/* * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hw.h" #include "hw-ops.h" /* Common calibration code */ /* We can tune this as we go by monitoring really low values */ #define ATH9K_NF_TOO_LOW -60 /* AR5416 may return very high value (like -31 dBm), in those cases the nf * is incorrect and we should use the static NF value. Later we can try to * find out why they are reporting these values */ static bool ath9k_hw_nf_in_range(struct ath_hw *ah, s16 nf) { if (nf > ATH9K_NF_TOO_LOW) { ath_print(ath9k_hw_common(ah), ATH_DBG_CALIBRATE, "noise floor value detected (%d) is " "lower than what we think is a " "reasonable value (%d)\n", nf, ATH9K_NF_TOO_LOW); return false; } return true; } static int16_t ath9k_hw_get_nf_hist_mid(int16_t *nfCalBuffer) { int16_t nfval; int16_t sort[ATH9K_NF_CAL_HIST_MAX]; int i, j; for (i = 0; i < ATH9K_NF_CAL_HIST_MAX; i++) sort[i] = nfCalBuffer[i]; for (i = 0; i < ATH9K_NF_CAL_HIST_MAX - 1; i++) { for (j = 1; j < ATH9K_NF_CAL_HIST_MAX - i; j++) { if (sort[j] > sort[j - 1]) { nfval = sort[j]; sort[j] = sort[j - 1]; sort[j - 1] = nfval; } } } nfval = sort[(ATH9K_NF_CAL_HIST_MAX - 1) >> 1]; return nfval; } static void ath9k_hw_update_nfcal_hist_buffer(struct ath9k_nfcal_hist *h, int16_t *nfarray) { int i; for (i = 0; i < NUM_NF_READINGS; i++) { h[i].nfCalBuffer[h[i].currIndex] = nfarray[i]; if (++h[i].currIndex >= ATH9K_NF_CAL_HIST_MAX) h[i].currIndex = 0; if (h[i].invalidNFcount > 0) { h[i].invalidNFcount--; h[i].privNF = nfarray[i]; } else { h[i].privNF = ath9k_hw_get_nf_hist_mid(h[i].nfCalBuffer); } } } static bool ath9k_hw_get_nf_thresh(struct ath_hw *ah, enum ieee80211_band band, int16_t *nft) { switch (band) { case IEEE80211_BAND_5GHZ: *nft = (int8_t)ah->eep_ops->get_eeprom(ah, EEP_NFTHRESH_5); break; case IEEE80211_BAND_2GHZ: *nft = (int8_t)ah->eep_ops->get_eeprom(ah, EEP_NFTHRESH_2); break; default: BUG_ON(1); return false; } return true; } void ath9k_hw_reset_calibration(struct ath_hw *ah, struct ath9k_cal_list *currCal) { int i; ath9k_hw_setup_calibration(ah, currCal); currCal->calState = CAL_RUNNING; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ah->meas0.sign[i] = 0; ah->meas1.sign[i] = 0; ah->meas2.sign[i] = 0; ah->meas3.sign[i] = 0; } ah->cal_samples = 0; } /* This is done for the currently configured channel */ bool ath9k_hw_reset_calvalid(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); struct ieee80211_conf *conf = &common->hw->conf; struct ath9k_cal_list *currCal = ah->cal_list_curr; if (!ah->curchan) return true; if (!AR_SREV_9100(ah) && !AR_SREV_9160_10_OR_LATER(ah)) return true; if (currCal == NULL) return true; if (currCal->calState != CAL_DONE) { ath_print(common, ATH_DBG_CALIBRATE, "Calibration state incorrect, %d\n", currCal->calState); return true; } if (!ath9k_hw_iscal_supported(ah, currCal->calData->calType)) return true; ath_print(common, ATH_DBG_CALIBRATE, "Resetting Cal %d state for channel %u\n", currCal->calData->calType, conf->channel->center_freq); ah->curchan->CalValid &= ~currCal->calData->calType; currCal->calState = CAL_WAITING; return false; } EXPORT_SYMBOL(ath9k_hw_reset_calvalid); void ath9k_hw_start_nfcal(struct ath_hw *ah) { REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); } void ath9k_hw_loadnf(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath9k_nfcal_hist *h; unsigned i, j; int32_t val; u8 chainmask; struct ath_common *common = ath9k_hw_common(ah); if (AR_SREV_9300_20_OR_LATER(ah)) chainmask = 0x3F; else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) chainmask = 0x9; else if (AR_SREV_9280(ah) || AR_SREV_9287(ah)) { if ((ah->rxchainmask & 0x2) || (ah->rxchainmask & 0x4)) chainmask = 0x1B; else chainmask = 0x09; } else { if (ah->rxchainmask & 0x4) chainmask = 0x3F; else if (ah->rxchainmask & 0x2) chainmask = 0x1B; else chainmask = 0x09; } h = ah->nfCalHist; for (i = 0; i < NUM_NF_READINGS; i++) { if (chainmask & (1 << i)) { val = REG_READ(ah, ah->nf_regs[i]); val &= 0xFFFFFE00; val |= (((u32) (h[i].privNF) << 1) & 0x1ff); REG_WRITE(ah, ah->nf_regs[i], val); } } /* * Load software filtered NF value into baseband internal minCCApwr * variable. */ REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); /* * Wait for load to complete, should be fast, a few 10s of us. * The max delay was changed from an original 250us to 10000us * since 250us often results in NF load timeout and causes deaf * condition during stress testing 12/12/2009 */ for (j = 0; j < 1000; j++) { if ((REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0) break; udelay(10); } /* * We timed out waiting for the noisefloor to load, probably due to an * in-progress rx. Simply return here and allow the load plenty of time * to complete before the next calibration interval. We need to avoid * trying to load -50 (which happens below) while the previous load is * still in progress as this can cause rx deafness. Instead by returning * here, the baseband nf cal will just be capped by our present * noisefloor until the next calibration timer. */ if (j == 1000) { ath_print(common, ATH_DBG_ANY, "Timeout while waiting for nf " "to load: AR_PHY_AGC_CONTROL=0x%x\n", REG_READ(ah, AR_PHY_AGC_CONTROL)); return; } /* * Restore maxCCAPower register parameter again so that we're not capped * by the median we just loaded. This will be initial (and max) value * of next noise floor calibration the baseband does. */ ENABLE_REGWRITE_BUFFER(ah); for (i = 0; i < NUM_NF_READINGS; i++) { if (chainmask & (1 << i)) { val = REG_READ(ah, ah->nf_regs[i]); val &= 0xFFFFFE00; val |= (((u32) (-50) << 1) & 0x1ff); REG_WRITE(ah, ah->nf_regs[i], val); } } REGWRITE_BUFFER_FLUSH(ah); DISABLE_REGWRITE_BUFFER(ah); } static void ath9k_hw_nf_sanitize(struct ath_hw *ah, s16 *nf) { struct ath_common *common = ath9k_hw_common(ah); struct ath_nf_limits *limit; int i; if (IS_CHAN_2GHZ(ah->curchan)) limit = &ah->nf_2g; else limit = &ah->nf_5g; for (i = 0; i < NUM_NF_READINGS; i++) { if (!nf[i]) continue; ath_print(common, ATH_DBG_CALIBRATE, "NF calibrated [%s] [chain %d] is %d\n", (i > 3 ? "ext" : "ctl"), i % 3, nf[i]); if (nf[i] > limit->max) { ath_print(common, ATH_DBG_CALIBRATE, "NF[%d] (%d) > MAX (%d), correcting to MAX", i, nf[i], limit->max); nf[i] = limit->max; } else if (nf[i] < limit->min) { ath_print(common, ATH_DBG_CALIBRATE, "NF[%d] (%d) < MIN (%d), correcting to NOM", i, nf[i], limit->min); nf[i] = limit->nominal; } } } int16_t ath9k_hw_getnf(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath_common *common = ath9k_hw_common(ah); int16_t nf, nfThresh; int16_t nfarray[NUM_NF_READINGS] = { 0 }; struct ath9k_nfcal_hist *h; struct ieee80211_channel *c = chan->chan; chan->channelFlags &= (~CHANNEL_CW_INT); if (REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { ath_print(common, ATH_DBG_CALIBRATE, "NF did not complete in calibration window\n"); nf = 0; chan->rawNoiseFloor = nf; return chan->rawNoiseFloor; } else { ath9k_hw_do_getnf(ah, nfarray); ath9k_hw_nf_sanitize(ah, nfarray); nf = nfarray[0]; if (ath9k_hw_get_nf_thresh(ah, c->band, &nfThresh) && nf > nfThresh) { ath_print(common, ATH_DBG_CALIBRATE, "noise floor failed detected; " "detected %d, threshold %d\n", nf, nfThresh); chan->channelFlags |= CHANNEL_CW_INT; } } h = ah->nfCalHist; ath9k_hw_update_nfcal_hist_buffer(h, nfarray); chan->rawNoiseFloor = h[0].privNF; return chan->rawNoiseFloor; } void ath9k_init_nfcal_hist_buffer(struct ath_hw *ah) { struct ath_nf_limits *limit; int i, j; if (!ah->curchan || IS_CHAN_2GHZ(ah->curchan)) limit = &ah->nf_2g; else limit = &ah->nf_5g; for (i = 0; i < NUM_NF_READINGS; i++) { ah->nfCalHist[i].currIndex = 0; ah->nfCalHist[i].privNF = limit->nominal; ah->nfCalHist[i].invalidNFcount = AR_PHY_CCA_FILTERWINDOW_LENGTH; for (j = 0; j < ATH9K_NF_CAL_HIST_MAX; j++) { ah->nfCalHist[i].nfCalBuffer[j] = limit->nominal; } } } s16 ath9k_hw_getchan_noise(struct ath_hw *ah, struct ath9k_channel *chan) { s16 nf; if (chan->rawNoiseFloor == 0) nf = -96; else nf = chan->rawNoiseFloor; if (!ath9k_hw_nf_in_range(ah, nf)) nf = ATH_DEFAULT_NOISE_FLOOR; return nf; } EXPORT_SYMBOL(ath9k_hw_getchan_noise);