFFSET); script_patch_32(hostdata->dev, script, StatusAddress, pScript + STATUS_OFFSET); script_patch_32(hostdata->dev, script, ReceiveMsgAddress, pScript + MSGIN_OFFSET); hostdata->script = script; hostdata->pScript = pScript; dma_sync_single_for_device(hostdata->dev, pScript, sizeof(SCRIPT), DMA_TO_DEVICE); hostdata->state = NCR_700_HOST_FREE; hostdata->cmd = NULL; host->max_id = 8; host->max_lun = NCR_700_MAX_LUNS; BUG_ON(NCR_700_transport_template == NULL); host->transportt = NCR_700_transport_template; host->unique_id = (unsigned long)hostdata->base; hostdata->eh_complete = NULL; host->hostdata[0] = (unsigned long)hostdata; /* kick the chip */ NCR_700_writeb(0xff, host, CTEST9_REG); if (hostdata->chip710) hostdata->rev = (NCR_700_readb(host, CTEST8_REG)>>4) & 0x0f; else hostdata->rev = (NCR_700_readb(host, CTEST7_REG)>>4) & 0x0f; hostdata->fast = (NCR_700_readb(host, CTEST9_REG) == 0); if (banner == 0) { printk(KERN_NOTICE "53c700: Version " NCR_700_VERSION " By James.Bottomley@HansenPartnership.com\n"); banner = 1; } printk(KERN_NOTICE "scsi%d: %s rev %d %s\n", host->host_no, hostdata->chip710 ? "53c710" : (hostdata->fast ? "53c700-66" : "53c700"), hostdata->rev, hostdata->differential ? "(Differential)" : ""); /* reset the chip */ NCR_700_chip_reset(host); if (scsi_add_host(host, dev)) { dev_printk(KERN_ERR, dev, "53c700: scsi_add_host failed\n"); scsi_host_put(host); return NULL; } spi_signalling(host) = hostdata->differential ? SPI_SIGNAL_HVD : SPI_SIGNAL_SE; return host; } int NCR_700_release(struct Scsi_Host *host) { struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)host->hostdata[0]; dma_free_noncoherent(hostdata->dev, TOTAL_MEM_SIZE, hostdata->script, hostdata->pScript); return 1; } static inline __u8 NCR_700_identify(int can_disconnect, __u8 lun) { return IDENTIFY_BASE | ((can_disconnect) ? 0x40 : 0) | (lun & NCR_700_LUN_MASK); } /* * Function : static int data_residual (Scsi_Host *host) * * Purpose : return residual data count of what's in the chip. If you * really want to know what this function is doing, it's almost a * direct transcription of the algorithm described in the 53c710 * guide, except that the DBC and DFIFO registers are only 6 bits * wide on a 53c700. * * Inputs : host - SCSI host */ static inline int NCR_700_data_residual (struct Scsi_Host *host) { struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)host->hostdata[0]; int count, synchronous = 0; unsigned int ddir; if(hostdata->chip710) { count = ((NCR_700_readb(host, DFIFO_REG) & 0x7f) - (NCR_700_readl(host, DBC_REG) & 0x7f)) & 0x7f; } else { count = ((NCR_700_readb(host, DFIFO_REG) & 0x3f) - (NCR_700_readl(host, DBC_REG) & 0x3f)) & 0x3f; } if(hostdata->fast) synchronous = NCR_700_readb(host, SXFER_REG) & 0x0f; /* get the data direction */ ddir = NCR_700_readb(host, CTEST0_REG) & 0x01; if (ddir) { /* Receive */ if (synchronous) count += (NCR_700_readb(host, SSTAT2_REG) & 0xf0) >> 4; else if (NCR_700_readb(host, SSTAT1_REG) & SIDL_REG_FULL) ++count; } else { /* Send */ __u8 sstat = NCR_700_readb(host, SSTAT1_REG); if (sstat & SODL_REG_FULL) ++count; if (synchronous && (sstat & SODR_REG_FULL)) ++count; } #ifdef NCR_700_DEBUG if(count) printk("RESIDUAL IS %d (ddir %d)\n", count, ddir); #endif return count; } /* print out the SCSI wires and corresponding phase from the SBCL register * in the chip */ static inline char * sbcl_to_string(__u8 sbcl) { int i; static char ret[256]; ret[0]='\0'; for(i=0; i<8; i++) { if((1<<i) & sbcl) strcat(ret, NCR_700_SBCL_bits[i]); } strcat(ret, NCR_700_SBCL_to_phase[sbcl & 0x07]); return ret; } static inline __u8 bitmap_to_number(__u8 bitmap) { __u8 i; for(i=0; i<8 && !(bitmap &(1<<i)); i++) ; return i; } /* Pull a slot off the free list */ STATIC struct NCR_700_command_slot * find_empty_slot(struct NCR_700_Host_Parameters *hostdata) { struct NCR_700_command_slot *slot = hostdata->free_list; if(slot == NULL) { /* sanity check */ if(hostdata->command_slot_count != NCR_700_COMMAND_SLOTS_PER_HOST) printk(KERN_ERR "SLOTS FULL, but count is %d, should be %d\n", hostdata->command_slot_count, NCR_700_COMMAND_SLOTS_PER_HOST); return NULL; } if(slot->state != NCR_700_SLOT_FREE) /* should panic! */ printk(KERN_ERR "BUSY SLOT ON FREE LIST!!!\n"); hostdata->free_list = slot->ITL_forw; slot->ITL_forw = NULL; /* NOTE: set the state to busy here, not queued, since this * indicates the slot is in use and cannot be run by the IRQ * finish routine. If we cannot queue the command when it * is properly build, we then change to NCR_700_SLOT_QUEUED */ slot->state = NCR_700_SLOT_BUSY; slot->flags = 0; hostdata->command_slot_count++; return slot; } STATIC void free_slot(struct NCR_700_command_slot *slot, struct NCR_700_Host_Parameters *hostdata) { if((slot->state & NCR_700_SLOT_MASK) != NCR_700_SLOT_MAGIC) { printk(KERN_ERR "53c700: SLOT %p is not MAGIC!!!\n", slot); } if(slot->state == NCR_700_SLOT_FREE) { printk(KERN_ERR "53c700: SLOT %p is FREE!!!\n", slot); } slot->resume_offset = 0; slot->cmnd = NULL; slot->state = NCR_700_SLOT_FREE; slot->ITL_forw = hostdata->free_list; hostdata->free_list = slot; hostdata->command_slot_count--; } /* This routine really does very little. The command is indexed on the ITL and (if tagged) the ITLQ lists in _queuecommand */ STATIC void save_for_reselection(struct NCR_700_Host_Parameters *hostdata, struct scsi_cmnd *SCp, __u32 dsp) { /* Its just possible that this gets executed twice */ if(SCp != NULL) { struct NCR_700_command_slot *slot = (struct NCR_700_command_slot *)SCp->host_scribble; slot->resume_offset = dsp; } hostdata->state = NCR_700_HOST_FREE; hostdata->cmd = NULL; } STATIC inline void NCR_700_unmap(struct NCR_700_Host_Parameters *hostdata, struct scsi_cmnd *SCp, struct NCR_700_command_slot *slot) { if(SCp->sc_data_direction != DMA_NONE && SCp->sc_data_direction != DMA_BIDIRECTIONAL) scsi_dma_unmap(SCp); } STATIC inline void NCR_700_scsi_done(struct NCR_700_Host_Parameters *hostdata, struct scsi_cmnd *SCp, int result) { hostdata->state = NCR_700_HOST_FREE; hostdata->cmd = NULL; if(SCp != NULL) { struct NCR_700_command_slot *slot = (struct NCR_700_command_slot *)SCp->host_scribble; dma_unmap_single(hostdata->dev, slot->pCmd, sizeof(SCp->cmnd), DMA_TO_DEVICE); if (slot->flags == NCR_700_FLAG_AUTOSENSE) { char *cmnd = NCR_700_get_sense_cmnd(SCp->device); #ifdef NCR_700_DEBUG printk(" ORIGINAL CMD %p RETURNED %d, new return is %d sense is\n", SCp, SCp->cmnd[7], result); scsi_print_sense("53c700", SCp); #endif dma_unmap_single(hostdata->dev, slot->dma_handle, sizeof(SCp->sense_buffer), DMA_FROM_DEVICE); /* restore the old result if the request sense was * successful */ if (result == 0) result = cmnd[7]; /* restore the original length */ SCp->cmd_len = cmnd[8]; } else NCR_700_unmap(hostdata, SCp, slot); free_slot(slot, hostdata); #ifdef NCR_700_DEBUG if(NCR_700_get_depth(SCp->device) == 0 || NCR_700_get_depth(SCp->device) > SCp->device->queue_depth) printk(KERN_ERR "Invalid depth in NCR_700_scsi_done(): %d\n", NCR_700_get_depth(SCp->device)); #endif /* NCR_700_DEBUG */ NCR_700_set_depth(SCp->device, NCR_700_get_depth(SCp->device) - 1); SCp->host_scribble = NULL; SCp->result = result; SCp->scsi_done(SCp); } else { printk(KERN_ERR "53c700: SCSI DONE HAS NULL SCp\n"); } } STATIC void NCR_700_internal_bus_reset(struct Scsi_Host *host) { /* Bus reset */ NCR_700_writeb(ASSERT_RST, host, SCNTL1_REG); udelay(50); NCR_700_writeb(0, host, SCNTL1_REG); } STATIC void NCR_700_chip_setup(struct Scsi_Host *host) { struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)host->hostdata[0]; __u8 min_period; __u8 min_xferp = (hostdata->chip710 ? NCR_710_MIN_XFERP : NCR_700_MIN_XFERP); if(hostdata->chip710) { __u8 burst_disable = 0; __u8 burst_length = 0; switch (hostdata->burst_length) { case 1: burst_length = BURST_LENGTH_1; break; case 2: burst_length = BURST_LENGTH_2; break; case 4: burst_length = BURST_LENGTH_4; break; case 8: burst_length = BURST_LENGTH_8; break; default: burst_disable = BURST_DISABLE; break; } hostdata->dcntl_extra |= COMPAT_700_MODE; NCR_700_writeb(hostdata->dcntl_extra, host, DCNTL_REG); NCR_700_writeb(burst_length | hostdata->dmode_extra, host, DMODE_710_REG); NCR_700_writeb(burst_disable | hostdata->ctest7_extra | (hostdata->differential ? DIFF : 0), host, CTEST7_REG); NCR_700_writeb(BTB_TIMER_DISABLE, host, CTEST0_REG); NCR_700_writeb(FULL_ARBITRATION | ENABLE_PARITY | PARITY | AUTO_ATN, host, SCNTL0_REG); } else { NCR_700_writeb(BURST_LENGTH_8 | hostdata->dmode_extra, host, DMODE_700_REG); NCR_700_writeb(hostdata->differential ? DIFF : 0, host, CTEST7_REG); if(hostdata->fast) { /* this is for 700-66, does nothing on 700 */ NCR_700_writeb(LAST_DIS_ENBL | ENABLE_ACTIVE_NEGATION | GENERATE_RECEIVE_PARITY, host, CTEST8_REG); } else { NCR_700_writeb(FULL_ARBITRATION | ENABLE_PARITY | PARITY | AUTO_ATN, host, SCNTL0_REG); } } NCR_700_writeb(1 << host->this_id, host, SCID_REG); NCR_700_writeb(0, host, SBCL_REG); NCR_700_writeb(ASYNC_OPERATION, host, SXFER_REG); NCR_700_writeb(PHASE_MM_INT | SEL_TIMEOUT_INT | GROSS_ERR_INT | UX_DISC_INT | RST_INT | PAR_ERR_INT | SELECT_INT, host, SIEN_REG); NCR_700_writeb(ABORT_INT | INT_INST_INT | ILGL_INST_INT, host, DIEN_REG); NCR_700_writeb(ENABLE_SELECT, host, SCNTL1_REG); if(hostdata->clock > 75) { printk(KERN_ERR "53c700: Clock speed %dMHz is too high: 75Mhz is the maximum this chip can be driven at\n", hostdata->clock); /* do the best we can, but the async clock will be out * of spec: sync divider 2, async divider 3 */ DEBUG(("53c700: sync 2 async 3\n")); NCR_700_writeb(SYNC_DIV_2_0, host, SBCL_REG); NCR_700_writeb(ASYNC_DIV_3_0 | hostdata->dcntl_extra, host, DCNTL_REG); hostdata->sync_clock = hostdata->clock/2; } else if(hostdata->clock > 50 && hostdata->clock <= 75) { /* sync divider 1.5, async divider 3 */ DEBUG(("53c700: sync 1.5 async 3\n")); NCR_700_writeb(SYNC_DIV_1_5, host, SBCL_REG); NCR_700_writeb(ASYNC_DIV_3_0 | hostdata->dcntl_extra, host, DCNTL_REG); hostdata->sync_clock = hostdata->clock*2; hostdata->sync_clock /= 3; } else if(hostdata->clock > 37 && hostdata->clock <= 50) { /* sync divider 1, async divider 2 */ DEBUG(("53c700: sync 1 async 2\n")); NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG); NCR_700_writeb(ASYNC_DIV_2_0 | hostdata->dcntl_extra, host, DCNTL_REG); hostdata->sync_clock = hostdata->clock; } else if(hostdata->clock > 25 && hostdata->clock <=37) { /* sync divider 1, async divider 1.5 */ DEBUG(("53c700: sync 1 async 1.5\n")); NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG); NCR_700_writeb(ASYNC_DIV_1_5 | hostdata->dcntl_extra, host, DCNTL_REG); hostdata->sync_clock = hostdata->clock; } else { DEBUG(("53c700: sync 1 async 1\n")); NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG); NCR_700_writeb(ASYNC_DIV_1_0 | hostdata->dcntl_extra, host, DCNTL_REG); /* sync divider 1, async divider 1 */ hostdata->sync_clock = hostdata->clock; } /* Calculate the actual minimum period that can be supported * by our synchronous clock speed. See the 710 manual for * exact details of this calculation which is based on a * setting of the SXFER register */ min_period = 1000*(4+min_xferp)/(4*hostdata->sync_clock); hostdata->min_period = NCR_700_MIN_PERIOD; if(min_period > NCR_700_MIN_PERIOD) hostdata->min_period = min_period; } STATIC void NCR_700_chip_reset(struct Scsi_Host *host) { struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)host->hostdata[0]; if(hostdata->chip710) { NCR_700_writeb(SOFTWARE_RESET_710, host, ISTAT_REG); udelay(100); NCR_700_writeb(0, host, ISTAT_REG); } else { NCR_700_writeb(SOFTWARE_RESET, host, DCNTL_REG); udelay(100); NCR_700_writeb(0, host, DCNTL_REG); } mdelay(1000); NCR_700_chip_setup(host); } /* The heart of the message processing engine is that the instruction * immediately after the INT is the normal case (and so must be CLEAR * ACK). If we want to do something else, we call that routine in * scripts and set temp to be the normal case + 8 (skipping the CLEAR * ACK) so that the routine returns correctly to resume its activity * */ STATIC __u32 process_extended_message(struct Scsi_Host *host, struct NCR_700_Host_Parameters *hostdata, struct scsi_cmnd *SCp, __u32 dsp, __u32 dsps) { __u32 resume_offset = dsp, temp = dsp + 8; __u8 pun = 0xff, lun = 0xff; if(SCp != NULL) { pun = SCp->device->id; lun = SCp->device->lun; } switch(hostdata->msgin[2]) { case A_SDTR_MSG: if(SCp != NULL && NCR_700_is_flag_set(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION)) { struct scsi_target *starget = SCp->device->sdev_target; __u8 period = hostdata->msgin[3]; __u8 offset = hostdata->msgin[4]; if(offset == 0 || period == 0) { offset = 0; period = 0; } spi_offset(starget) = offset; spi_period(starget) = period; if(NCR_700_is_flag_set(SCp->device, NCR_700_DEV_PRINT_SYNC_NEGOTIATION)) { spi_display_xfer_agreement(starget); NCR_700_clear_flag(SCp->device, NCR_700_DEV_PRINT_SYNC_NEGOTIATION); } NCR_700_set_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC); NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); NCR_700_writeb(NCR_700_get_SXFER(SCp->device), host, SXFER_REG); } else { /* SDTR message out of the blue, reject it */ shost_printk(KERN_WARNING, host, "Unexpected SDTR msg\n"); hostdata->msgout[0] = A_REJECT_MSG; dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE); script_patch_16(hostdata->dev, hostdata->script, MessageCount, 1); /* SendMsgOut returns, so set up the return * address */ resume_offset = hostdata->pScript + Ent_SendMessageWithATN; } break; case A_WDTR_MSG: printk(KERN_INFO "scsi%d: (%d:%d), Unsolicited WDTR after CMD, Rejecting\n", host->host_no, pun, lun); hostdata->msgout[0] = A_REJECT_MSG; dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE); script_patch_16(hostdata->dev, hostdata->script, MessageCount, 1); resume_offset = hostdata->pScript + Ent_SendMessageWithATN; break; default: printk(KERN_INFO "scsi%d (%d:%d): Unexpected message %s: ", host->host_no, pun, lun, NCR_700_phase[(dsps & 0xf00) >> 8]); spi_print_msg(hostdata->msgin); printk("\n"); /* just reject it */ hostdata->msgout[0] = A_REJECT_MSG; dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE); script_patch_16(hostdata->dev, hostdata->script, MessageCount, 1); /* SendMsgOut returns, so set up the return * address */ resume_offset = hostdata->pScript + Ent_SendMessageWithATN; } NCR_700_writel(temp, host, TEMP_REG); return resume_offset; } STATIC __u32 process_message(struct Scsi_Host *host, struct NCR_700_Host_Parameters *hostdata, struct scsi_cmnd *SCp, __u32 dsp, __u32 dsps) { /* work out where to return to */ __u32 temp = dsp + 8, resume_offset = dsp; __u8 pun = 0xff, lun = 0xff; if(SCp != NULL) { pun = SCp->device->id; lun = SCp->device->lun; } #ifdef NCR_700_DEBUG printk("scsi%d (%d:%d): message %s: ", host->host_no, pun, lun, NCR_700_phase[(dsps & 0xf00) >> 8]); spi_print_msg(hostdata->msgin); printk("\n"); #endif switch(hostdata->msgin[0]) { case A_EXTENDED_MSG: resume_offset = process_extended_message(host, hostdata, SCp, dsp, dsps); break; case A_REJECT_MSG: if(SCp != NULL && NCR_700_is_flag_set(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION)) { /* Rejected our sync negotiation attempt */ spi_period(SCp->device->sdev_target) = spi_offset(SCp->device->sdev_target) = 0; NCR_700_set_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC); NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); } else if(SCp != NULL && NCR_700_get_tag_neg_state(SCp->device) == NCR_700_DURING_TAG_NEGOTIATION) { /* rejected our first simple tag message */ scmd_printk(KERN_WARNING, SCp, "Rejected first tag queue attempt, turning off tag queueing\n"); /* we're done negotiating */ NCR_700_set_tag_neg_state(SCp->device, NCR_700_FINISHED_TAG_NEGOTIATION); hostdata->tag_negotiated &= ~(1<<scmd_id(SCp)); SCp->device->tagged_supported = 0; scsi_deactivate_tcq(SCp->device, host->cmd_per_lun); } else { shost_printk(KERN_WARNING, host, "(%d:%d) Unexpected REJECT Message %s\n", pun, lun, NCR_700_phase[(dsps & 0xf00) >> 8]); /* however, just ignore it */ } break; case A_PARITY_ERROR_MSG: printk(KERN_ERR "scsi%d (%d:%d) Parity Error!\n", host->host_no, pun, lun); NCR_700_internal_bus_reset(host); break; case A_SIMPLE_TAG_MSG: printk(KERN_INFO "scsi%d (%d:%d) SIMPLE TAG %d %s\n", host->host_no, pun, lun, hostdata->msgin[1], NCR_700_phase[(dsps & 0xf00) >> 8]); /* just ignore it */ break; default: printk(KERN_INFO "scsi%d (%d:%d): Unexpected message %s: ", host->host_no, pun, lun, NCR_700_phase[(dsps & 0xf00) >> 8]); spi_print_msg(hostdata->msgin); printk("\n"); /* just reject it */ hostdata->msgout[0] = A_REJECT_MSG; dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE); script_patch_16(hostdata->dev, hostdata->script, MessageCount, 1); /* SendMsgOut returns, so set up the return * address */ resume_offset = hostdata->pScript + Ent_SendMessageWithATN; break; } NCR_700_writel(temp, host, TEMP_REG); /* set us up to receive another message */ dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, DMA_FROM_DEVICE); return resume_offset; } STATIC __u32 process_script_interrupt(__u32 dsps, __u32 dsp, struct scsi_cmnd *SCp, struct Scsi_Host *host, struct NCR_700_Host_Parameters *hostdata) { __u32 resume_offset = 0; __u8 pun = 0xff, lun=0xff; if(SCp != NULL) { pun = SCp->device->id; lun = SCp->device->lun; } if(dsps == A_GOOD_STATUS_AFTER_STATUS) { DEBUG((" COMMAND COMPLETE, status=%02x\n", hostdata->status[0])); /* OK, if TCQ still under negotiation, we now know it works */ if (NCR_700_get_tag_neg_state(SCp->device) == NCR_700_DURING_TAG_NEGOTIATION) NCR_700_set_tag_neg_state(SCp->device, NCR_700_FINISHED_TAG_NEGOTIATION); /* check for contingent allegiance contitions */ if(status_byte(hostdata->status[0]) == CHECK_CONDITION || status_byte(hostdata->status[0]) == COMMAND_TERMINATED) { struct NCR_700_command_slot *slot = (struct NCR_700_command_slot *)SCp->host_scribble; if(slot->flags == NCR_700_FLAG_AUTOSENSE) { /* OOPS: bad device, returning another * contingent allegiance condition */ scmd_printk(KERN_ERR, SCp, "broken device is looping in contingent allegiance: ignoring\n"); NCR_700_scsi_done(hostdata, SCp, hostdata->status[0]); } else { char *cmnd = NCR_700_get_sense_cmnd(SCp->device); #ifdef NCR_DEBUG scsi_print_command(SCp); printk(" cmd %p has status %d, requesting sense\n", SCp, hostdata->status[0]); #endif /* we can destroy the command here * because the contingent allegiance * condition will cause a retry which * will re-copy the command from the * saved data_cmnd. We also unmap any * data associated with the command * here */ NCR_700_unmap(hostdata, SCp, slot); dma_unmap_single(hostdata->dev, slot->pCmd, sizeof(SCp->cmnd), DMA_TO_DEVICE); cmnd[0] = REQUEST_SENSE; cmnd[1] = (SCp->device->lun & 0x7) << 5; cmnd[2] = 0; cmnd[3] = 0; cmnd[4] = sizeof(SCp->sense_buffer); cmnd[5] = 0; /* Here's a quiet hack: the * REQUEST_SENSE command is six bytes, * so store a flag indicating that * this was an internal sense request * and the original status at the end * of the command */ cmnd[6] = NCR_700_INTERNAL_SENSE_MAGIC; cmnd[7] = hostdata->status[0]; cmnd[8] = SCp->cmd_len; SCp->cmd_len = 6; /* command length for * REQUEST_SENSE */ slot->pCmd = dma_map_single(hostdata->dev, cmnd, MAX_COMMAND_SIZE, DMA_TO_DEVICE); slot->dma_handle = dma_map_single(hostdata->dev, SCp->sense_buffer, sizeof(SCp->sense_buffer), DMA_FROM_DEVICE); slot->SG[0].ins = bS_to_host(SCRIPT_MOVE_DATA_IN | sizeof(SCp->sense_buffer)); slot->SG[0].pAddr = bS_to_host(slot->dma_handle); slot->SG[1].ins = bS_to_host(SCRIPT_RETURN); slot->SG[1].pAddr = 0; slot->resume_offset = hostdata->pScript; dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG[0])*2, DMA_TO_DEVICE); dma_cache_sync(hostdata->dev, SCp->sense_buffer, sizeof(SCp->sense_buffer), DMA_FROM_DEVICE); /* queue the command for reissue */ slot->state = NCR_700_SLOT_QUEUED; slot->flags = NCR_700_FLAG_AUTOSENSE; hostdata->state = NCR_700_HOST_FREE; hostdata->cmd = NULL; } } else { // Currently rely on the mid layer evaluation // of the tag queuing capability // //if(status_byte(hostdata->status[0]) == GOOD && // SCp->cmnd[0] == INQUIRY && SCp->use_sg == 0) { // /* Piggy back the tag queueing support // * on this command */ // dma_sync_single_for_cpu(hostdata->dev, // slot->dma_handle, // SCp->request_bufflen, // DMA_FROM_DEVICE); // if(((char *)SCp->request_buffer)[7] & 0x02) { // scmd_printk(KERN_INFO, SCp, // "Enabling Tag Command Queuing\n"); // hostdata->tag_negotiated |= (1<<scmd_id(SCp)); // NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING); // } else { // NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING); // hostdata->tag_negotiated &= ~(1<<scmd_id(SCp)); // } //} NCR_700_scsi_done(hostdata, SCp, hostdata->status[0]); } } else if((dsps & 0xfffff0f0) == A_UNEXPECTED_PHASE) { __u8 i = (dsps & 0xf00) >> 8; scmd_printk(KERN_ERR, SCp, "UNEXPECTED PHASE %s (%s)\n", NCR_700_phase[i], sbcl_to_string(NCR_700_readb(host, SBCL_REG))); scmd_printk(KERN_ERR, SCp, " len = %d, cmd =", SCp->cmd_len); scsi_print_command(SCp); NCR_700_internal_bus_reset(host); } else if((dsps & 0xfffff000) == A_FATAL) { int i = (dsps & 0xfff); printk(KERN_ERR "scsi%d: (%d:%d) FATAL ERROR: %s\n", host->host_no, pun, lun, NCR_700_fatal_messages[i]); if(dsps == A_FATAL_ILLEGAL_MSG_LENGTH) { printk(KERN_ERR " msg begins %02x %02x\n", hostdata->msgin[0], hostdata->msgin[1]); } NCR_700_internal_bus_reset(host); } else if((dsps & 0xfffff0f0) == A_DISCONNECT) { #ifdef NCR_700_DEBUG __u8 i = (dsps & 0xf00) >> 8; printk("scsi%d: (%d:%d), DISCONNECTED (%d) %s\n", host->host_no, pun, lun, i, NCR_700_phase[i]); #endif save_for_reselection(hostdata, SCp, dsp); } else if(dsps == A_RESELECTION_IDENTIFIED) { __u8 lun; struct NCR_700_command_slot *slot; __u8 reselection_id = hostdata->reselection_id; struct scsi_device *SDp; lun = hostdata->msgin[0] & 0x1f; hostdata->reselection_id = 0xff; DEBUG(("scsi%d: (%d:%d) RESELECTED!\n", host->host_no, reselection_id, lun)); /* clear the reselection indicator */ SDp = __scsi_device_lookup(host, 0, reselection_id, lun); if(unlikely(SDp == NULL)) { printk(KERN_ERR "scsi%d: (%d:%d) HAS NO device\n", host->host_no, reselection_id, lun); BUG(); } if(hostdata->msgin[1] == A_SIMPLE_TAG_MSG) { struct scsi_cmnd *SCp = scsi_find_tag(SDp, hostdata->msgin[2]); if(unlikely(SCp == NULL)) { printk(KERN_ERR "scsi%d: (%d:%d) no saved request for tag %d\n", host->host_no, reselection_id, lun, hostdata->msgin[2]); BUG(); } slot = (struct NCR_700_command_slot *)SCp->host_scribble; DDEBUG(KERN_DEBUG, SDp, "reselection is tag %d, slot %p(%d)\n", hostdata->msgin[2], slot, slot->tag); } else { struct scsi_cmnd *SCp = scsi_find_tag(SDp, SCSI_NO_TAG); if(unlikely(SCp == NULL)) { sdev_printk(KERN_ERR, SDp, "no saved request for untagged cmd\n"); BUG(); } slot = (struct NCR_700_command_slot *)SCp->host_scribble; } if(slot == NULL) { printk(KERN_ERR "scsi%d: (%d:%d) RESELECTED but no saved command (MSG = %02x %02x %02x)!!\n", host->host_no, reselection_id, lun, hostdata->msgin[0], hostdata->msgin[1], hostdata->msgin[2]); } else { if(hostdata->state != NCR_700_HOST_BUSY) printk(KERN_ERR "scsi%d: FATAL, host not busy during valid reselection!\n", host->host_no); resume_offset = slot->resume_offset; hostdata->cmd = slot->cmnd; /* re-patch for this command */ script_patch_32_abs(hostdata->dev, hostdata->script, CommandAddress, slot->pCmd); script_patch_16(hostdata->dev, hostdata->script, CommandCount, slot->cmnd->cmd_len); script_patch_32_abs(hostdata->dev, hostdata->script, SGScriptStartAddress, to32bit(&slot->pSG[0].ins)); /* Note: setting SXFER only works if we're * still in the MESSAGE phase, so it is vital * that ACK is still asserted when we process * the reselection message. The resume offset * should therefore always clear ACK */ NCR_700_writeb(NCR_700_get_SXFER(hostdata->cmd->device), host, SXFER_REG); dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, DMA_FROM_DEVICE); dma_cache_sync(hostdata->dev, hostdata->msgout, MSG_ARRAY_SIZE, DMA_TO_DEVICE); /* I'm just being paranoid here, the command should * already have been flushed from the cache */ dma_cache_sync(hostdata->dev, slot->cmnd->cmnd, slot->cmnd->cmd_len, DMA_TO_DEVICE); } } else if(dsps == A_RESELECTED_DURING_SELECTION) { /* This section is full of debugging code because I've * never managed to reach it. I think what happens is * that, because the 700 runs with selection * interrupts enabled the whole time that we take a * selection interrupt before we manage to get to the * reselected script interrupt */ __u8 reselection_id = NCR_700_readb(host, SFBR_REG); struct NCR_700_command_slot *slot; /* Take out our own ID */ reselection_id &= ~(1<<host->this_id); /* I've never seen this happen, so keep this as a printk rather * than a debug */ printk(KERN_INFO "scsi%d: (%d:%d) RESELECTION DURING SELECTION, dsp=%08x[%04x] state=%d, count=%d\n", host->host_no, reselection_id, lun, dsp, dsp - hostdata->pScript, hostdata->state, hostdata->command_slot_count); { /* FIXME: DEBUGGING CODE */ __u32 SG = (__u32)bS_to_cpu(hostdata->script[A_SGScriptStartAddress_used[0]]); int i; for(i=0; i< NCR_700_COMMAND_SLOTS_PER_HOST; i++) { if(SG >= to32bit(&hostdata->slots[i].pSG[0]) && SG <= to32bit(&hostdata->slots[i].pSG[NCR_700_SG_SEGMENTS])) break; } printk(KERN_INFO "IDENTIFIED SG segment as being %08x in slot %p, cmd %p, slot->resume_offset=%08x\n", SG, &hostdata->slots[i], hostdata->slots[i].cmnd, hostdata->slots[i].resume_offset); SCp = hostdata->slots[i].cmnd; } if(SCp != NULL) { slot = (struct NCR_700_command_slot *)SCp->host_scribble; /* change slot from busy to queued to redo command */ slot->state = NCR_700_SLOT_QUEUED; } hostdata->cmd = NULL; if(reselection_id == 0) { if(hostdata->reselection_id == 0xff) { printk(KERN_ERR "scsi%d: Invalid reselection during selection!!\n", host->host_no); return 0; } else { printk(KERN_ERR "scsi%d: script reselected and we took a selection interrupt\n", host->host_no); reselection_id = hostdata->reselection_id; } } else { /* convert to real ID */ reselection_id = bitmap_to_number(reselection_id); } hostdata->reselection_id = reselection_id; /* just in case we have a stale simple tag message, clear it */ hostdata->msgin[1] = 0; dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, DMA_BIDIRECTIONAL); if(hostdata->tag_negotiated & (1<<reselection_id)) { resume_offset = hostdata->pScript + Ent_GetReselectionWithTag; } else { resume_offset = hostdata->pScript + Ent_GetReselectionData; } } else if(dsps == A_COMPLETED_SELECTION_AS_TARGET) { /* we've just disconnected from the bus, do nothing since * a return here will re-run the queued command slot * that may have been interrupted by the initial selection */ DEBUG((" SELECTION COMPLETED\n")); } else if((dsps & 0xfffff0f0) == A_MSG_IN) { resume_offset = process_message(host, hostdata, SCp, dsp, dsps); } else if((dsps & 0xfffff000) == 0) { __u8 i = (dsps & 0xf0) >> 4, j = (dsps & 0xf00) >> 8; printk(KERN_ERR "scsi%d: (%d:%d), unhandled script condition %s %s at %04x\n", host->host_no, pun, lun, NCR_700_condition[i], NCR_700_phase[j], dsp - hostdata->pScript); if(SCp != NULL) { struct scatterlist *sg; scsi_print_command(SCp); scsi_for_each_sg(SCp, sg, scsi_sg_count(SCp) + 1, i) { printk(KERN_INFO " SG[%d].length = %d, move_insn=%08x, addr %08x\n", i, sg->length, ((struct NCR_700_command_slot *)SCp->host_scribble)->SG[i].ins, ((struct NCR_700_command_slot *)SCp->host_scribble)->SG[i].pAddr); } } NCR_700_internal_bus_reset(host); } else if((dsps & 0xfffff000) == A_DEBUG_INTERRUPT) { printk(KERN_NOTICE "scsi%d (%d:%d) DEBUG INTERRUPT %d AT %08x[%04x], continuing\n", host->host_no, pun, lun, dsps & 0xfff, dsp, dsp - hostdata->pScript); resume_offset = dsp; } else { printk(KERN_ERR "scsi%d: (%d:%d), unidentified script interrupt 0x%x at %04x\n", host->host_no, pun, lun, dsps, dsp - hostdata->pScript); NCR_700_internal_bus_reset(host); } return resume_offset; } /* We run the 53c700 with selection interrupts always enabled. This * means that the chip may be selected as soon as the bus frees. On a * busy bus, this can be before the scripts engine finishes its * processing. Therefore, part of the selection processing has to be * to find out what the scripts engine is doing and complete the * function if necessary (i.e. process the pending disconnect or save * the interrupted initial selection */ STATIC inline __u32 process_selection(struct Scsi_Host *host, __u32 dsp) { __u8 id = 0; /* Squash compiler warning */ int count = 0; __u32 resume_offset = 0; struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)host->hostdata[0]; struct scsi_cmnd *SCp = hostdata->cmd; __u8 sbcl; for(count = 0; count < 5; count++) { id = NCR_700_readb(host, hostdata->chip710 ? CTEST9_REG : SFBR_REG); /* Take out our own ID */ id &= ~(1<<host->this_id); if(id != 0) break; udelay(5); } sbcl = NCR_700_readb(host, SBCL_REG); if((sbcl & SBCL_IO) == 0) { /* mark as having been selected rather than reselected */ id = 0xff; } else { /* convert to real ID */ hostdata->reselection_id = id = bitmap_to_number(id); DEBUG(("scsi%d: Reselected by %d\n", host->host_no, id)); } if(hostdata->state == NCR_700_HOST_BUSY && SCp != NULL) { struct NCR_700_command_slot *slot = (struct NCR_700_command_slot *)SCp->host_scribble; DEBUG((" ID %d WARNING: RESELECTION OF BUSY HOST, saving cmd %p, slot %p, addr %x [%04x], resume %x!\n", id, hostdata->cmd, slot, dsp, dsp - hostdata->pScript, resume_offset)); switch(dsp - hostdata->pScript) { case Ent_Disconnect1: case Ent_Disconnect2: save_for_reselection(hostdata, SCp, Ent_Disconnect2 + hostdata->pScript); break; case Ent_Disconnect3: case Ent_Disconnect4: save_for_reselection(hostdata, SCp, Ent_Disconnect4 + hostdata->pScript); break; case Ent_Disconnect5: case Ent_Disconnect6: save_for_reselection(hostdata, SCp, Ent_Disconnect6 + hostdata->pScript); break; case Ent_Disconnect7: case Ent_Disconnect8: save_for_reselection(hostdata, SCp, Ent_Disconnect8 + hostdata->pScript); break; case Ent_Finish1: case Ent_Finish2: process_script_interrupt(A_GOOD_STATUS_AFTER_STATUS, dsp, SCp, host, hostdata); break; default: slot->state = NCR_700_SLOT_QUEUED; break; } } hostdata->state = NCR_700_HOST_BUSY; hostdata->cmd = NULL; /* clear any stale simple tag message */ hostdata->msgin[1] = 0; dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, DMA_BIDIRECTIONAL); if(id == 0xff) { /* Selected as target, Ignore */ resume_offset = hostdata->pScript + Ent_SelectedAsTarget; } else if(hostdata->tag_negotiated & (1<<id)) { resume_offset = hostdata->pScript + Ent_GetReselectionWithTag; } else { resume_offset = hostdata->pScript + Ent_GetReselectionData; } return resume_offset; } static inline void NCR_700_clear_fifo(struct Scsi_Host *host) { const struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)host->hostdata[0]; if(hostdata->chip710) { NCR_700_writeb(CLR_FIFO_710, host, CTEST8_REG); } else { NCR_700_writeb(CLR_FIFO, host, DFIFO_REG); } } static inline void NCR_700_flush_fifo(struct Scsi_Host *host) { const struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)host->hostdata[0]; if(hostdata->chip710) { NCR_700_writeb(FLUSH_DMA_FIFO_710, host, CTEST8_REG); udelay(10); NCR_700_writeb(0, host, CTEST8_REG); } else { NCR_700_writeb(FLUSH_DMA_FIFO, host, DFIFO_REG); udelay(10); NCR_700_writeb(0, host, DFIFO_REG); } } /* The queue lock with interrupts disabled must be held on entry to * this function */ STATIC int NCR_700_start_command(struct scsi_cmnd *SCp) { struct NCR_700_command_slot *slot = (struct NCR_700_command_slot *)SCp->host_scribble; struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0]; __u16 count = 1; /* for IDENTIFY message */ if(hostdata->state != NCR_700_HOST_FREE) { /* keep this inside the lock to close the race window where * the running command finishes on another CPU while we don't * change the state to queued on this one */ slot->state = NCR_700_SLOT_QUEUED; DEBUG(("scsi%d: host busy, queueing command %p, slot %p\n", SCp->device->host->host_no, slot->cmnd, slot)); return 0; } hostdata->state = NCR_700_HOST_BUSY; hostdata->cmd = SCp; slot->state = NCR_700_SLOT_BUSY; /* keep interrupts disabled until we have the command correctly * set up so we cannot take a selection interrupt */ hostdata->msgout[0] = NCR_700_identify((SCp->cmnd[0] != REQUEST_SENSE && slot->flags != NCR_700_FLAG_AUTOSENSE), SCp->device->lun); /* for INQUIRY or REQUEST_SENSE commands, we cannot be sure * if the negotiated transfer parameters still hold, so * always renegotiate them */ if(SCp->cmnd[0] == INQUIRY || SCp->cmnd[0] == REQUEST_SENSE || slot->flags == NCR_700_FLAG_AUTOSENSE) { NCR_700_clear_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC); } /* REQUEST_SENSE is asking for contingent I_T_L(_Q) status. * If a contingent allegiance condition exists, the device * will refuse all tags, so send the request sense as untagged * */ if((hostdata->tag_negotiated & (1<<scmd_id(SCp))) && (slot->tag != SCSI_NO_TAG && SCp->cmnd[0] != REQUEST_SENSE && slot->flags != NCR_700_FLAG_AUTOSENSE)) { count += scsi_populate_tag_msg(SCp, &hostdata->msgout[count]); } if(hostdata->fast && NCR_700_is_flag_clear(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC)) { count += spi_populate_sync_msg(&hostdata->msgout[count], spi_period(SCp->device->sdev_target), spi_offset(SCp->device->sdev_target)); NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); } script_patch_16(hostdata->dev, hostdata->script, MessageCount, count); script_patch_ID(hostdata->dev, hostdata->script, Device_ID, 1<<scmd_id(SCp)); script_patch_32_abs(hostdata->dev, hostdata->script, CommandAddress, slot->pCmd); script_patch_16(hostdata->dev, hostdata->script, CommandCount, SCp->cmd_len); /* finally plumb the beginning of the SG list into the script * */ script_patch_32_abs(hostdata->dev, hostdata->script, SGScriptStartAddress, to32bit(&slot->pSG[0].ins)); NCR_700_clear_fifo(SCp->device->host); if(slot->resume_offset == 0) slot->resume_offset = hostdata->pScript; /* now perform all the writebacks and invalidates */ dma_cache_sync(hostdata->dev, hostdata->msgout, count, DMA_TO_DEVICE); dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, DMA_FROM_DEVICE); dma_cache_sync(hostdata->dev, SCp->cmnd, SCp->cmd_len, DMA_TO_DEVICE); dma_cache_sync(hostdata->dev, hostdata->status, 1, DMA_FROM_DEVICE); /* set the synchronous period/offset */ NCR_700_writeb(NCR_700_get_SXFER(SCp->device), SCp->device->host, SXFER_REG); NCR_700_writel(slot->temp, SCp->device->host, TEMP_REG); NCR_700_writel(slot->resume_offset, SCp->device->host, DSP_REG); return 1; } irqreturn_t NCR_700_intr(int irq, void *dev_id) { struct Scsi_Host *host = (struct Scsi_Host *)dev_id; struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)host->hostdata[0]; __u8 istat; __u32 resume_offset = 0; __u8 pun = 0xff, lun = 0xff; unsigned long flags; int handled = 0; /* Use the host lock to serialise acess to the 53c700 * hardware. Note: In future, we may need to take the queue * lock to enter the done routines. When that happens, we * need to ensure that for this driver, the host lock and the * queue lock point to the same thing. */ spin_lock_irqsave(host->host_lock, flags); if((istat = NCR_700_readb(host, ISTAT_REG)) & (SCSI_INT_PENDING | DMA_INT_PENDING)) { __u32 dsps; __u8 sstat0 = 0, dstat = 0; __u32 dsp; struct scsi_cmnd *SCp = hostdata->cmd; enum NCR_700_Host_State state; handled = 1; state = hostdata->state; SCp = hostdata->cmd; if(istat & SCSI_INT_PENDING) { udelay(10); sstat0 = NCR_700_readb(host, SSTAT0_REG); } if(istat & DMA_INT_PENDING) { udelay(10); dstat = NCR_700_readb(host, DSTAT_REG); } dsps = NCR_700_readl(host, DSPS_REG); dsp = NCR_700_readl(host, DSP_REG); DEBUG(("scsi%d: istat %02x sstat0 %02x dstat %02x dsp %04x[%08x] dsps 0x%x\n", host->host_no, istat, sstat0, dstat, (dsp - (__u32)(hostdata->pScript))/4, dsp, dsps)); if(SCp != NULL) { pun = SCp->device->id; lun = SCp->device->lun; } if(sstat0 & SCSI_RESET_DETECTED) { struct scsi_device *SDp; int i; hostdata->state = NCR_700_HOST_BUSY; printk(KERN_ERR "scsi%d: Bus Reset detected, executing command %p, slot %p, dsp %08x[%04x]\n", host->host_no, SCp, SCp == NULL ? NULL : SCp->host_scribble, dsp, dsp - hostdata->pScript); scsi_report_bus_reset(host, 0); /* clear all the negotiated parameters */ __shost_for_each_device(SDp, host) NCR_700_clear_flag(SDp, ~0); /* clear all the slots and their pending commands */ for(i = 0; i < NCR_700_COMMAND_SLOTS_PER_HOST; i++) { struct scsi_cmnd *SCp; struct NCR_700_command_slot *slot = &hostdata->slots[i]; if(slot->state == NCR_700_SLOT_FREE) continue; SCp = slot->cmnd; printk(KERN_ERR " failing command because of reset, slot %p, cmnd %p\n", slot, SCp); free_slot(slot, hostdata); SCp->host_scribble = NULL; NCR_700_set_depth(SCp->device, 0); /* NOTE: deadlock potential here: we * rely on mid-layer guarantees that * scsi_done won't try to issue the * command again otherwise we'll * deadlock on the * hostdata->state_lock */ SCp->result = DID_RESET << 16; SCp->scsi_done(SCp); } mdelay(25); NCR_700_chip_setup(host); hostdata->state = NCR_700_HOST_FREE; hostdata->cmd = NULL; /* signal back if this was an eh induced reset */ if(hostdata->eh_complete != NULL) complete(hostdata->eh_complete); goto out_unlock; } else if(sstat0 & SELECTION_TIMEOUT) { DEBUG(("scsi%d: (%d:%d) selection timeout\n", host->host_no, pun, lun)); NCR_700_scsi_done(hostdata, SCp, DID_NO_CONNECT<<16); } else if(sstat0 & PHASE_MISMATCH) { struct NCR_700_command_slot *slot = (SCp == NULL) ? NULL : (struct NCR_700_command_slot *)SCp->host_scribble; if(dsp == Ent_SendMessage + 8 + hostdata->pScript) { /* It wants to reply to some part of * our message */ #ifdef NCR_700_DEBUG __u32 temp = NCR_700_readl(host, TEMP_REG); int count = (hostdata->script[Ent_SendMessage/4] & 0xffffff) - ((NCR_700_readl(host, DBC_REG) & 0xffffff) + NCR_700_data_residual(host)); printk("scsi%d (%d:%d) PHASE MISMATCH IN SEND MESSAGE %d remain, return %p[%04x], phase %s\n", host->host_no, pun, lun, count, (void *)temp, temp - hostdata->pScript, sbcl_to_string(NCR_700_readb(host, SBCL_REG))); #endif resume_offset = hostdata->pScript + Ent_SendMessagePhaseMismatch; } else if(dsp >= to32bit(&slot->pSG[0].ins) && dsp <= to32bit(&slot->pSG[NCR_700_SG_SEGMENTS].ins)) { int data_transfer = NCR_700_readl(host, DBC_REG) & 0xffffff; int SGcount = (dsp - to32bit(&slot->pSG[0].ins))/sizeof(struct NCR_700_SG_List); int residual = NCR_700_data_residual(host); int i; #ifdef NCR_700_DEBUG __u32 naddr = NCR_700_readl(host, DNAD_REG); printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x\n", host->host_no, pun, lun, SGcount, data_transfer); scsi_print_command(SCp); if(residual) { printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x, residual %d\n", host->host_no, pun, lun, SGcount, data_transfer, residual); } #endif data_transfer += residual; if(data_transfer != 0) { int count; __u32 pAddr; SGcount--; count = (bS_to_cpu(slot->SG[SGcount].ins) & 0x00ffffff); DEBUG(("DATA TRANSFER MISMATCH, count = %d, transferred %d\n", count, count-data_transfer)); slot->SG[SGcount].ins &= bS_to_host(0xff000000); slot->SG[SGcount].ins |= bS_to_host(data_transfer); pAddr = bS_to_cpu(slot->SG[SGcount].pAddr); pAddr += (count - data_transfer); #ifdef NCR_700_DEBUG if(pAddr != naddr) { printk("scsi%d (%d:%d) transfer mismatch pAddr=%lx, naddr=%lx, data_transfer=%d, residual=%d\n", host->host_no, pun, lun, (unsigned long)pAddr, (unsigned long)naddr, data_transfer, residual); } #endif slot->SG[SGcount].pAddr = bS_to_host(pAddr); } /* set the executed moves to nops */ for(i=0; i<SGcount; i++) { slot->SG[i].ins = bS_to_host(SCRIPT_NOP); slot->SG[i].pAddr = 0; } dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG), DMA_TO_DEVICE); /* and pretend we disconnected after * the command phase */ resume_offset = hostdata->pScript + Ent_MsgInDuringData; /* make sure all the data is flushed */ NCR_700_flush_fifo(host); } else { __u8 sbcl = NCR_700_readb(host, SBCL_REG); printk(KERN_ERR "scsi%d: (%d:%d) phase mismatch at %04x, phase %s\n", host->host_no, pun, lun, dsp - hostdata->pScript, sbcl_to_string(sbcl)); NCR_700_internal_bus_reset(host); } } else if(sstat0 & SCSI_GROSS_ERROR) { printk(KERN_ERR "scsi%d: (%d:%d) GROSS ERROR\n", host->host_no, pun, lun); NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16); } else if(sstat0 & PARITY_ERROR) { printk(KERN_ERR "scsi%d: (%d:%d) PARITY ERROR\n", host->host_no, pun, lun); NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16); } else if(dstat & SCRIPT_INT_RECEIVED) { DEBUG(("scsi%d: (%d:%d) ====>SCRIPT INTERRUPT<====\n", host->host_no, pun, lun)); resume_offset = process_script_interrupt(dsps, dsp, SCp, host, hostdata); } else if(dstat & (ILGL_INST_DETECTED)) { printk(KERN_ERR "scsi%d: (%d:%d) Illegal Instruction detected at 0x%08x[0x%x]!!!\n" " Please email James.Bottomley@HansenPartnership.com with the details\n", host->host_no, pun, lun, dsp, dsp - hostdata->pScript); NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16); } else if(dstat & (WATCH_DOG_INTERRUPT|ABORTED)) { printk(KERN_ERR "scsi%d: (%d:%d) serious DMA problem, dstat=%02x\n", host->host_no, pun, lun, dstat); NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16); } /* NOTE: selection interrupt processing MUST occur * after script interrupt processing to correctly cope * with the case where we process a disconnect and * then get reselected before we process the * disconnection */ if(sstat0 & SELECTED) { /* FIXME: It currently takes at least FOUR * interrupts to complete a command that * disconnects: one for the disconnect, one * for the reselection, one to get the * reselection data and one to complete the * command. If we guess the reselected * command here and prepare it, we only need * to get a reselection data interrupt if we * guessed wrongly. Since the interrupt * overhead is much greater than the command * setup, this would be an efficient * optimisation particularly as we probably * only have one outstanding command on a * target most of the time */ resume_offset = process_selection(host, dsp); } } if(resume_offset) { if(hostdata->state != NCR_700_HOST_BUSY) { printk(KERN_ERR "scsi%d: Driver error: resume at 0x%08x [0x%04x] with non busy host!\n", host->host_no, resume_offset, resume_offset - hostdata->pScript); hostdata->state = NCR_700_HOST_BUSY; } DEBUG(("Attempting to resume at %x\n", resume_offset)); NCR_700_clear_fifo(host); NCR_700_writel(resume_offset, host, DSP_REG); } /* There is probably a technical no-no about this: If we're a * shared interrupt and we got this interrupt because the * other device needs servicing not us, we're still going to * check our queued commands here---of course, there shouldn't * be any outstanding.... */ if(hostdata->state == NCR_700_HOST_FREE) { int i; for(i = 0; i < NCR_700_COMMAND_SLOTS_PER_HOST; i++) { /* fairness: always run the queue from the last * position we left off */ int j = (i + hostdata->saved_slot_position) % NCR_700_COMMAND_SLOTS_PER_HOST; if(hostdata->slots[j].state != NCR_700_SLOT_QUEUED) continue; if(NCR_700_start_command(hostdata->slots[j].cmnd)) { DEBUG(("scsi%d: Issuing saved command slot %p, cmd %p\t\n", host->host_no, &hostdata->slots[j], hostdata->slots[j].cmnd)); hostdata->saved_slot_position = j + 1; } break; } } out_unlock: spin_unlock_irqrestore(host->host_lock, flags); return IRQ_RETVAL(handled); } STATIC int NCR_700_queuecommand(struct scsi_cmnd *SCp, void (*done)(struct scsi_cmnd *)) { struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0]; __u32 move_ins; enum dma_data_direction direction; struct NCR_700_command_slot *slot; if(hostdata->command_slot_count >= NCR_700_COMMAND_SLOTS_PER_HOST) { /* We're over our allocation, this should never happen * since we report the max allocation to the mid layer */ printk(KERN_WARNING "scsi%d: Command depth has gone over queue depth\n", SCp->device->host->host_no); return 1; } /* check for untagged commands. We cannot have any outstanding * commands if we accept them. Commands could be untagged because: * * - The tag negotiated bitmap is clear * - The blk layer sent and untagged command */ if(NCR_700_get_depth(SCp->device) != 0 && (!(hostdata->tag_negotiated & (1<<scmd_id(SCp))) || !blk_rq_tagged(SCp->request))) { CDEBUG(KERN_ERR, SCp, "has non zero depth %d\n", NCR_700_get_depth(SCp->device)); return SCSI_MLQUEUE_DEVICE_BUSY; } if(NCR_700_get_depth(SCp->device) >= SCp->device->queue_depth) { CDEBUG(KERN_ERR, SCp, "has max tag depth %d\n", NCR_700_get_depth(SCp->device)); return SCSI_MLQUEUE_DEVICE_BUSY; } NCR_700_set_depth(SCp->device, NCR_700_get_depth(SCp->device) + 1); /* begin the command here */ /* no need to check for NULL, test for command_slot_count above * ensures a slot is free */ slot = find_empty_slot(hostdata); slot->cmnd = SCp; SCp->scsi_done = done; SCp->host_scribble = (unsigned char *)slot; SCp->SCp.ptr = NULL; SCp->SCp.buffer = NULL; #ifdef NCR_700_DEBUG printk("53c700: scsi%d, command ", SCp->device->host->host_no); scsi_print_command(SCp); #endif if(blk_rq_tagged(SCp->request) && (hostdata->tag_negotiated &(1<<scmd_id(SCp))) == 0 && NCR_700_get_tag_neg_state(SCp->device) == NCR_700_START_TAG_NEGOTIATION) { scmd_printk(KERN_ERR, SCp, "Enabling Tag Command Queuing\n"); hostdata->tag_negotiated |= (1<<scmd_id(SCp)); NCR_700_set_tag_neg_state(SCp->device, NCR_700_DURING_TAG_NEGOTIATION); } /* here we may have to process an untagged command. The gate * above ensures that this will be the only one outstanding, * so clear the tag negotiated bit. * * FIXME: This will royally screw up on multiple LUN devices * */ if(!blk_rq_tagged(SCp->request) && (hostdata->tag_negotiated &(1<<scmd_id(SCp)))) { scmd_printk(KERN_INFO, SCp, "Disabling Tag Command Queuing\n"); hostdata->tag_negotiated &= ~(1<<scmd_id(SCp)); } if((hostdata->tag_negotiated &(1<<scmd_id(SCp))) && scsi_get_tag_type(SCp->device)) { slot->tag = SCp->request->tag; CDEBUG(KERN_DEBUG, SCp, "sending out tag %d, slot %p\n", slot->tag, slot); } else { slot->tag = SCSI_NO_TAG; /* must populate current_cmnd for scsi_find_tag to work */ SCp->device->current_cmnd = SCp; } /* sanity check: some of the commands generated by the mid-layer * have an eccentric idea of their sc_data_direction */ if(!scsi_sg_count(SCp) && !scsi_bufflen(SCp) && SCp->sc_data_direction != DMA_NONE) { #ifdef NCR_700_DEBUG printk("53c700: Command"); scsi_print_command(SCp); printk("Has wrong data direction %d\n", SCp->sc_data_direction); #endif SCp->sc_data_direction = DMA_NONE; } switch (SCp->cmnd[0]) { case REQUEST_SENSE: /* clear the internal sense magic */ SCp->cmnd[6] = 0; /* fall through */ default: /* OK, get it from the command */ switch(SCp->sc_data_direction) { case DMA_BIDIRECTIONAL: default: printk(KERN_ERR "53c700: Unknown command for data direction "); scsi_print_command(SCp); move_ins = 0; break; case DMA_NONE: move_ins = 0; break; case DMA_FROM_DEVICE: move_ins = SCRIPT_MOVE_DATA_IN; break; case DMA_TO_DEVICE: move_ins = SCRIPT_MOVE_DATA_OUT; break; } } /* now build the scatter gather list */ direction = SCp->sc_data_direction; if(move_ins != 0) { int i; int sg_count; dma_addr_t vPtr = 0; struct scatterlist *sg; __u32 count = 0; sg_count = scsi_dma_map(SCp); BUG_ON(sg_count < 0); scsi_for_each_sg(SCp, sg, sg_count, i) { vPtr = sg_dma_address(sg); count = sg_dma_len(sg); slot->SG[i].ins = bS_to_host(move_ins | count); DEBUG((" scatter block %d: move %d[%08x] from 0x%lx\n", i, count, slot->SG[i].ins, (unsigned long)vPtr)); slot->SG[i].pAddr = bS_to_host(vPtr); } slot->SG[i].ins = bS_to_host(SCRIPT_RETURN); slot->SG[i].pAddr = 0; dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG), DMA_TO_DEVICE); DEBUG((" SETTING %08lx to %x\n", (&slot->pSG[i].ins), slot->SG[i].ins)); } slot->resume_offset = 0; slot->pCmd = dma_map_single(hostdata->dev, SCp->cmnd, sizeof(SCp->cmnd), DMA_TO_DEVICE); NCR_700_start_command(SCp); return 0; } STATIC int NCR_700_abort(struct scsi_cmnd * SCp) { struct NCR_700_command_slot *slot; scmd_printk(KERN_INFO, SCp, "New error handler wants to abort command\n\t"); scsi_print_command(SCp); slot = (struct NCR_700_command_slot *)SCp->host_scribble; if(slot == NULL) /* no outstanding command to abort */ return SUCCESS; if(SCp->cmnd[0] == TEST_UNIT_READY) { /* FIXME: This is because of a problem in the new * error handler. When it is in error recovery, it * will send a TUR to a device it thinks may still be * showing a problem. If the TUR isn't responded to, * it will abort it and mark the device off line. * Unfortunately, it does no other error recovery, so * this would leave us with an outstanding command * occupying a slot. Rather than allow this to * happen, we issue a bus reset to force all * outstanding commands to terminate here. */ NCR_700_internal_bus_reset(SCp->device->host); /* still drop through and return failed */ } return FAILED; } STATIC int NCR_700_bus_reset(struct scsi_cmnd * SCp) { DECLARE_COMPLETION_ONSTACK(complete); struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0]; scmd_printk(KERN_INFO, SCp, "New error handler wants BUS reset, cmd %p\n\t", SCp); scsi_print_command(SCp); /* In theory, eh_complete should always be null because the * eh is single threaded, but just in case we're handling a * reset via sg or something */ spin_lock_irq(SCp->device->host->host_lock); while (hostdata->eh_complete != NULL) { spin_unlock_irq(SCp->device->host->host_lock); msleep_interruptible(100); spin_lock_irq(SCp->device->host->host_lock); } hostdata->eh_complete = &complete; NCR_700_internal_bus_reset(SCp->device->host); spin_unlock_irq(SCp->device->host->host_lock); wait_for_completion(&complete); spin_lock_irq(SCp->device->host->host_lock); hostdata->eh_complete = NULL; /* Revalidate the transport parameters of the failing device */ if(hostdata->fast) spi_schedule_dv_device(SCp->device); spin_unlock_irq(SCp->device->host->host_lock); return SUCCESS; } STATIC int NCR_700_host_reset(struct scsi_cmnd * SCp) { scmd_printk(KERN_INFO, SCp, "New error handler wants HOST reset\n\t"); scsi_print_command(SCp); spin_lock_irq(SCp->device->host->host_lock); NCR_700_internal_bus_reset(SCp->device->host); NCR_700_chip_reset(SCp->device->host); spin_unlock_irq(SCp->device->host->host_lock); return SUCCESS; } STATIC void NCR_700_set_period(struct scsi_target *STp, int period) { struct Scsi_Host *SHp = dev_to_shost(STp->dev.parent); struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)SHp->hostdata[0]; if(!hostdata->fast) return; if(period < hostdata->min_period) period = hostdata->min_period; spi_period(STp) = period; spi_flags(STp) &= ~(NCR_700_DEV_NEGOTIATED_SYNC | NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); spi_flags(STp) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION; } STATIC void NCR_700_set_offset(struct scsi_target *STp, int offset) { struct Scsi_Host *SHp = dev_to_shost(STp->dev.parent); struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)SHp->hostdata[0]; int max_offset = hostdata->chip710 ? NCR_710_MAX_OFFSET : NCR_700_MAX_OFFSET; if(!hostdata->fast) return; if(offset > max_offset) offset = max_offset; /* if we're currently async, make sure the period is reasonable */ if(spi_offset(STp) == 0 && (spi_period(STp) < hostdata->min_period || spi_period(STp) > 0xff)) spi_period(STp) = hostdata->min_period; spi_offset(STp) = offset; spi_flags(STp) &= ~(NCR_700_DEV_NEGOTIATED_SYNC | NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); spi_flags(STp) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION; } STATIC int NCR_700_slave_alloc(struct scsi_device *SDp) { SDp->hostdata = kzalloc(sizeof(struct NCR_700_Device_Parameters), GFP_KERNEL); if (!SDp->hostdata) return -ENOMEM; return 0; } STATIC int NCR_700_slave_configure(struct scsi_device *SDp) { struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)SDp->host->hostdata[0]; /* to do here: allocate memory; build a queue_full list */ if(SDp->tagged_supported) { scsi_set_tag_type(SDp, MSG_ORDERED_TAG); scsi_activate_tcq(SDp, NCR_700_DEFAULT_TAGS); NCR_700_set_tag_neg_state(SDp, NCR_700_START_TAG_NEGOTIATION); } else { /* initialise to default depth */ scsi_adjust_queue_depth(SDp, 0, SDp->host->cmd_per_lun); } if(hostdata->fast) { /* Find the correct offset and period via domain validation */ if (!spi_initial_dv(SDp->sdev_target)) spi_dv_device(SDp); } else { spi_offset(SDp->sdev_target) = 0; spi_period(SDp->sdev_target) = 0; } return 0; } STATIC void NCR_700_slave_destroy(struct scsi_device *SDp) { kfree(SDp->hostdata); SDp->hostdata = NULL; } static int NCR_700_change_queue_depth(struct scsi_device *SDp, int depth) { if (depth > NCR_700_MAX_TAGS) depth = NCR_700_MAX_TAGS; scsi_adjust_queue_depth(SDp, scsi_get_tag_type(SDp), depth); return depth; } static int NCR_700_change_queue_type(struct scsi_device *SDp, int tag_type) { int change_tag = ((tag_type ==0 && scsi_get_tag_type(SDp) != 0) || (tag_type != 0 && scsi_get_tag_type(SDp) == 0)); struct NCR_700_Host_Parameters *hostdata = (struct NCR_700_Host_Parameters *)SDp->host->hostdata[0]; scsi_set_tag_type(SDp, tag_type); /* We have a global (per target) flag to track whether TCQ is * enabled, so we'll be turning it off for the entire target here. * our tag algorithm will fail if we mix tagged and untagged commands, * so quiesce the device before doing this */ if (change_tag) scsi_target_quiesce(SDp->sdev_target); if (!tag_type) { /* shift back to the default unqueued number of commands * (the user can still raise this) */ scsi_deactivate_tcq(SDp, SDp->host->cmd_per_lun); hostdata->tag_negotiated &= ~(1 << sdev_id(SDp)); } else { /* Here, we cleared the negotiation flag above, so this * will force the driver to renegotiate */ scsi_activate_tcq(SDp, SDp->queue_depth); if (change_tag) NCR_700_set_tag_neg_state(SDp, NCR_700_START_TAG_NEGOTIATION); } if (change_tag) scsi_target_resume(SDp->sdev_target); return tag_type; } static ssize_t NCR_700_show_active_tags(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *SDp = to_scsi_device(dev); return snprintf(buf, 20, "%d\n", NCR_700_get_depth(SDp)); } static struct device_attribute NCR_700_active_tags_attr = { .attr = { .name = "active_tags", .mode = S_IRUGO, }, .show = NCR_700_show_active_tags, }; STATIC struct device_attribute *NCR_700_dev_attrs[] = { &NCR_700_active_tags_attr, NULL, }; EXPORT_SYMBOL(NCR_700_detect); EXPORT_SYMBOL(NCR_700_release); EXPORT_SYMBOL(NCR_700_intr); static struct spi_function_template NCR_700_transport_functions = { .set_period = NCR_700_set_period, .show_period = 1, .set_offset = NCR_700_set_offset, .show_offset = 1, }; static int __init NCR_700_init(void) { NCR_700_transport_template = spi_attach_transport(&NCR_700_transport_functions); if(!NCR_700_transport_template) return -ENODEV; return 0; } static void __exit NCR_700_exit(void) { spi_release_transport(NCR_700_transport_template); } module_init(NCR_700_init); module_exit(NCR_700_exit);