/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "mac.h" #include #include #include "hif.h" #include "core.h" #include "debug.h" #include "wmi.h" #include "htt.h" #include "txrx.h" /**********/ /* Crypto */ /**********/ static int ath10k_send_key(struct ath10k_vif *arvif, struct ieee80211_key_conf *key, enum set_key_cmd cmd, const u8 *macaddr) { struct wmi_vdev_install_key_arg arg = { .vdev_id = arvif->vdev_id, .key_idx = key->keyidx, .key_len = key->keylen, .key_data = key->key, .macaddr = macaddr, }; lockdep_assert_held(&arvif->ar->conf_mutex); if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) arg.key_flags = WMI_KEY_PAIRWISE; else arg.key_flags = WMI_KEY_GROUP; switch (key->cipher) { case WLAN_CIPHER_SUITE_CCMP: arg.key_cipher = WMI_CIPHER_AES_CCM; key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX; break; case WLAN_CIPHER_SUITE_TKIP: arg.key_cipher = WMI_CIPHER_TKIP; arg.key_txmic_len = 8; arg.key_rxmic_len = 8; break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: arg.key_cipher = WMI_CIPHER_WEP; /* AP/IBSS mode requires self-key to be groupwise * Otherwise pairwise key must be set */ if (memcmp(macaddr, arvif->vif->addr, ETH_ALEN)) arg.key_flags = WMI_KEY_PAIRWISE; break; default: ath10k_warn("cipher %d is not supported\n", key->cipher); return -EOPNOTSUPP; } if (cmd == DISABLE_KEY) { arg.key_cipher = WMI_CIPHER_NONE; arg.key_data = NULL; } return ath10k_wmi_vdev_install_key(arvif->ar, &arg); } static int ath10k_install_key(struct ath10k_vif *arvif, struct ieee80211_key_conf *key, enum set_key_cmd cmd, const u8 *macaddr) { struct ath10k *ar = arvif->ar; int ret; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->install_key_done); ret = ath10k_send_key(arvif, key, cmd, macaddr); if (ret) return ret; ret = wait_for_completion_timeout(&ar->install_key_done, 3*HZ); if (ret == 0) return -ETIMEDOUT; return 0; } static int ath10k_install_peer_wep_keys(struct ath10k_vif *arvif, const u8 *addr) { struct ath10k *ar = arvif->ar; struct ath10k_peer *peer; int ret; int i; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, addr); spin_unlock_bh(&ar->data_lock); if (!peer) return -ENOENT; for (i = 0; i < ARRAY_SIZE(arvif->wep_keys); i++) { if (arvif->wep_keys[i] == NULL) continue; ret = ath10k_install_key(arvif, arvif->wep_keys[i], SET_KEY, addr); if (ret) return ret; peer->keys[i] = arvif->wep_keys[i]; } return 0; } static int ath10k_clear_peer_keys(struct ath10k_vif *arvif, const u8 *addr) { struct ath10k *ar = arvif->ar; struct ath10k_peer *peer; int first_errno = 0; int ret; int i; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, addr); spin_unlock_bh(&ar->data_lock); if (!peer) return -ENOENT; for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { if (peer->keys[i] == NULL) continue; ret = ath10k_install_key(arvif, peer->keys[i], DISABLE_KEY, addr); if (ret && first_errno == 0) first_errno = ret; if (ret) ath10k_warn("could not remove peer wep key %d (%d)\n", i, ret); peer->keys[i] = NULL; } return first_errno; } static int ath10k_clear_vdev_key(struct ath10k_vif *arvif, struct ieee80211_key_conf *key) { struct ath10k *ar = arvif->ar; struct ath10k_peer *peer; u8 addr[ETH_ALEN]; int first_errno = 0; int ret; int i; lockdep_assert_held(&ar->conf_mutex); for (;;) { /* since ath10k_install_key we can't hold data_lock all the * time, so we try to remove the keys incrementally */ spin_lock_bh(&ar->data_lock); i = 0; list_for_each_entry(peer, &ar->peers, list) { for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { if (peer->keys[i] == key) { memcpy(addr, peer->addr, ETH_ALEN); peer->keys[i] = NULL; break; } } if (i < ARRAY_SIZE(peer->keys)) break; } spin_unlock_bh(&ar->data_lock); if (i == ARRAY_SIZE(peer->keys)) break; ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr); if (ret && first_errno == 0) first_errno = ret; if (ret) ath10k_warn("could not remove key for %pM\n", addr); } return first_errno; } /*********************/ /* General utilities */ /*********************/ static inline enum wmi_phy_mode chan_to_phymode(const struct cfg80211_chan_def *chandef) { enum wmi_phy_mode phymode = MODE_UNKNOWN; switch (chandef->chan->band) { case IEEE80211_BAND_2GHZ: switch (chandef->width) { case NL80211_CHAN_WIDTH_20_NOHT: phymode = MODE_11G; break; case NL80211_CHAN_WIDTH_20: phymode = MODE_11NG_HT20; break; case NL80211_CHAN_WIDTH_40: phymode = MODE_11NG_HT40; break; case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: phymode = MODE_UNKNOWN; break; } break; case IEEE80211_BAND_5GHZ: switch (chandef->width) { case NL80211_CHAN_WIDTH_20_NOHT: phymode = MODE_11A; break; case NL80211_CHAN_WIDTH_20: phymode = MODE_11NA_HT20; break; case NL80211_CHAN_WIDTH_40: phymode = MODE_11NA_HT40; break; case NL80211_CHAN_WIDTH_80: phymode = MODE_11AC_VHT80; break; case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: phymode = MODE_UNKNOWN; break; } break; default: break; } WARN_ON(phymode == MODE_UNKNOWN); return phymode; } static u8 ath10k_parse_mpdudensity(u8 mpdudensity) { /* * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing": * 0 for no restriction * 1 for 1/4 us * 2 for 1/2 us * 3 for 1 us * 4 for 2 us * 5 for 4 us * 6 for 8 us * 7 for 16 us */ switch (mpdudensity) { case 0: return 0; case 1: case 2: case 3: /* Our lower layer calculations limit our precision to 1 microsecond */ return 1; case 4: return 2; case 5: return 4; case 6: return 8; case 7: return 16; default: return 0; } } static int ath10k_peer_create(struct ath10k *ar, u32 vdev_id, const u8 *addr) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_peer_create(ar, vdev_id, addr); if (ret) { ath10k_warn("Failed to create wmi peer %pM on vdev %i: %i\n", addr, vdev_id, ret); return ret; } ret = ath10k_wait_for_peer_created(ar, vdev_id, addr); if (ret) { ath10k_warn("Failed to wait for created wmi peer %pM on vdev %i: %i\n", addr, vdev_id, ret); return ret; } spin_lock_bh(&ar->data_lock); ar->num_peers++; spin_unlock_bh(&ar->data_lock); return 0; } static int ath10k_mac_set_kickout(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; u32 param; int ret; param = ar->wmi.pdev_param->sta_kickout_th; ret = ath10k_wmi_pdev_set_param(ar, param, ATH10K_KICKOUT_THRESHOLD); if (ret) { ath10k_warn("Failed to set kickout threshold on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } param = ar->wmi.vdev_param->ap_keepalive_min_idle_inactive_time_secs; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, ATH10K_KEEPALIVE_MIN_IDLE); if (ret) { ath10k_warn("Failed to set keepalive minimum idle time on vdev %i : %d\n", arvif->vdev_id, ret); return ret; } param = ar->wmi.vdev_param->ap_keepalive_max_idle_inactive_time_secs; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, ATH10K_KEEPALIVE_MAX_IDLE); if (ret) { ath10k_warn("Failed to set keepalive maximum idle time on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } param = ar->wmi.vdev_param->ap_keepalive_max_unresponsive_time_secs; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, ATH10K_KEEPALIVE_MAX_UNRESPONSIVE); if (ret) { ath10k_warn("Failed to set keepalive maximum unresponsive time on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return 0; } static int ath10k_mac_set_rts(struct ath10k_vif *arvif, u32 value) { struct ath10k *ar = arvif->ar; u32 vdev_param; if (value != 0xFFFFFFFF) value = min_t(u32, arvif->ar->hw->wiphy->rts_threshold, ATH10K_RTS_MAX); vdev_param = ar->wmi.vdev_param->rts_threshold; return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value); } static int ath10k_mac_set_frag(struct ath10k_vif *arvif, u32 value) { struct ath10k *ar = arvif->ar; u32 vdev_param; if (value != 0xFFFFFFFF) value = clamp_t(u32, arvif->ar->hw->wiphy->frag_threshold, ATH10K_FRAGMT_THRESHOLD_MIN, ATH10K_FRAGMT_THRESHOLD_MAX); vdev_param = ar->wmi.vdev_param->fragmentation_threshold; return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value); } static int ath10k_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 *addr) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_peer_delete(ar, vdev_id, addr); if (ret) return ret; ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr); if (ret) return ret; spin_lock_bh(&ar->data_lock); ar->num_peers--; spin_unlock_bh(&ar->data_lock); return 0; } static void ath10k_peer_cleanup(struct ath10k *ar, u32 vdev_id) { struct ath10k_peer *peer, *tmp; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); list_for_each_entry_safe(peer, tmp, &ar->peers, list) { if (peer->vdev_id != vdev_id) continue; ath10k_warn("removing stale peer %pM from vdev_id %d\n", peer->addr, vdev_id); list_del(&peer->list); kfree(peer); ar->num_peers--; } spin_unlock_bh(&ar->data_lock); } static void ath10k_peer_cleanup_all(struct ath10k *ar) { struct ath10k_peer *peer, *tmp; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); list_for_each_entry_safe(peer, tmp, &ar->peers, list) { list_del(&peer->list); kfree(peer); } ar->num_peers = 0; spin_unlock_bh(&ar->data_lock); } /************************/ /* Interface management */ /************************/ static inline int ath10k_vdev_setup_sync(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = wait_for_completion_timeout(&ar->vdev_setup_done, ATH10K_VDEV_SETUP_TIMEOUT_HZ); if (ret == 0) return -ETIMEDOUT; return 0; } static int ath10k_vdev_start(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; struct cfg80211_chan_def *chandef = &ar->chandef; struct wmi_vdev_start_request_arg arg = {}; int ret = 0; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->vdev_setup_done); arg.vdev_id = arvif->vdev_id; arg.dtim_period = arvif->dtim_period; arg.bcn_intval = arvif->beacon_interval; arg.channel.freq = chandef->chan->center_freq; arg.channel.band_center_freq1 = chandef->center_freq1; arg.channel.mode = chan_to_phymode(chandef); arg.channel.min_power = 0; arg.channel.max_power = chandef->chan->max_power * 2; arg.channel.max_reg_power = chandef->chan->max_reg_power * 2; arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain * 2; if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { arg.ssid = arvif->u.ap.ssid; arg.ssid_len = arvif->u.ap.ssid_len; arg.hidden_ssid = arvif->u.ap.hidden_ssid; /* For now allow DFS for AP mode */ arg.channel.chan_radar = !!(chandef->chan->flags & IEEE80211_CHAN_RADAR); } else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { arg.ssid = arvif->vif->bss_conf.ssid; arg.ssid_len = arvif->vif->bss_conf.ssid_len; } ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d start center_freq %d phymode %s\n", arg.vdev_id, arg.channel.freq, ath10k_wmi_phymode_str(arg.channel.mode)); ret = ath10k_wmi_vdev_start(ar, &arg); if (ret) { ath10k_warn("WMI vdev %i start failed: ret %d\n", arg.vdev_id, ret); return ret; } ret = ath10k_vdev_setup_sync(ar); if (ret) { ath10k_warn("vdev %i setup failed %d\n", arg.vdev_id, ret); return ret; } return ret; } static int ath10k_vdev_stop(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; int ret; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->vdev_setup_done); ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id); if (ret) { ath10k_warn("WMI vdev %i stop failed: ret %d\n", arvif->vdev_id, ret); return ret; } ret = ath10k_vdev_setup_sync(ar); if (ret) { ath10k_warn("vdev %i setup sync failed %d\n", arvif->vdev_id, ret); return ret; } return ret; } static int ath10k_monitor_start(struct ath10k *ar, int vdev_id) { struct cfg80211_chan_def *chandef = &ar->chandef; struct ieee80211_channel *channel = chandef->chan; struct wmi_vdev_start_request_arg arg = {}; int ret = 0; lockdep_assert_held(&ar->conf_mutex); if (!ar->monitor_present) { ath10k_warn("mac montor stop -- monitor is not present\n"); return -EINVAL; } arg.vdev_id = vdev_id; arg.channel.freq = channel->center_freq; arg.channel.band_center_freq1 = chandef->center_freq1; /* TODO setup this dynamically, what in case we don't have any vifs? */ arg.channel.mode = chan_to_phymode(chandef); arg.channel.chan_radar = !!(channel->flags & IEEE80211_CHAN_RADAR); arg.channel.min_power = 0; arg.channel.max_power = channel->max_power * 2; arg.channel.max_reg_power = channel->max_reg_power * 2; arg.channel.max_antenna_gain = channel->max_antenna_gain * 2; ret = ath10k_wmi_vdev_start(ar, &arg); if (ret) { ath10k_warn("Monitor vdev %i start failed: ret %d\n", vdev_id, ret); return ret; } ret = ath10k_vdev_setup_sync(ar); if (ret) { ath10k_warn("Monitor vdev %i setup failed %d\n", vdev_id, ret); return ret; } ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr); if (ret) { ath10k_warn("Monitor vdev %i up failed: %d\n", vdev_id, ret); goto vdev_stop; } ar->monitor_vdev_id = vdev_id; ar->monitor_enabled = true; return 0; vdev_stop: ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id); if (ret) ath10k_warn("Monitor vdev %i stop failed: %d\n", ar->monitor_vdev_id, ret); return ret; } static int ath10k_monitor_stop(struct ath10k *ar) { int ret = 0; lockdep_assert_held(&ar->conf_mutex); if (!ar->monitor_present) { ath10k_warn("mac montor stop -- monitor is not present\n"); return -EINVAL; } if (!ar->monitor_enabled) { ath10k_warn("mac montor stop -- monitor is not enabled\n"); return -EINVAL; } ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id); if (ret) ath10k_warn("Monitor vdev %i down failed: %d\n", ar->monitor_vdev_id, ret); ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id); if (ret) ath10k_warn("Monitor vdev %i stop failed: %d\n", ar->monitor_vdev_id, ret); ret = ath10k_vdev_setup_sync(ar); if (ret) ath10k_warn("Monitor_down sync failed, vdev %i: %d\n", ar->monitor_vdev_id, ret); ar->monitor_enabled = false; return ret; } static int ath10k_monitor_create(struct ath10k *ar) { int bit, ret = 0; lockdep_assert_held(&ar->conf_mutex); if (ar->monitor_present) { ath10k_warn("Monitor mode already enabled\n"); return 0; } bit = ffs(ar->free_vdev_map); if (bit == 0) { ath10k_warn("No free VDEV slots\n"); return -ENOMEM; } ar->monitor_vdev_id = bit - 1; ar->free_vdev_map &= ~(1 << ar->monitor_vdev_id); ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id, WMI_VDEV_TYPE_MONITOR, 0, ar->mac_addr); if (ret) { ath10k_warn("WMI vdev %i monitor create failed: ret %d\n", ar->monitor_vdev_id, ret); goto vdev_fail; } ath10k_dbg(ATH10K_DBG_MAC, "mac monitor vdev %d created\n", ar->monitor_vdev_id); ar->monitor_present = true; return 0; vdev_fail: /* * Restore the ID to the global map. */ ar->free_vdev_map |= 1 << (ar->monitor_vdev_id); return ret; } static int ath10k_monitor_destroy(struct ath10k *ar) { int ret = 0; lockdep_assert_held(&ar->conf_mutex); if (!ar->monitor_present) return 0; ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id); if (ret) { ath10k_warn("WMI vdev %i monitor delete failed: %d\n", ar->monitor_vdev_id, ret); return ret; } ar->free_vdev_map |= 1 << (ar->monitor_vdev_id); ar->monitor_present = false; ath10k_dbg(ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n", ar->monitor_vdev_id); return ret; } static int ath10k_start_cac(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); set_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); ret = ath10k_monitor_create(ar); if (ret) { clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); return ret; } ret = ath10k_monitor_start(ar, ar->monitor_vdev_id); if (ret) { clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); ath10k_monitor_destroy(ar); return ret; } ath10k_dbg(ATH10K_DBG_MAC, "mac cac start monitor vdev %d\n", ar->monitor_vdev_id); return 0; } static int ath10k_stop_cac(struct ath10k *ar) { lockdep_assert_held(&ar->conf_mutex); /* CAC is not running - do nothing */ if (!test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) return 0; ath10k_monitor_stop(ar); ath10k_monitor_destroy(ar); clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); ath10k_dbg(ATH10K_DBG_MAC, "mac cac finished\n"); return 0; } static const char *ath10k_dfs_state(enum nl80211_dfs_state dfs_state) { switch (dfs_state) { case NL80211_DFS_USABLE: return "USABLE"; case NL80211_DFS_UNAVAILABLE: return "UNAVAILABLE"; case NL80211_DFS_AVAILABLE: return "AVAILABLE"; default: WARN_ON(1); return "bug"; } } static void ath10k_config_radar_detection(struct ath10k *ar) { struct ieee80211_channel *chan = ar->hw->conf.chandef.chan; bool radar = ar->hw->conf.radar_enabled; bool chan_radar = !!(chan->flags & IEEE80211_CHAN_RADAR); enum nl80211_dfs_state dfs_state = chan->dfs_state; int ret; lockdep_assert_held(&ar->conf_mutex); ath10k_dbg(ATH10K_DBG_MAC, "mac radar config update: chan %dMHz radar %d chan radar %d chan state %s\n", chan->center_freq, radar, chan_radar, ath10k_dfs_state(dfs_state)); /* * It's safe to call it even if CAC is not started. * This call here guarantees changing channel, etc. will stop CAC. */ ath10k_stop_cac(ar); if (!radar) return; if (!chan_radar) return; if (dfs_state != NL80211_DFS_USABLE) return; ret = ath10k_start_cac(ar); if (ret) { /* * Not possible to start CAC on current channel so starting * radiation is not allowed, make this channel DFS_UNAVAILABLE * by indicating that radar was detected. */ ath10k_warn("failed to start CAC (%d)\n", ret); ieee80211_radar_detected(ar->hw); } } static void ath10k_control_beaconing(struct ath10k_vif *arvif, struct ieee80211_bss_conf *info) { int ret = 0; lockdep_assert_held(&arvif->ar->conf_mutex); if (!info->enable_beacon) { ath10k_vdev_stop(arvif); arvif->is_started = false; arvif->is_up = false; spin_lock_bh(&arvif->ar->data_lock); if (arvif->beacon) { dma_unmap_single(arvif->ar->dev, ATH10K_SKB_CB(arvif->beacon)->paddr, arvif->beacon->len, DMA_TO_DEVICE); dev_kfree_skb_any(arvif->beacon); arvif->beacon = NULL; arvif->beacon_sent = false; } spin_unlock_bh(&arvif->ar->data_lock); return; } arvif->tx_seq_no = 0x1000; ret = ath10k_vdev_start(arvif); if (ret) return; arvif->aid = 0; memcpy(arvif->bssid, info->bssid, ETH_ALEN); ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, arvif->bssid); if (ret) { ath10k_warn("Failed to bring up vdev %d: %i\n", arvif->vdev_id, ret); ath10k_vdev_stop(arvif); return; } arvif->is_started = true; arvif->is_up = true; ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id); } static void ath10k_control_ibss(struct ath10k_vif *arvif, struct ieee80211_bss_conf *info, const u8 self_peer[ETH_ALEN]) { u32 vdev_param; int ret = 0; lockdep_assert_held(&arvif->ar->conf_mutex); if (!info->ibss_joined) { ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, self_peer); if (ret) ath10k_warn("Failed to delete IBSS self peer:%pM for VDEV:%d ret:%d\n", self_peer, arvif->vdev_id, ret); if (is_zero_ether_addr(arvif->bssid)) return; ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, arvif->bssid); if (ret) { ath10k_warn("Failed to delete IBSS BSSID peer:%pM for VDEV:%d ret:%d\n", arvif->bssid, arvif->vdev_id, ret); return; } memset(arvif->bssid, 0, ETH_ALEN); return; } ret = ath10k_peer_create(arvif->ar, arvif->vdev_id, self_peer); if (ret) { ath10k_warn("Failed to create IBSS self peer:%pM for VDEV:%d ret:%d\n", self_peer, arvif->vdev_id, ret); return; } vdev_param = arvif->ar->wmi.vdev_param->atim_window; ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param, ATH10K_DEFAULT_ATIM); if (ret) ath10k_warn("Failed to set IBSS ATIM for VDEV:%d ret:%d\n", arvif->vdev_id, ret); } /* * Review this when mac80211 gains per-interface powersave support. */ static int ath10k_mac_vif_setup_ps(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; struct ieee80211_conf *conf = &ar->hw->conf; enum wmi_sta_powersave_param param; enum wmi_sta_ps_mode psmode; int ret; lockdep_assert_held(&arvif->ar->conf_mutex); if (arvif->vif->type != NL80211_IFTYPE_STATION) return 0; if (conf->flags & IEEE80211_CONF_PS) { psmode = WMI_STA_PS_MODE_ENABLED; param = WMI_STA_PS_PARAM_INACTIVITY_TIME; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, conf->dynamic_ps_timeout); if (ret) { ath10k_warn("Failed to set inactivity time for vdev %d: %i\n", arvif->vdev_id, ret); return ret; } } else { psmode = WMI_STA_PS_MODE_DISABLED; } ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d psmode %s\n", arvif->vdev_id, psmode ? "enable" : "disable"); ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode); if (ret) { ath10k_warn("Failed to set PS Mode: %d for VDEV: %d\n", psmode, arvif->vdev_id); return ret; } return 0; } /**********************/ /* Station management */ /**********************/ static void ath10k_peer_assoc_h_basic(struct ath10k *ar, struct ath10k_vif *arvif, struct ieee80211_sta *sta, struct ieee80211_bss_conf *bss_conf, struct wmi_peer_assoc_complete_arg *arg) { lockdep_assert_held(&ar->conf_mutex); memcpy(arg->addr, sta->addr, ETH_ALEN); arg->vdev_id = arvif->vdev_id; arg->peer_aid = sta->aid; arg->peer_flags |= WMI_PEER_AUTH; if (arvif->vdev_type == WMI_VDEV_TYPE_STA) /* * Seems FW have problems with Power Save in STA * mode when we setup this parameter to high (eg. 5). * Often we see that FW don't send NULL (with clean P flags) * frame even there is info about buffered frames in beacons. * Sometimes we have to wait more than 10 seconds before FW * will wakeup. Often sending one ping from AP to our device * just fail (more than 50%). * * Seems setting this FW parameter to 1 couse FW * will check every beacon and will wakup immediately * after detection buffered data. */ arg->peer_listen_intval = 1; else arg->peer_listen_intval = ar->hw->conf.listen_interval; arg->peer_num_spatial_streams = 1; /* * The assoc capabilities are available only in managed mode. */ if (arvif->vdev_type == WMI_VDEV_TYPE_STA && bss_conf) arg->peer_caps = bss_conf->assoc_capability; } static void ath10k_peer_assoc_h_crypto(struct ath10k *ar, struct ath10k_vif *arvif, struct wmi_peer_assoc_complete_arg *arg) { struct ieee80211_vif *vif = arvif->vif; struct ieee80211_bss_conf *info = &vif->bss_conf; struct cfg80211_bss *bss; const u8 *rsnie = NULL; const u8 *wpaie = NULL; lockdep_assert_held(&ar->conf_mutex); bss = cfg80211_get_bss(ar->hw->wiphy, ar->hw->conf.chandef.chan, info->bssid, NULL, 0, 0, 0); if (bss) { const struct cfg80211_bss_ies *ies; rcu_read_lock(); rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN); ies = rcu_dereference(bss->ies); wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, WLAN_OUI_TYPE_MICROSOFT_WPA, ies->data, ies->len); rcu_read_unlock(); cfg80211_put_bss(ar->hw->wiphy, bss); } /* FIXME: base on RSN IE/WPA IE is a correct idea? */ if (rsnie || wpaie) { ath10k_dbg(ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__); arg->peer_flags |= WMI_PEER_NEED_PTK_4_WAY; } if (wpaie) { ath10k_dbg(ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__); arg->peer_flags |= WMI_PEER_NEED_GTK_2_WAY; } } static void ath10k_peer_assoc_h_rates(struct ath10k *ar, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates; const struct ieee80211_supported_band *sband; const struct ieee80211_rate *rates; u32 ratemask; int i; lockdep_assert_held(&ar->conf_mutex); sband = ar->hw->wiphy->bands[ar->hw->conf.chandef.chan->band]; ratemask = sta->supp_rates[ar->hw->conf.chandef.chan->band]; rates = sband->bitrates; rateset->num_rates = 0; for (i = 0; i < 32; i++, ratemask >>= 1, rates++) { if (!(ratemask & 1)) continue; rateset->rates[rateset->num_rates] = rates->hw_value; rateset->num_rates++; } } static void ath10k_peer_assoc_h_ht(struct ath10k *ar, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { const struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap; int i, n; lockdep_assert_held(&ar->conf_mutex); if (!ht_cap->ht_supported) return; arg->peer_flags |= WMI_PEER_HT; arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + ht_cap->ampdu_factor)) - 1; arg->peer_mpdu_density = ath10k_parse_mpdudensity(ht_cap->ampdu_density); arg->peer_ht_caps = ht_cap->cap; arg->peer_rate_caps |= WMI_RC_HT_FLAG; if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING) arg->peer_flags |= WMI_PEER_LDPC; if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) { arg->peer_flags |= WMI_PEER_40MHZ; arg->peer_rate_caps |= WMI_RC_CW40_FLAG; } if (ht_cap->cap & IEEE80211_HT_CAP_SGI_20) arg->peer_rate_caps |= WMI_RC_SGI_FLAG; if (ht_cap->cap & IEEE80211_HT_CAP_SGI_40) arg->peer_rate_caps |= WMI_RC_SGI_FLAG; if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) { arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG; arg->peer_flags |= WMI_PEER_STBC; } if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) { u32 stbc; stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC; stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT; stbc = stbc << WMI_RC_RX_STBC_FLAG_S; arg->peer_rate_caps |= stbc; arg->peer_flags |= WMI_PEER_STBC; } if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2]) arg->peer_rate_caps |= WMI_RC_TS_FLAG; else if (ht_cap->mcs.rx_mask[1]) arg->peer_rate_caps |= WMI_RC_DS_FLAG; for (i = 0, n = 0; i < IEEE80211_HT_MCS_MASK_LEN*8; i++) if (ht_cap->mcs.rx_mask[i/8] & (1 << i%8)) arg->peer_ht_rates.rates[n++] = i; /* * This is a workaround for HT-enabled STAs which break the spec * and have no HT capabilities RX mask (no HT RX MCS map). * * As per spec, in section 20.3.5 Modulation and coding scheme (MCS), * MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs. * * Firmware asserts if such situation occurs. */ if (n == 0) { arg->peer_ht_rates.num_rates = 8; for (i = 0; i < arg->peer_ht_rates.num_rates; i++) arg->peer_ht_rates.rates[i] = i; } else { arg->peer_ht_rates.num_rates = n; arg->peer_num_spatial_streams = sta->rx_nss; } ath10k_dbg(ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n", arg->addr, arg->peer_ht_rates.num_rates, arg->peer_num_spatial_streams); } static int ath10k_peer_assoc_qos_ap(struct ath10k *ar, struct ath10k_vif *arvif, struct ieee80211_sta *sta) { u32 uapsd = 0; u32 max_sp = 0; int ret = 0; lockdep_assert_held(&ar->conf_mutex); if (sta->wme && sta->uapsd_queues) { ath10k_dbg(ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n", sta->uapsd_queues, sta->max_sp); if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN | WMI_AP_PS_UAPSD_AC3_TRIGGER_EN; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI) uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN | WMI_AP_PS_UAPSD_AC2_TRIGGER_EN; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK) uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN | WMI_AP_PS_UAPSD_AC1_TRIGGER_EN; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE) uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN | WMI_AP_PS_UAPSD_AC0_TRIGGER_EN; if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP) max_sp = sta->max_sp; ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr, WMI_AP_PS_PEER_PARAM_UAPSD, uapsd); if (ret) { ath10k_warn("failed to set ap ps peer param uapsd for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr, WMI_AP_PS_PEER_PARAM_MAX_SP, max_sp); if (ret) { ath10k_warn("failed to set ap ps peer param max sp for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } /* TODO setup this based on STA listen interval and beacon interval. Currently we don't know sta->listen_interval - mac80211 patch required. Currently use 10 seconds */ ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr, WMI_AP_PS_PEER_PARAM_AGEOUT_TIME, 10); if (ret) { ath10k_warn("failed to set ap ps peer param ageout time for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } } return 0; } static void ath10k_peer_assoc_h_vht(struct ath10k *ar, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { const struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap; u8 ampdu_factor; if (!vht_cap->vht_supported) return; arg->peer_flags |= WMI_PEER_VHT; arg->peer_vht_caps = vht_cap->cap; ampdu_factor = (vht_cap->cap & IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >> IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; /* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to * zero in VHT IE. Using it would result in degraded throughput. * arg->peer_max_mpdu at this point contains HT max_mpdu so keep * it if VHT max_mpdu is smaller. */ arg->peer_max_mpdu = max(arg->peer_max_mpdu, (1U << (IEEE80211_HT_MAX_AMPDU_FACTOR + ampdu_factor)) - 1); if (sta->bandwidth == IEEE80211_STA_RX_BW_80) arg->peer_flags |= WMI_PEER_80MHZ; arg->peer_vht_rates.rx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.rx_highest); arg->peer_vht_rates.rx_mcs_set = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map); arg->peer_vht_rates.tx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.tx_highest); arg->peer_vht_rates.tx_mcs_set = __le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map); ath10k_dbg(ATH10K_DBG_MAC, "mac vht peer %pM max_mpdu %d flags 0x%x\n", sta->addr, arg->peer_max_mpdu, arg->peer_flags); } static void ath10k_peer_assoc_h_qos(struct ath10k *ar, struct ath10k_vif *arvif, struct ieee80211_sta *sta, struct ieee80211_bss_conf *bss_conf, struct wmi_peer_assoc_complete_arg *arg) { switch (arvif->vdev_type) { case WMI_VDEV_TYPE_AP: if (sta->wme) arg->peer_flags |= WMI_PEER_QOS; if (sta->wme && sta->uapsd_queues) { arg->peer_flags |= WMI_PEER_APSD; arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG; } break; case WMI_VDEV_TYPE_STA: if (bss_conf->qos) arg->peer_flags |= WMI_PEER_QOS; break; default: break; } } static void ath10k_peer_assoc_h_phymode(struct ath10k *ar, struct ath10k_vif *arvif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { enum wmi_phy_mode phymode = MODE_UNKNOWN; switch (ar->hw->conf.chandef.chan->band) { case IEEE80211_BAND_2GHZ: if (sta->ht_cap.ht_supported) { if (sta->bandwidth == IEEE80211_STA_RX_BW_40) phymode = MODE_11NG_HT40; else phymode = MODE_11NG_HT20; } else { phymode = MODE_11G; } break; case IEEE80211_BAND_5GHZ: /* * Check VHT first. */ if (sta->vht_cap.vht_supported) { if (sta->bandwidth == IEEE80211_STA_RX_BW_80) phymode = MODE_11AC_VHT80; else if (sta->bandwidth == IEEE80211_STA_RX_BW_40) phymode = MODE_11AC_VHT40; else if (sta->bandwidth == IEEE80211_STA_RX_BW_20) phymode = MODE_11AC_VHT20; } else if (sta->ht_cap.ht_supported) { if (sta->bandwidth == IEEE80211_STA_RX_BW_40) phymode = MODE_11NA_HT40; else phymode = MODE_11NA_HT20; } else { phymode = MODE_11A; } break; default: break; } ath10k_dbg(ATH10K_DBG_MAC, "mac peer %pM phymode %s\n", sta->addr, ath10k_wmi_phymode_str(phymode)); arg->peer_phymode = phymode; WARN_ON(phymode == MODE_UNKNOWN); } static int ath10k_peer_assoc_prepare(struct ath10k *ar, struct ath10k_vif *arvif, struct ieee80211_sta *sta, struct ieee80211_bss_conf *bss_conf, struct wmi_peer_assoc_complete_arg *arg) { lockdep_assert_held(&ar->conf_mutex); memset(arg, 0, sizeof(*arg)); ath10k_peer_assoc_h_basic(ar, arvif, sta, bss_conf, arg); ath10k_peer_assoc_h_crypto(ar, arvif, arg); ath10k_peer_assoc_h_rates(ar, sta, arg); ath10k_peer_assoc_h_ht(ar, sta, arg); ath10k_peer_assoc_h_vht(ar, sta, arg); ath10k_peer_assoc_h_qos(ar, arvif, sta, bss_conf, arg); ath10k_peer_assoc_h_phymode(ar, arvif, sta, arg); return 0; } static const u32 ath10k_smps_map[] = { [WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC, [WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC, [WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE, [WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE, }; static int ath10k_setup_peer_smps(struct ath10k *ar, struct ath10k_vif *arvif, const u8 *addr, const struct ieee80211_sta_ht_cap *ht_cap) { int smps; if (!ht_cap->ht_supported) return 0; smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS; smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT; if (smps >= ARRAY_SIZE(ath10k_smps_map)) return -EINVAL; return ath10k_wmi_peer_set_param(ar, arvif->vdev_id, addr, WMI_PEER_SMPS_STATE, ath10k_smps_map[smps]); } /* can be called only in mac80211 callbacks due to `key_count` usage */ static void ath10k_bss_assoc(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct ieee80211_sta_ht_cap ht_cap; struct wmi_peer_assoc_complete_arg peer_arg; struct ieee80211_sta *ap_sta; int ret; lockdep_assert_held(&ar->conf_mutex); rcu_read_lock(); ap_sta = ieee80211_find_sta(vif, bss_conf->bssid); if (!ap_sta) { ath10k_warn("Failed to find station entry for %pM, vdev %i\n", bss_conf->bssid, arvif->vdev_id); rcu_read_unlock(); return; } /* ap_sta must be accessed only within rcu section which must be left * before calling ath10k_setup_peer_smps() which might sleep. */ ht_cap = ap_sta->ht_cap; ret = ath10k_peer_assoc_prepare(ar, arvif, ap_sta, bss_conf, &peer_arg); if (ret) { ath10k_warn("Peer assoc prepare failed for %pM vdev %i\n: %d", bss_conf->bssid, arvif->vdev_id, ret); rcu_read_unlock(); return; } rcu_read_unlock(); ret = ath10k_wmi_peer_assoc(ar, &peer_arg); if (ret) { ath10k_warn("Peer assoc failed for %pM vdev %i\n: %d", bss_conf->bssid, arvif->vdev_id, ret); return; } ret = ath10k_setup_peer_smps(ar, arvif, bss_conf->bssid, &ht_cap); if (ret) { ath10k_warn("failed to setup peer SMPS for vdev %i: %d\n", arvif->vdev_id, ret); return; } ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d up (associated) bssid %pM aid %d\n", arvif->vdev_id, bss_conf->bssid, bss_conf->aid); arvif->aid = bss_conf->aid; memcpy(arvif->bssid, bss_conf->bssid, ETH_ALEN); ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid); if (ret) { ath10k_warn("VDEV: %d up failed: ret %d\n", arvif->vdev_id, ret); return; } arvif->is_up = true; } /* * FIXME: flush TIDs */ static void ath10k_bss_disassoc(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); int ret; lockdep_assert_held(&ar->conf_mutex); /* * For some reason, calling VDEV-DOWN before VDEV-STOP * makes the FW to send frames via HTT after disassociation. * No idea why this happens, even though VDEV-DOWN is supposed * to be analogous to link down, so just stop the VDEV. */ ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d stop (disassociated\n", arvif->vdev_id); /* FIXME: check return value */ ret = ath10k_vdev_stop(arvif); /* * If we don't call VDEV-DOWN after VDEV-STOP FW will remain active and * report beacons from previously associated network through HTT. * This in turn would spam mac80211 WARN_ON if we bring down all * interfaces as it expects there is no rx when no interface is * running. */ ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d down\n", arvif->vdev_id); /* FIXME: why don't we print error if wmi call fails? */ ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); arvif->def_wep_key_idx = 0; arvif->is_started = false; arvif->is_up = false; } static int ath10k_station_assoc(struct ath10k *ar, struct ath10k_vif *arvif, struct ieee80211_sta *sta) { struct wmi_peer_assoc_complete_arg peer_arg; int ret = 0; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_peer_assoc_prepare(ar, arvif, sta, NULL, &peer_arg); if (ret) { ath10k_warn("WMI peer assoc prepare failed for %pM vdev %i: %i\n", sta->addr, arvif->vdev_id, ret); return ret; } ret = ath10k_wmi_peer_assoc(ar, &peer_arg); if (ret) { ath10k_warn("Peer assoc failed for STA %pM vdev %i: %d\n", sta->addr, arvif->vdev_id, ret); return ret; } ret = ath10k_setup_peer_smps(ar, arvif, sta->addr, &sta->ht_cap); if (ret) { ath10k_warn("failed to setup peer SMPS for vdev: %d\n", ret); return ret; } ret = ath10k_install_peer_wep_keys(arvif, sta->addr); if (ret) { ath10k_warn("could not install peer wep keys for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } ret = ath10k_peer_assoc_qos_ap(ar, arvif, sta); if (ret) { ath10k_warn("could not set qos params for STA %pM for vdev %i: %d\n", sta->addr, arvif->vdev_id, ret); return ret; } return ret; } static int ath10k_station_disassoc(struct ath10k *ar, struct ath10k_vif *arvif, struct ieee80211_sta *sta) { int ret = 0; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_clear_peer_keys(arvif, sta->addr); if (ret) { ath10k_warn("could not clear all peer wep keys for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return ret; } /**************/ /* Regulatory */ /**************/ static int ath10k_update_channel_list(struct ath10k *ar) { struct ieee80211_hw *hw = ar->hw; struct ieee80211_supported_band **bands; enum ieee80211_band band; struct ieee80211_channel *channel; struct wmi_scan_chan_list_arg arg = {0}; struct wmi_channel_arg *ch; bool passive; int len; int ret; int i; lockdep_assert_held(&ar->conf_mutex); bands = hw->wiphy->bands; for (band = 0; band < IEEE80211_NUM_BANDS; band++) { if (!bands[band]) continue; for (i = 0; i < bands[band]->n_channels; i++) { if (bands[band]->channels[i].flags & IEEE80211_CHAN_DISABLED) continue; arg.n_channels++; } } len = sizeof(struct wmi_channel_arg) * arg.n_channels; arg.channels = kzalloc(len, GFP_KERNEL); if (!arg.channels) return -ENOMEM; ch = arg.channels; for (band = 0; band < IEEE80211_NUM_BANDS; band++) { if (!bands[band]) continue; for (i = 0; i < bands[band]->n_channels; i++) { channel = &bands[band]->channels[i]; if (channel->flags & IEEE80211_CHAN_DISABLED) continue; ch->allow_ht = true; /* FIXME: when should we really allow VHT? */ ch->allow_vht = true; ch->allow_ibss = !(channel->flags & IEEE80211_CHAN_NO_IR); ch->ht40plus = !(channel->flags & IEEE80211_CHAN_NO_HT40PLUS); ch->chan_radar = !!(channel->flags & IEEE80211_CHAN_RADAR); passive = channel->flags & IEEE80211_CHAN_NO_IR; ch->passive = passive; ch->freq = channel->center_freq; ch->min_power = 0; ch->max_power = channel->max_power * 2; ch->max_reg_power = channel->max_reg_power * 2; ch->max_antenna_gain = channel->max_antenna_gain * 2; ch->reg_class_id = 0; /* FIXME */ /* FIXME: why use only legacy modes, why not any * HT/VHT modes? Would that even make any * difference? */ if (channel->band == IEEE80211_BAND_2GHZ) ch->mode = MODE_11G; else ch->mode = MODE_11A; if (WARN_ON_ONCE(ch->mode == MODE_UNKNOWN)) continue; ath10k_dbg(ATH10K_DBG_WMI, "mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n", ch - arg.channels, arg.n_channels, ch->freq, ch->max_power, ch->max_reg_power, ch->max_antenna_gain, ch->mode); ch++; } } ret = ath10k_wmi_scan_chan_list(ar, &arg); kfree(arg.channels); return ret; } static void ath10k_regd_update(struct ath10k *ar) { struct reg_dmn_pair_mapping *regpair; int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_update_channel_list(ar); if (ret) ath10k_warn("could not update channel list (%d)\n", ret); regpair = ar->ath_common.regulatory.regpair; /* Target allows setting up per-band regdomain but ath_common provides * a combined one only */ ret = ath10k_wmi_pdev_set_regdomain(ar, regpair->reg_domain, regpair->reg_domain, /* 2ghz */ regpair->reg_domain, /* 5ghz */ regpair->reg_2ghz_ctl, regpair->reg_5ghz_ctl); if (ret) ath10k_warn("could not set pdev regdomain (%d)\n", ret); } static void ath10k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct ath10k *ar = hw->priv; bool result; ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory); if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) { ath10k_dbg(ATH10K_DBG_REGULATORY, "dfs region 0x%x\n", request->dfs_region); result = ar->dfs_detector->set_dfs_domain(ar->dfs_detector, request->dfs_region); if (!result) ath10k_warn("dfs region 0x%X not supported, will trigger radar for every pulse\n", request->dfs_region); } mutex_lock(&ar->conf_mutex); if (ar->state == ATH10K_STATE_ON) ath10k_regd_update(ar); mutex_unlock(&ar->conf_mutex); } /***************/ /* TX handlers */ /***************/ static u8 ath10k_tx_h_get_tid(struct ieee80211_hdr *hdr) { if (ieee80211_is_mgmt(hdr->frame_control)) return HTT_DATA_TX_EXT_TID_MGMT; if (!ieee80211_is_data_qos(hdr->frame_control)) return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST; if (!is_unicast_ether_addr(ieee80211_get_DA(hdr))) return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST; return ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK; } static u8 ath10k_tx_h_get_vdev_id(struct ath10k *ar, struct ieee80211_tx_info *info) { if (info->control.vif) return ath10k_vif_to_arvif(info->control.vif)->vdev_id; if (ar->monitor_enabled) return ar->monitor_vdev_id; ath10k_warn("could not resolve vdev id\n"); return 0; } /* * Frames sent to the FW have to be in "Native Wifi" format. * Strip the QoS field from the 802.11 header. */ static void ath10k_tx_h_qos_workaround(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (void *)skb->data; u8 *qos_ctl; if (!ieee80211_is_data_qos(hdr->frame_control)) return; qos_ctl = ieee80211_get_qos_ctl(hdr); memmove(skb->data + IEEE80211_QOS_CTL_LEN, skb->data, (void *)qos_ctl - (void *)skb->data); skb_pull(skb, IEEE80211_QOS_CTL_LEN); } static void ath10k_tx_wep_key_work(struct work_struct *work) { struct ath10k_vif *arvif = container_of(work, struct ath10k_vif, wep_key_work); int ret, keyidx = arvif->def_wep_key_newidx; if (arvif->def_wep_key_idx == keyidx) return; ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n", arvif->vdev_id, keyidx); ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, arvif->ar->wmi.vdev_param->def_keyid, keyidx); if (ret) { ath10k_warn("could not update wep keyidx (%d)\n", ret); return; } arvif->def_wep_key_idx = keyidx; } static void ath10k_tx_h_update_wep_key(struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_vif *vif = info->control.vif; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct ath10k *ar = arvif->ar; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_key_conf *key = info->control.hw_key; if (!ieee80211_has_protected(hdr->frame_control)) return; if (!key) return; if (key->cipher != WLAN_CIPHER_SUITE_WEP40 && key->cipher != WLAN_CIPHER_SUITE_WEP104) return; if (key->keyidx == arvif->def_wep_key_idx) return; /* FIXME: Most likely a few frames will be TXed with an old key. Simply * queueing frames until key index is updated is not an option because * sk_buff may need more processing to be done, e.g. offchannel */ arvif->def_wep_key_newidx = key->keyidx; ieee80211_queue_work(ar->hw, &arvif->wep_key_work); } static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k *ar, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_vif *vif = info->control.vif; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); /* This is case only for P2P_GO */ if (arvif->vdev_type != WMI_VDEV_TYPE_AP || arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO) return; if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) { spin_lock_bh(&ar->data_lock); if (arvif->u.ap.noa_data) if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len, GFP_ATOMIC)) memcpy(skb_put(skb, arvif->u.ap.noa_len), arvif->u.ap.noa_data, arvif->u.ap.noa_len); spin_unlock_bh(&ar->data_lock); } } static void ath10k_tx_htt(struct ath10k *ar, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; int ret = 0; if (ar->htt.target_version_major >= 3) { /* Since HTT 3.0 there is no separate mgmt tx command */ ret = ath10k_htt_tx(&ar->htt, skb); goto exit; } if (ieee80211_is_mgmt(hdr->frame_control)) { if (test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX, ar->fw_features)) { if (skb_queue_len(&ar->wmi_mgmt_tx_queue) >= ATH10K_MAX_NUM_MGMT_PENDING) { ath10k_warn("wmi mgmt_tx queue limit reached\n"); ret = -EBUSY; goto exit; } skb_queue_tail(&ar->wmi_mgmt_tx_queue, skb); ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work); } else { ret = ath10k_htt_mgmt_tx(&ar->htt, skb); } } else if (!test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX, ar->fw_features) && ieee80211_is_nullfunc(hdr->frame_control)) { /* FW does not report tx status properly for NullFunc frames * unless they are sent through mgmt tx path. mac80211 sends * those frames when it detects link/beacon loss and depends * on the tx status to be correct. */ ret = ath10k_htt_mgmt_tx(&ar->htt, skb); } else { ret = ath10k_htt_tx(&ar->htt, skb); } exit: if (ret) { ath10k_warn("tx failed (%d). dropping packet.\n", ret); ieee80211_free_txskb(ar->hw, skb); } } void ath10k_offchan_tx_purge(struct ath10k *ar) { struct sk_buff *skb; for (;;) { skb = skb_dequeue(&ar->offchan_tx_queue); if (!skb) break; ieee80211_free_txskb(ar->hw, skb); } } void ath10k_offchan_tx_work(struct work_struct *work) { struct ath10k *ar = container_of(work, struct ath10k, offchan_tx_work); struct ath10k_peer *peer; struct ieee80211_hdr *hdr; struct sk_buff *skb; const u8 *peer_addr; int vdev_id; int ret; /* FW requirement: We must create a peer before FW will send out * an offchannel frame. Otherwise the frame will be stuck and * never transmitted. We delete the peer upon tx completion. * It is unlikely that a peer for offchannel tx will already be * present. However it may be in some rare cases so account for that. * Otherwise we might remove a legitimate peer and break stuff. */ for (;;) { skb = skb_dequeue(&ar->offchan_tx_queue); if (!skb) break; mutex_lock(&ar->conf_mutex); ath10k_dbg(ATH10K_DBG_MAC, "mac offchannel skb %p\n", skb); hdr = (struct ieee80211_hdr *)skb->data; peer_addr = ieee80211_get_DA(hdr); vdev_id = ATH10K_SKB_CB(skb)->vdev_id; spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, vdev_id, peer_addr); spin_unlock_bh(&ar->data_lock); if (peer) /* FIXME: should this use ath10k_warn()? */ ath10k_dbg(ATH10K_DBG_MAC, "peer %pM on vdev %d already present\n", peer_addr, vdev_id); if (!peer) { ret = ath10k_peer_create(ar, vdev_id, peer_addr); if (ret) ath10k_warn("peer %pM on vdev %d not created (%d)\n", peer_addr, vdev_id, ret); } spin_lock_bh(&ar->data_lock); reinit_completion(&ar->offchan_tx_completed); ar->offchan_tx_skb = skb; spin_unlock_bh(&ar->data_lock); ath10k_tx_htt(ar, skb); ret = wait_for_completion_timeout(&ar->offchan_tx_completed, 3 * HZ); if (ret <= 0) ath10k_warn("timed out waiting for offchannel skb %p\n", skb); if (!peer) { ret = ath10k_peer_delete(ar, vdev_id, peer_addr); if (ret) ath10k_warn("peer %pM on vdev %d not deleted (%d)\n", peer_addr, vdev_id, ret); } mutex_unlock(&ar->conf_mutex); } } void ath10k_mgmt_over_wmi_tx_purge(struct ath10k *ar) { struct sk_buff *skb; for (;;) { skb = skb_dequeue(&ar->wmi_mgmt_tx_queue); if (!skb) break; ieee80211_free_txskb(ar->hw, skb); } } void ath10k_mgmt_over_wmi_tx_work(struct work_struct *work) { struct ath10k *ar = container_of(work, struct ath10k, wmi_mgmt_tx_work); struct sk_buff *skb; int ret; for (;;) { skb = skb_dequeue(&ar->wmi_mgmt_tx_queue); if (!skb) break; ret = ath10k_wmi_mgmt_tx(ar, skb); if (ret) { ath10k_warn("wmi mgmt_tx failed (%d)\n", ret); ieee80211_free_txskb(ar->hw, skb); } } } /************/ /* Scanning */ /************/ /* * This gets called if we dont get a heart-beat during scan. * This may indicate the FW has hung and we need to abort the * scan manually to prevent cancel_hw_scan() from deadlocking */ void ath10k_reset_scan(unsigned long ptr) { struct ath10k *ar = (struct ath10k *)ptr; spin_lock_bh(&ar->data_lock); if (!ar->scan.in_progress) { spin_unlock_bh(&ar->data_lock); return; } ath10k_warn("scan timeout. resetting. fw issue?\n"); if (ar->scan.is_roc) ieee80211_remain_on_channel_expired(ar->hw); else ieee80211_scan_completed(ar->hw, 1 /* aborted */); ar->scan.in_progress = false; complete_all(&ar->scan.completed); spin_unlock_bh(&ar->data_lock); } static int ath10k_abort_scan(struct ath10k *ar) { struct wmi_stop_scan_arg arg = { .req_id = 1, /* FIXME */ .req_type = WMI_SCAN_STOP_ONE, .u.scan_id = ATH10K_SCAN_ID, }; int ret; lockdep_assert_held(&ar->conf_mutex); del_timer_sync(&ar->scan.timeout); spin_lock_bh(&ar->data_lock); if (!ar->scan.in_progress) { spin_unlock_bh(&ar->data_lock); return 0; } ar->scan.aborting = true; spin_unlock_bh(&ar->data_lock); ret = ath10k_wmi_stop_scan(ar, &arg); if (ret) { ath10k_warn("could not submit wmi stop scan (%d)\n", ret); spin_lock_bh(&ar->data_lock); ar->scan.in_progress = false; ath10k_offchan_tx_purge(ar); spin_unlock_bh(&ar->data_lock); return -EIO; } ret = wait_for_completion_timeout(&ar->scan.completed, 3*HZ); if (ret == 0) ath10k_warn("timed out while waiting for scan to stop\n"); /* scan completion may be done right after we timeout here, so let's * check the in_progress and tell mac80211 scan is completed. if we * don't do that and FW fails to send us scan completion indication * then userspace won't be able to scan anymore */ ret = 0; spin_lock_bh(&ar->data_lock); if (ar->scan.in_progress) { ath10k_warn("could not stop scan. its still in progress\n"); ar->scan.in_progress = false; ath10k_offchan_tx_purge(ar); ret = -ETIMEDOUT; } spin_unlock_bh(&ar->data_lock); return ret; } static int ath10k_start_scan(struct ath10k *ar, const struct wmi_start_scan_arg *arg) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_start_scan(ar, arg); if (ret) return ret; ret = wait_for_completion_timeout(&ar->scan.started, 1*HZ); if (ret == 0) { ath10k_abort_scan(ar); return ret; } /* the scan can complete earlier, before we even * start the timer. in that case the timer handler * checks ar->scan.in_progress and bails out if its * false. Add a 200ms margin to account event/command * processing. */ mod_timer(&ar->scan.timeout, jiffies + msecs_to_jiffies(arg->max_scan_time+200)); return 0; } /**********************/ /* mac80211 callbacks */ /**********************/ static void ath10k_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ath10k *ar = hw->priv; u8 tid, vdev_id; /* We should disable CCK RATE due to P2P */ if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE) ath10k_dbg(ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n"); /* we must calculate tid before we apply qos workaround * as we'd lose the qos control field */ tid = ath10k_tx_h_get_tid(hdr); vdev_id = ath10k_tx_h_get_vdev_id(ar, info); /* it makes no sense to process injected frames like that */ if (info->control.vif && info->control.vif->type != NL80211_IFTYPE_MONITOR) { ath10k_tx_h_qos_workaround(hw, control, skb); ath10k_tx_h_update_wep_key(skb); ath10k_tx_h_add_p2p_noa_ie(ar, skb); ath10k_tx_h_seq_no(skb); } ATH10K_SKB_CB(skb)->vdev_id = vdev_id; ATH10K_SKB_CB(skb)->htt.is_offchan = false; ATH10K_SKB_CB(skb)->htt.tid = tid; if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) { spin_lock_bh(&ar->data_lock); ATH10K_SKB_CB(skb)->htt.is_offchan = true; ATH10K_SKB_CB(skb)->vdev_id = ar->scan.vdev_id; spin_unlock_bh(&ar->data_lock); ath10k_dbg(ATH10K_DBG_MAC, "queued offchannel skb %p\n", skb); skb_queue_tail(&ar->offchan_tx_queue, skb); ieee80211_queue_work(hw, &ar->offchan_tx_work); return; } ath10k_tx_htt(ar, skb); } /* * Initialize various parameters with default vaules. */ void ath10k_halt(struct ath10k *ar) { lockdep_assert_held(&ar->conf_mutex); ath10k_stop_cac(ar); del_timer_sync(&ar->scan.timeout); ath10k_offchan_tx_purge(ar); ath10k_mgmt_over_wmi_tx_purge(ar); ath10k_peer_cleanup_all(ar); ath10k_core_stop(ar); ath10k_hif_power_down(ar); spin_lock_bh(&ar->data_lock); if (ar->scan.in_progress) { del_timer(&ar->scan.timeout); ar->scan.in_progress = false; ieee80211_scan_completed(ar->hw, true); } spin_unlock_bh(&ar->data_lock); } static int ath10k_start(struct ieee80211_hw *hw) { struct ath10k *ar = hw->priv; int ret = 0; mutex_lock(&ar->conf_mutex); if (ar->state != ATH10K_STATE_OFF && ar->state != ATH10K_STATE_RESTARTING) { ret = -EINVAL; goto exit; } ret = ath10k_hif_power_up(ar); if (ret) { ath10k_err("could not init hif (%d)\n", ret); ar->state = ATH10K_STATE_OFF; goto exit; } ret = ath10k_core_start(ar); if (ret) { ath10k_err("could not init core (%d)\n", ret); ath10k_hif_power_down(ar); ar->state = ATH10K_STATE_OFF; goto exit; } if (ar->state == ATH10K_STATE_OFF) ar->state = ATH10K_STATE_ON; else if (ar->state == ATH10K_STATE_RESTARTING) ar->state = ATH10K_STATE_RESTARTED; ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->pmf_qos, 1); if (ret) ath10k_warn("could not enable WMI_PDEV_PARAM_PMF_QOS (%d)\n", ret); ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->dynamic_bw, 1); if (ret) ath10k_warn("could not init WMI_PDEV_PARAM_DYNAMIC_BW (%d)\n", ret); /* * By default FW set ARP frames ac to voice (6). In that case ARP * exchange is not working properly for UAPSD enabled AP. ARP requests * which arrives with access category 0 are processed by network stack * and send back with access category 0, but FW changes access category * to 6. Set ARP frames access category to best effort (0) solves * this problem. */ ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->arp_ac_override, 0); if (ret) { ath10k_warn("could not set arp ac override parameter: %d\n", ret); goto exit; } ath10k_regd_update(ar); ret = 0; exit: mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_stop(struct ieee80211_hw *hw) { struct ath10k *ar = hw->priv; mutex_lock(&ar->conf_mutex); if (ar->state == ATH10K_STATE_ON || ar->state == ATH10K_STATE_RESTARTED || ar->state == ATH10K_STATE_WEDGED) ath10k_halt(ar); ar->state = ATH10K_STATE_OFF; mutex_unlock(&ar->conf_mutex); ath10k_mgmt_over_wmi_tx_purge(ar); cancel_work_sync(&ar->offchan_tx_work); cancel_work_sync(&ar->wmi_mgmt_tx_work); cancel_work_sync(&ar->restart_work); } static int ath10k_config_ps(struct ath10k *ar) { struct ath10k_vif *arvif; int ret = 0; lockdep_assert_held(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { ret = ath10k_mac_vif_setup_ps(arvif); if (ret) { ath10k_warn("could not setup powersave (%d)\n", ret); break; } } return ret; } static const char *chandef_get_width(enum nl80211_chan_width width) { switch (width) { case NL80211_CHAN_WIDTH_20_NOHT: return "20 (noht)"; case NL80211_CHAN_WIDTH_20: return "20"; case NL80211_CHAN_WIDTH_40: return "40"; case NL80211_CHAN_WIDTH_80: return "80"; case NL80211_CHAN_WIDTH_80P80: return "80+80"; case NL80211_CHAN_WIDTH_160: return "160"; case NL80211_CHAN_WIDTH_5: return "5"; case NL80211_CHAN_WIDTH_10: return "10"; } return "?"; } static void ath10k_config_chan(struct ath10k *ar) { struct ath10k_vif *arvif; bool monitor_was_enabled; int ret; lockdep_assert_held(&ar->conf_mutex); ath10k_dbg(ATH10K_DBG_MAC, "mac config channel to %dMHz (cf1 %dMHz cf2 %dMHz width %s)\n", ar->chandef.chan->center_freq, ar->chandef.center_freq1, ar->chandef.center_freq2, chandef_get_width(ar->chandef.width)); /* First stop monitor interface. Some FW versions crash if there's a * lone monitor interface. */ monitor_was_enabled = ar->monitor_enabled; if (ar->monitor_enabled) ath10k_monitor_stop(ar); list_for_each_entry(arvif, &ar->arvifs, list) { if (!arvif->is_started) continue; if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) continue; ret = ath10k_vdev_stop(arvif); if (ret) { ath10k_warn("could not stop vdev %d (%d)\n", arvif->vdev_id, ret); continue; } } /* all vdevs are now stopped - now attempt to restart them */ list_for_each_entry(arvif, &ar->arvifs, list) { if (!arvif->is_started) continue; if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) continue; ret = ath10k_vdev_start(arvif); if (ret) { ath10k_warn("could not start vdev %d (%d)\n", arvif->vdev_id, ret); continue; } if (!arvif->is_up) continue; ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, arvif->bssid); if (ret) { ath10k_warn("could not bring vdev up %d (%d)\n", arvif->vdev_id, ret); continue; } } if (monitor_was_enabled) ath10k_monitor_start(ar, ar->monitor_vdev_id); } static int ath10k_config(struct ieee80211_hw *hw, u32 changed) { struct ath10k *ar = hw->priv; struct ieee80211_conf *conf = &hw->conf; int ret = 0; u32 param; mutex_lock(&ar->conf_mutex); if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { ath10k_dbg(ATH10K_DBG_MAC, "mac config channel %d mhz flags 0x%x\n", conf->chandef.chan->center_freq, conf->chandef.chan->flags); spin_lock_bh(&ar->data_lock); ar->rx_channel = conf->chandef.chan; spin_unlock_bh(&ar->data_lock); ath10k_config_radar_detection(ar); if (!cfg80211_chandef_identical(&ar->chandef, &conf->chandef)) { ar->chandef = conf->chandef; ath10k_config_chan(ar); } } if (changed & IEEE80211_CONF_CHANGE_POWER) { ath10k_dbg(ATH10K_DBG_MAC, "mac config power %d\n", hw->conf.power_level); param = ar->wmi.pdev_param->txpower_limit2g; ret = ath10k_wmi_pdev_set_param(ar, param, hw->conf.power_level * 2); if (ret) ath10k_warn("mac failed to set 2g txpower %d (%d)\n", hw->conf.power_level, ret); param = ar->wmi.pdev_param->txpower_limit5g; ret = ath10k_wmi_pdev_set_param(ar, param, hw->conf.power_level * 2); if (ret) ath10k_warn("mac failed to set 5g txpower %d (%d)\n", hw->conf.power_level, ret); } if (changed & IEEE80211_CONF_CHANGE_PS) ath10k_config_ps(ar); if (changed & IEEE80211_CONF_CHANGE_MONITOR) { if (conf->flags & IEEE80211_CONF_MONITOR) ret = ath10k_monitor_create(ar); else ret = ath10k_monitor_destroy(ar); } mutex_unlock(&ar->conf_mutex); return ret; } /* * TODO: * Figure out how to handle WMI_VDEV_SUBTYPE_P2P_DEVICE, * because we will send mgmt frames without CCK. This requirement * for P2P_FIND/GO_NEG should be handled by checking CCK flag * in the TX packet. */ static int ath10k_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); enum wmi_sta_powersave_param param; int ret = 0; u32 value; int bit; u32 vdev_param; mutex_lock(&ar->conf_mutex); memset(arvif, 0, sizeof(*arvif)); arvif->ar = ar; arvif->vif = vif; INIT_WORK(&arvif->wep_key_work, ath10k_tx_wep_key_work); INIT_LIST_HEAD(&arvif->list); if ((vif->type == NL80211_IFTYPE_MONITOR) && ar->monitor_present) { ath10k_warn("Only one monitor interface allowed\n"); ret = -EBUSY; goto err; } bit = ffs(ar->free_vdev_map); if (bit == 0) { ret = -EBUSY; goto err; } arvif->vdev_id = bit - 1; arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE; if (ar->p2p) arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE; switch (vif->type) { case NL80211_IFTYPE_UNSPECIFIED: case NL80211_IFTYPE_STATION: arvif->vdev_type = WMI_VDEV_TYPE_STA; if (vif->p2p) arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT; break; case NL80211_IFTYPE_ADHOC: arvif->vdev_type = WMI_VDEV_TYPE_IBSS; break; case NL80211_IFTYPE_AP: arvif->vdev_type = WMI_VDEV_TYPE_AP; if (vif->p2p) arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO; break; case NL80211_IFTYPE_MONITOR: arvif->vdev_type = WMI_VDEV_TYPE_MONITOR; break; default: WARN_ON(1); break; } ath10k_dbg(ATH10K_DBG_MAC, "mac vdev create %d (add interface) type %d subtype %d\n", arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype); ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype, vif->addr); if (ret) { ath10k_warn("WMI vdev %i create failed: ret %d\n", arvif->vdev_id, ret); goto err; } ar->free_vdev_map &= ~BIT(arvif->vdev_id); list_add(&arvif->list, &ar->arvifs); vdev_param = ar->wmi.vdev_param->def_keyid; ret = ath10k_wmi_vdev_set_param(ar, 0, vdev_param, arvif->def_wep_key_idx); if (ret) { ath10k_warn("Failed to set vdev %i default keyid: %d\n", arvif->vdev_id, ret); goto err_vdev_delete; } vdev_param = ar->wmi.vdev_param->tx_encap_type; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, ATH10K_HW_TXRX_NATIVE_WIFI); /* 10.X firmware does not support this VDEV parameter. Do not warn */ if (ret && ret != -EOPNOTSUPP) { ath10k_warn("Failed to set vdev %i TX encap: %d\n", arvif->vdev_id, ret); goto err_vdev_delete; } if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { ret = ath10k_peer_create(ar, arvif->vdev_id, vif->addr); if (ret) { ath10k_warn("Failed to create vdev %i peer for AP: %d\n", arvif->vdev_id, ret); goto err_vdev_delete; } ret = ath10k_mac_set_kickout(arvif); if (ret) { ath10k_warn("Failed to set vdev %i kickout parameters: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } } if (arvif->vdev_type == WMI_VDEV_TYPE_STA) { param = WMI_STA_PS_PARAM_RX_WAKE_POLICY; value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value); if (ret) { ath10k_warn("Failed to set vdev %i RX wake policy: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD; value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value); if (ret) { ath10k_warn("Failed to set vdev %i TX wake thresh: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } param = WMI_STA_PS_PARAM_PSPOLL_COUNT; value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value); if (ret) { ath10k_warn("Failed to set vdev %i PSPOLL count: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } } ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold); if (ret) { ath10k_warn("failed to set rts threshold for vdev %d (%d)\n", arvif->vdev_id, ret); goto err_peer_delete; } ret = ath10k_mac_set_frag(arvif, ar->hw->wiphy->frag_threshold); if (ret) { ath10k_warn("failed to set frag threshold for vdev %d (%d)\n", arvif->vdev_id, ret); goto err_peer_delete; } if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) ar->monitor_present = true; mutex_unlock(&ar->conf_mutex); return 0; err_peer_delete: if (arvif->vdev_type == WMI_VDEV_TYPE_AP) ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr); err_vdev_delete: ath10k_wmi_vdev_delete(ar, arvif->vdev_id); ar->free_vdev_map &= ~BIT(arvif->vdev_id); list_del(&arvif->list); err: mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); int ret; mutex_lock(&ar->conf_mutex); cancel_work_sync(&arvif->wep_key_work); spin_lock_bh(&ar->data_lock); if (arvif->beacon) { dev_kfree_skb_any(arvif->beacon); arvif->beacon = NULL; } spin_unlock_bh(&ar->data_lock); ar->free_vdev_map |= 1 << (arvif->vdev_id); list_del(&arvif->list); if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, vif->addr); if (ret) ath10k_warn("Failed to remove peer for AP vdev %i: %d\n", arvif->vdev_id, ret); kfree(arvif->u.ap.noa_data); } ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %i delete (remove interface)\n", arvif->vdev_id); ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id); if (ret) ath10k_warn("WMI vdev %i delete failed: %d\n", arvif->vdev_id, ret); if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) ar->monitor_present = false; ath10k_peer_cleanup(ar, arvif->vdev_id); mutex_unlock(&ar->conf_mutex); } /* * FIXME: Has to be verified. */ #define SUPPORTED_FILTERS \ (FIF_PROMISC_IN_BSS | \ FIF_ALLMULTI | \ FIF_CONTROL | \ FIF_PSPOLL | \ FIF_OTHER_BSS | \ FIF_BCN_PRBRESP_PROMISC | \ FIF_PROBE_REQ | \ FIF_FCSFAIL) static void ath10k_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct ath10k *ar = hw->priv; int ret; mutex_lock(&ar->conf_mutex); changed_flags &= SUPPORTED_FILTERS; *total_flags &= SUPPORTED_FILTERS; ar->filter_flags = *total_flags; /* Monitor must not be started if it wasn't created first. * Promiscuous mode may be started on a non-monitor interface - in * such case the monitor vdev is not created so starting the * monitor makes no sense. Since ath10k uses no special RX filters * (only BSS filter in STA mode) there's no need for any special * action here. */ if ((ar->filter_flags & FIF_PROMISC_IN_BSS) && !ar->monitor_enabled && ar->monitor_present) { ath10k_dbg(ATH10K_DBG_MAC, "mac monitor %d start\n", ar->monitor_vdev_id); ret = ath10k_monitor_start(ar, ar->monitor_vdev_id); if (ret) ath10k_warn("Unable to start monitor mode\n"); } else if (!(ar->filter_flags & FIF_PROMISC_IN_BSS) && ar->monitor_enabled && ar->monitor_present) { ath10k_dbg(ATH10K_DBG_MAC, "mac monitor %d stop\n", ar->monitor_vdev_id); ret = ath10k_monitor_stop(ar); if (ret) ath10k_warn("Unable to stop monitor mode\n"); } mutex_unlock(&ar->conf_mutex); } static void ath10k_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u32 changed) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); int ret = 0; u32 vdev_param, pdev_param; mutex_lock(&ar->conf_mutex); if (changed & BSS_CHANGED_IBSS) ath10k_control_ibss(arvif, info, vif->addr); if (changed & BSS_CHANGED_BEACON_INT) { arvif->beacon_interval = info->beacon_int; vdev_param = ar->wmi.vdev_param->beacon_interval; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, arvif->beacon_interval); ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d beacon_interval %d\n", arvif->vdev_id, arvif->beacon_interval); if (ret) ath10k_warn("Failed to set beacon interval for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_BEACON) { ath10k_dbg(ATH10K_DBG_MAC, "vdev %d set beacon tx mode to staggered\n", arvif->vdev_id); pdev_param = ar->wmi.pdev_param->beacon_tx_mode; ret = ath10k_wmi_pdev_set_param(ar, pdev_param, WMI_BEACON_STAGGERED_MODE); if (ret) ath10k_warn("Failed to set beacon mode for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_BEACON_INFO) { arvif->dtim_period = info->dtim_period; ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d dtim_period %d\n", arvif->vdev_id, arvif->dtim_period); vdev_param = ar->wmi.vdev_param->dtim_period; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, arvif->dtim_period); if (ret) ath10k_warn("Failed to set dtim period for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_SSID && vif->type == NL80211_IFTYPE_AP) { arvif->u.ap.ssid_len = info->ssid_len; if (info->ssid_len) memcpy(arvif->u.ap.ssid, info->ssid, info->ssid_len); arvif->u.ap.hidden_ssid = info->hidden_ssid; } if (changed & BSS_CHANGED_BSSID) { if (!is_zero_ether_addr(info->bssid)) { ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d create peer %pM\n", arvif->vdev_id, info->bssid); ret = ath10k_peer_create(ar, arvif->vdev_id, info->bssid); if (ret) ath10k_warn("Failed to add peer %pM for vdev %d when changing bssid: %i\n", info->bssid, arvif->vdev_id, ret); if (vif->type == NL80211_IFTYPE_STATION) { /* * this is never erased as we it for crypto key * clearing; this is FW requirement */ memcpy(arvif->bssid, info->bssid, ETH_ALEN); ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d start %pM\n", arvif->vdev_id, info->bssid); ret = ath10k_vdev_start(arvif); if (ret) { ath10k_warn("failed to start vdev %i: %d\n", arvif->vdev_id, ret); goto exit; } arvif->is_started = true; } /* * Mac80211 does not keep IBSS bssid when leaving IBSS, * so driver need to store it. It is needed when leaving * IBSS in order to remove BSSID peer. */ if (vif->type == NL80211_IFTYPE_ADHOC) memcpy(arvif->bssid, info->bssid, ETH_ALEN); } } if (changed & BSS_CHANGED_BEACON_ENABLED) ath10k_control_beaconing(arvif, info); if (changed & BSS_CHANGED_ERP_CTS_PROT) { u32 cts_prot; if (info->use_cts_prot) cts_prot = 1; else cts_prot = 0; ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d cts_prot %d\n", arvif->vdev_id, cts_prot); vdev_param = ar->wmi.vdev_param->enable_rtscts; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, cts_prot); if (ret) ath10k_warn("Failed to set CTS prot for vdev %d: %d\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_ERP_SLOT) { u32 slottime; if (info->use_short_slot) slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */ else slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */ ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n", arvif->vdev_id, slottime); vdev_param = ar->wmi.vdev_param->slot_time; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, slottime); if (ret) ath10k_warn("Failed to set erp slot for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_ERP_PREAMBLE) { u32 preamble; if (info->use_short_preamble) preamble = WMI_VDEV_PREAMBLE_SHORT; else preamble = WMI_VDEV_PREAMBLE_LONG; ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d preamble %dn", arvif->vdev_id, preamble); vdev_param = ar->wmi.vdev_param->preamble; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, preamble); if (ret) ath10k_warn("Failed to set preamble for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_ASSOC) { if (info->assoc) ath10k_bss_assoc(hw, vif, info); } exit: mutex_unlock(&ar->conf_mutex); } static int ath10k_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_scan_request *req) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct wmi_start_scan_arg arg; int ret = 0; int i; mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); if (ar->scan.in_progress) { spin_unlock_bh(&ar->data_lock); ret = -EBUSY; goto exit; } reinit_completion(&ar->scan.started); reinit_completion(&ar->scan.completed); ar->scan.in_progress = true; ar->scan.aborting = false; ar->scan.is_roc = false; ar->scan.vdev_id = arvif->vdev_id; spin_unlock_bh(&ar->data_lock); memset(&arg, 0, sizeof(arg)); ath10k_wmi_start_scan_init(ar, &arg); arg.vdev_id = arvif->vdev_id; arg.scan_id = ATH10K_SCAN_ID; if (!req->no_cck) arg.scan_ctrl_flags |= WMI_SCAN_ADD_CCK_RATES; if (req->ie_len) { arg.ie_len = req->ie_len; memcpy(arg.ie, req->ie, arg.ie_len); } if (req->n_ssids) { arg.n_ssids = req->n_ssids; for (i = 0; i < arg.n_ssids; i++) { arg.ssids[i].len = req->ssids[i].ssid_len; arg.ssids[i].ssid = req->ssids[i].ssid; } } else { arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE; } if (req->n_channels) { arg.n_channels = req->n_channels; for (i = 0; i < arg.n_channels; i++) arg.channels[i] = req->channels[i]->center_freq; } ret = ath10k_start_scan(ar, &arg); if (ret) { ath10k_warn("could not start hw scan (%d)\n", ret); spin_lock_bh(&ar->data_lock); ar->scan.in_progress = false; spin_unlock_bh(&ar->data_lock); } exit: mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_cancel_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; int ret; mutex_lock(&ar->conf_mutex); ret = ath10k_abort_scan(ar); if (ret) { ath10k_warn("couldn't abort scan (%d). forcefully sending scan completion to mac80211\n", ret); ieee80211_scan_completed(hw, 1 /* aborted */); } mutex_unlock(&ar->conf_mutex); } static void ath10k_set_key_h_def_keyidx(struct ath10k *ar, struct ath10k_vif *arvif, enum set_key_cmd cmd, struct ieee80211_key_conf *key) { u32 vdev_param = arvif->ar->wmi.vdev_param->def_keyid; int ret; /* 10.1 firmware branch requires default key index to be set to group * key index after installing it. Otherwise FW/HW Txes corrupted * frames with multi-vif APs. This is not required for main firmware * branch (e.g. 636). * * FIXME: This has been tested only in AP. It remains unknown if this * is required for multi-vif STA interfaces on 10.1 */ if (arvif->vdev_type != WMI_VDEV_TYPE_AP) return; if (key->cipher == WLAN_CIPHER_SUITE_WEP40) return; if (key->cipher == WLAN_CIPHER_SUITE_WEP104) return; if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) return; if (cmd != SET_KEY) return; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, key->keyidx); if (ret) ath10k_warn("failed to set vdev %i group key as default key: %d\n", arvif->vdev_id, ret); } static int ath10k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct ath10k_peer *peer; const u8 *peer_addr; bool is_wep = key->cipher == WLAN_CIPHER_SUITE_WEP40 || key->cipher == WLAN_CIPHER_SUITE_WEP104; int ret = 0; if (key->keyidx > WMI_MAX_KEY_INDEX) return -ENOSPC; mutex_lock(&ar->conf_mutex); if (sta) peer_addr = sta->addr; else if (arvif->vdev_type == WMI_VDEV_TYPE_STA) peer_addr = vif->bss_conf.bssid; else peer_addr = vif->addr; key->hw_key_idx = key->keyidx; /* the peer should not disappear in mid-way (unless FW goes awry) since * we already hold conf_mutex. we just make sure its there now. */ spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr); spin_unlock_bh(&ar->data_lock); if (!peer) { if (cmd == SET_KEY) { ath10k_warn("cannot install key for non-existent peer %pM\n", peer_addr); ret = -EOPNOTSUPP; goto exit; } else { /* if the peer doesn't exist there is no key to disable * anymore */ goto exit; } } if (is_wep) { if (cmd == SET_KEY) arvif->wep_keys[key->keyidx] = key; else arvif->wep_keys[key->keyidx] = NULL; if (cmd == DISABLE_KEY) ath10k_clear_vdev_key(arvif, key); } ret = ath10k_install_key(arvif, key, cmd, peer_addr); if (ret) { ath10k_warn("key installation failed for vdev %i peer %pM: %d\n", arvif->vdev_id, peer_addr, ret); goto exit; } ath10k_set_key_h_def_keyidx(ar, arvif, cmd, key); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr); if (peer && cmd == SET_KEY) peer->keys[key->keyidx] = key; else if (peer && cmd == DISABLE_KEY) peer->keys[key->keyidx] = NULL; else if (peer == NULL) /* impossible unless FW goes crazy */ ath10k_warn("peer %pM disappeared!\n", peer_addr); spin_unlock_bh(&ar->data_lock); exit: mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_sta_rc_update_wk(struct work_struct *wk) { struct ath10k *ar; struct ath10k_vif *arvif; struct ath10k_sta *arsta; struct ieee80211_sta *sta; u32 changed, bw, nss, smps; int err; arsta = container_of(wk, struct ath10k_sta, update_wk); sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv); arvif = arsta->arvif; ar = arvif->ar; spin_lock_bh(&ar->data_lock); changed = arsta->changed; arsta->changed = 0; bw = arsta->bw; nss = arsta->nss; smps = arsta->smps; spin_unlock_bh(&ar->data_lock); mutex_lock(&ar->conf_mutex); if (changed & IEEE80211_RC_BW_CHANGED) { ath10k_dbg(ATH10K_DBG_MAC, "mac update sta %pM peer bw %d\n", sta->addr, bw); err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, WMI_PEER_CHAN_WIDTH, bw); if (err) ath10k_warn("failed to update STA %pM peer bw %d: %d\n", sta->addr, bw, err); } if (changed & IEEE80211_RC_NSS_CHANGED) { ath10k_dbg(ATH10K_DBG_MAC, "mac update sta %pM nss %d\n", sta->addr, nss); err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, WMI_PEER_NSS, nss); if (err) ath10k_warn("failed to update STA %pM nss %d: %d\n", sta->addr, nss, err); } if (changed & IEEE80211_RC_SMPS_CHANGED) { ath10k_dbg(ATH10K_DBG_MAC, "mac update sta %pM smps %d\n", sta->addr, smps); err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, WMI_PEER_SMPS_STATE, smps); if (err) ath10k_warn("failed to update STA %pM smps %d: %d\n", sta->addr, smps, err); } mutex_unlock(&ar->conf_mutex); } static int ath10k_sta_state(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; int max_num_peers; int ret = 0; if (old_state == IEEE80211_STA_NOTEXIST && new_state == IEEE80211_STA_NONE) { memset(arsta, 0, sizeof(*arsta)); arsta->arvif = arvif; INIT_WORK(&arsta->update_wk, ath10k_sta_rc_update_wk); } /* cancel must be done outside the mutex to avoid deadlock */ if ((old_state == IEEE80211_STA_NONE && new_state == IEEE80211_STA_NOTEXIST)) cancel_work_sync(&arsta->update_wk); mutex_lock(&ar->conf_mutex); if (old_state == IEEE80211_STA_NOTEXIST && new_state == IEEE80211_STA_NONE && vif->type != NL80211_IFTYPE_STATION) { /* * New station addition. */ if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) max_num_peers = TARGET_10X_NUM_PEERS_MAX - 1; else max_num_peers = TARGET_NUM_PEERS; if (ar->num_peers >= max_num_peers) { ath10k_warn("Number of peers exceeded: peers number %d (max peers %d)\n", ar->num_peers, max_num_peers); ret = -ENOBUFS; goto exit; } ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d peer create %pM (new sta) num_peers %d\n", arvif->vdev_id, sta->addr, ar->num_peers); ret = ath10k_peer_create(ar, arvif->vdev_id, sta->addr); if (ret) ath10k_warn("Failed to add peer %pM for vdev %d when adding a new sta: %i\n", sta->addr, arvif->vdev_id, ret); } else if ((old_state == IEEE80211_STA_NONE && new_state == IEEE80211_STA_NOTEXIST)) { /* * Existing station deletion. */ ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d peer delete %pM (sta gone)\n", arvif->vdev_id, sta->addr); ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr); if (ret) ath10k_warn("Failed to delete peer %pM for vdev %d: %i\n", sta->addr, arvif->vdev_id, ret); if (vif->type == NL80211_IFTYPE_STATION) ath10k_bss_disassoc(hw, vif); } else if (old_state == IEEE80211_STA_AUTH && new_state == IEEE80211_STA_ASSOC && (vif->type == NL80211_IFTYPE_AP || vif->type == NL80211_IFTYPE_ADHOC)) { /* * New association. */ ath10k_dbg(ATH10K_DBG_MAC, "mac sta %pM associated\n", sta->addr); ret = ath10k_station_assoc(ar, arvif, sta); if (ret) ath10k_warn("Failed to associate station %pM for vdev %i: %i\n", sta->addr, arvif->vdev_id, ret); } else if (old_state == IEEE80211_STA_ASSOC && new_state == IEEE80211_STA_AUTH && (vif->type == NL80211_IFTYPE_AP || vif->type == NL80211_IFTYPE_ADHOC)) { /* * Disassociation. */ ath10k_dbg(ATH10K_DBG_MAC, "mac sta %pM disassociated\n", sta->addr); ret = ath10k_station_disassoc(ar, arvif, sta); if (ret) ath10k_warn("Failed to disassociate station: %pM vdev %i ret %i\n", sta->addr, arvif->vdev_id, ret); } exit: mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_conf_tx_uapsd(struct ath10k *ar, struct ieee80211_vif *vif, u16 ac, bool enable) { struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); u32 value = 0; int ret = 0; lockdep_assert_held(&ar->conf_mutex); if (arvif->vdev_type != WMI_VDEV_TYPE_STA) return 0; switch (ac) { case IEEE80211_AC_VO: value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN | WMI_STA_PS_UAPSD_AC3_TRIGGER_EN; break; case IEEE80211_AC_VI: value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN | WMI_STA_PS_UAPSD_AC2_TRIGGER_EN; break; case IEEE80211_AC_BE: value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN | WMI_STA_PS_UAPSD_AC1_TRIGGER_EN; break; case IEEE80211_AC_BK: value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN | WMI_STA_PS_UAPSD_AC0_TRIGGER_EN; break; } if (enable) arvif->u.sta.uapsd |= value; else arvif->u.sta.uapsd &= ~value; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, WMI_STA_PS_PARAM_UAPSD, arvif->u.sta.uapsd); if (ret) { ath10k_warn("could not set uapsd params %d\n", ret); goto exit; } if (arvif->u.sta.uapsd) value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD; else value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, WMI_STA_PS_PARAM_RX_WAKE_POLICY, value); if (ret) ath10k_warn("could not set rx wake param %d\n", ret); exit: return ret; } static int ath10k_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 ac, const struct ieee80211_tx_queue_params *params) { struct ath10k *ar = hw->priv; struct wmi_wmm_params_arg *p = NULL; int ret; mutex_lock(&ar->conf_mutex); switch (ac) { case IEEE80211_AC_VO: p = &ar->wmm_params.ac_vo; break; case IEEE80211_AC_VI: p = &ar->wmm_params.ac_vi; break; case IEEE80211_AC_BE: p = &ar->wmm_params.ac_be; break; case IEEE80211_AC_BK: p = &ar->wmm_params.ac_bk; break; } if (WARN_ON(!p)) { ret = -EINVAL; goto exit; } p->cwmin = params->cw_min; p->cwmax = params->cw_max; p->aifs = params->aifs; /* * The channel time duration programmed in the HW is in absolute * microseconds, while mac80211 gives the txop in units of * 32 microseconds. */ p->txop = params->txop * 32; /* FIXME: FW accepts wmm params per hw, not per vif */ ret = ath10k_wmi_pdev_set_wmm_params(ar, &ar->wmm_params); if (ret) { ath10k_warn("could not set wmm params %d\n", ret); goto exit; } ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd); if (ret) ath10k_warn("could not set sta uapsd %d\n", ret); exit: mutex_unlock(&ar->conf_mutex); return ret; } #define ATH10K_ROC_TIMEOUT_HZ (2*HZ) static int ath10k_remain_on_channel(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_channel *chan, int duration, enum ieee80211_roc_type type) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct wmi_start_scan_arg arg; int ret; mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); if (ar->scan.in_progress) { spin_unlock_bh(&ar->data_lock); ret = -EBUSY; goto exit; } reinit_completion(&ar->scan.started); reinit_completion(&ar->scan.completed); reinit_completion(&ar->scan.on_channel); ar->scan.in_progress = true; ar->scan.aborting = false; ar->scan.is_roc = true; ar->scan.vdev_id = arvif->vdev_id; ar->scan.roc_freq = chan->center_freq; spin_unlock_bh(&ar->data_lock); memset(&arg, 0, sizeof(arg)); ath10k_wmi_start_scan_init(ar, &arg); arg.vdev_id = arvif->vdev_id; arg.scan_id = ATH10K_SCAN_ID; arg.n_channels = 1; arg.channels[0] = chan->center_freq; arg.dwell_time_active = duration; arg.dwell_time_passive = duration; arg.max_scan_time = 2 * duration; arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE; arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ; ret = ath10k_start_scan(ar, &arg); if (ret) { ath10k_warn("could not start roc scan (%d)\n", ret); spin_lock_bh(&ar->data_lock); ar->scan.in_progress = false; spin_unlock_bh(&ar->data_lock); goto exit; } ret = wait_for_completion_timeout(&ar->scan.on_channel, 3*HZ); if (ret == 0) { ath10k_warn("could not switch to channel for roc scan\n"); ath10k_abort_scan(ar); ret = -ETIMEDOUT; goto exit; } ret = 0; exit: mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_cancel_remain_on_channel(struct ieee80211_hw *hw) { struct ath10k *ar = hw->priv; mutex_lock(&ar->conf_mutex); ath10k_abort_scan(ar); mutex_unlock(&ar->conf_mutex); return 0; } /* * Both RTS and Fragmentation threshold are interface-specific * in ath10k, but device-specific in mac80211. */ static int ath10k_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif; int ret = 0; mutex_lock(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n", arvif->vdev_id, value); ret = ath10k_mac_set_rts(arvif, value); if (ret) { ath10k_warn("could not set rts threshold for vdev %d (%d)\n", arvif->vdev_id, ret); break; } } mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_set_frag_threshold(struct ieee80211_hw *hw, u32 value) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif; int ret = 0; mutex_lock(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d fragmentation threshold %d\n", arvif->vdev_id, value); ret = ath10k_mac_set_rts(arvif, value); if (ret) { ath10k_warn("could not set fragmentation threshold for vdev %d (%d)\n", arvif->vdev_id, ret); break; } } mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop) { struct ath10k *ar = hw->priv; bool skip; int ret; /* mac80211 doesn't care if we really xmit queued frames or not * we'll collect those frames either way if we stop/delete vdevs */ if (drop) return; mutex_lock(&ar->conf_mutex); if (ar->state == ATH10K_STATE_WEDGED) goto skip; ret = wait_event_timeout(ar->htt.empty_tx_wq, ({ bool empty; spin_lock_bh(&ar->htt.tx_lock); empty = (ar->htt.num_pending_tx == 0); spin_unlock_bh(&ar->htt.tx_lock); skip = (ar->state == ATH10K_STATE_WEDGED); (empty || skip); }), ATH10K_FLUSH_TIMEOUT_HZ); if (ret <= 0 || skip) ath10k_warn("tx not flushed (skip %i ar-state %i): %i\n", skip, ar->state, ret); skip: mutex_unlock(&ar->conf_mutex); } /* TODO: Implement this function properly * For now it is needed to reply to Probe Requests in IBSS mode. * Propably we need this information from FW. */ static int ath10k_tx_last_beacon(struct ieee80211_hw *hw) { return 1; } #ifdef CONFIG_PM static int ath10k_suspend(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan) { struct ath10k *ar = hw->priv; int ret; mutex_lock(&ar->conf_mutex); ret = ath10k_wait_for_suspend(ar, WMI_PDEV_SUSPEND); if (ret) { if (ret == -ETIMEDOUT) goto resume; ret = 1; goto exit; } ret = ath10k_hif_suspend(ar); if (ret) { ath10k_warn("could not suspend hif (%d)\n", ret); goto resume; } ret = 0; goto exit; resume: ret = ath10k_wmi_pdev_resume_target(ar); if (ret) ath10k_warn("could not resume target (%d)\n", ret); ret = 1; exit: mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_resume(struct ieee80211_hw *hw) { struct ath10k *ar = hw->priv; int ret; mutex_lock(&ar->conf_mutex); ret = ath10k_hif_resume(ar); if (ret) { ath10k_warn("could not resume hif (%d)\n", ret); ret = 1; goto exit; } ret = ath10k_wmi_pdev_resume_target(ar); if (ret) { ath10k_warn("could not resume target (%d)\n", ret); ret = 1; goto exit; } ret = 0; exit: mutex_unlock(&ar->conf_mutex); return ret; } #endif static void ath10k_restart_complete(struct ieee80211_hw *hw) { struct ath10k *ar = hw->priv; mutex_lock(&ar->conf_mutex); /* If device failed to restart it will be in a different state, e.g. * ATH10K_STATE_WEDGED */ if (ar->state == ATH10K_STATE_RESTARTED) { ath10k_info("device successfully recovered\n"); ar->state = ATH10K_STATE_ON; } mutex_unlock(&ar->conf_mutex); } static int ath10k_get_survey(struct ieee80211_hw *hw, int idx, struct survey_info *survey) { struct ath10k *ar = hw->priv; struct ieee80211_supported_band *sband; struct survey_info *ar_survey = &ar->survey[idx]; int ret = 0; mutex_lock(&ar->conf_mutex); sband = hw->wiphy->bands[IEEE80211_BAND_2GHZ]; if (sband && idx >= sband->n_channels) { idx -= sband->n_channels; sband = NULL; } if (!sband) sband = hw->wiphy->bands[IEEE80211_BAND_5GHZ]; if (!sband || idx >= sband->n_channels) { ret = -ENOENT; goto exit; } spin_lock_bh(&ar->data_lock); memcpy(survey, ar_survey, sizeof(*survey)); spin_unlock_bh(&ar->data_lock); survey->channel = &sband->channels[idx]; exit: mutex_unlock(&ar->conf_mutex); return ret; } /* Helper table for legacy fixed_rate/bitrate_mask */ static const u8 cck_ofdm_rate[] = { /* CCK */ 3, /* 1Mbps */ 2, /* 2Mbps */ 1, /* 5.5Mbps */ 0, /* 11Mbps */ /* OFDM */ 3, /* 6Mbps */ 7, /* 9Mbps */ 2, /* 12Mbps */ 6, /* 18Mbps */ 1, /* 24Mbps */ 5, /* 36Mbps */ 0, /* 48Mbps */ 4, /* 54Mbps */ }; /* Check if only one bit set */ static int ath10k_check_single_mask(u32 mask) { int bit; bit = ffs(mask); if (!bit) return 0; mask &= ~BIT(bit - 1); if (mask) return 2; return 1; } static bool ath10k_default_bitrate_mask(struct ath10k *ar, enum ieee80211_band band, const struct cfg80211_bitrate_mask *mask) { u32 legacy = 0x00ff; u8 ht = 0xff, i; u16 vht = 0x3ff; switch (band) { case IEEE80211_BAND_2GHZ: legacy = 0x00fff; vht = 0; break; case IEEE80211_BAND_5GHZ: break; default: return false; } if (mask->control[band].legacy != legacy) return false; for (i = 0; i < ar->num_rf_chains; i++) if (mask->control[band].ht_mcs[i] != ht) return false; for (i = 0; i < ar->num_rf_chains; i++) if (mask->control[band].vht_mcs[i] != vht) return false; return true; } static bool ath10k_bitrate_mask_nss(const struct cfg80211_bitrate_mask *mask, enum ieee80211_band band, u8 *fixed_nss) { int ht_nss = 0, vht_nss = 0, i; /* check legacy */ if (ath10k_check_single_mask(mask->control[band].legacy)) return false; /* check HT */ for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) { if (mask->control[band].ht_mcs[i] == 0xff) continue; else if (mask->control[band].ht_mcs[i] == 0x00) break; else return false; } ht_nss = i; /* check VHT */ for (i = 0; i < NL80211_VHT_NSS_MAX; i++) { if (mask->control[band].vht_mcs[i] == 0x03ff) continue; else if (mask->control[band].vht_mcs[i] == 0x0000) break; else return false; } vht_nss = i; if (ht_nss > 0 && vht_nss > 0) return false; if (ht_nss) *fixed_nss = ht_nss; else if (vht_nss) *fixed_nss = vht_nss; else return false; return true; } static bool ath10k_bitrate_mask_correct(const struct cfg80211_bitrate_mask *mask, enum ieee80211_band band, enum wmi_rate_preamble *preamble) { int legacy = 0, ht = 0, vht = 0, i; *preamble = WMI_RATE_PREAMBLE_OFDM; /* check legacy */ legacy = ath10k_check_single_mask(mask->control[band].legacy); if (legacy > 1) return false; /* check HT */ for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) ht += ath10k_check_single_mask(mask->control[band].ht_mcs[i]); if (ht > 1) return false; /* check VHT */ for (i = 0; i < NL80211_VHT_NSS_MAX; i++) vht += ath10k_check_single_mask(mask->control[band].vht_mcs[i]); if (vht > 1) return false; /* Currently we support only one fixed_rate */ if ((legacy + ht + vht) != 1) return false; if (ht) *preamble = WMI_RATE_PREAMBLE_HT; else if (vht) *preamble = WMI_RATE_PREAMBLE_VHT; return true; } static bool ath10k_bitrate_mask_rate(const struct cfg80211_bitrate_mask *mask, enum ieee80211_band band, u8 *fixed_rate, u8 *fixed_nss) { u8 rate = 0, pream = 0, nss = 0, i; enum wmi_rate_preamble preamble; /* Check if single rate correct */ if (!ath10k_bitrate_mask_correct(mask, band, &preamble)) return false; pream = preamble; switch (preamble) { case WMI_RATE_PREAMBLE_CCK: case WMI_RATE_PREAMBLE_OFDM: i = ffs(mask->control[band].legacy) - 1; if (band == IEEE80211_BAND_2GHZ && i < 4) pream = WMI_RATE_PREAMBLE_CCK; if (band == IEEE80211_BAND_5GHZ) i += 4; if (i >= ARRAY_SIZE(cck_ofdm_rate)) return false; rate = cck_ofdm_rate[i]; break; case WMI_RATE_PREAMBLE_HT: for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) if (mask->control[band].ht_mcs[i]) break; if (i == IEEE80211_HT_MCS_MASK_LEN) return false; rate = ffs(mask->control[band].ht_mcs[i]) - 1; nss = i; break; case WMI_RATE_PREAMBLE_VHT: for (i = 0; i < NL80211_VHT_NSS_MAX; i++) if (mask->control[band].vht_mcs[i]) break; if (i == NL80211_VHT_NSS_MAX) return false; rate = ffs(mask->control[band].vht_mcs[i]) - 1; nss = i; break; } *fixed_nss = nss + 1; nss <<= 4; pream <<= 6; ath10k_dbg(ATH10K_DBG_MAC, "mac fixed rate pream 0x%02x nss 0x%02x rate 0x%02x\n", pream, nss, rate); *fixed_rate = pream | nss | rate; return true; } static bool ath10k_get_fixed_rate_nss(const struct cfg80211_bitrate_mask *mask, enum ieee80211_band band, u8 *fixed_rate, u8 *fixed_nss) { /* First check full NSS mask, if we can simply limit NSS */ if (ath10k_bitrate_mask_nss(mask, band, fixed_nss)) return true; /* Next Check single rate is set */ return ath10k_bitrate_mask_rate(mask, band, fixed_rate, fixed_nss); } static int ath10k_set_fixed_rate_param(struct ath10k_vif *arvif, u8 fixed_rate, u8 fixed_nss, u8 force_sgi) { struct ath10k *ar = arvif->ar; u32 vdev_param; int ret = 0; mutex_lock(&ar->conf_mutex); if (arvif->fixed_rate == fixed_rate && arvif->fixed_nss == fixed_nss && arvif->force_sgi == force_sgi) goto exit; if (fixed_rate == WMI_FIXED_RATE_NONE) ath10k_dbg(ATH10K_DBG_MAC, "mac disable fixed bitrate mask\n"); if (force_sgi) ath10k_dbg(ATH10K_DBG_MAC, "mac force sgi\n"); vdev_param = ar->wmi.vdev_param->fixed_rate; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, fixed_rate); if (ret) { ath10k_warn("Could not set fixed_rate param 0x%02x: %d\n", fixed_rate, ret); ret = -EINVAL; goto exit; } arvif->fixed_rate = fixed_rate; vdev_param = ar->wmi.vdev_param->nss; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, fixed_nss); if (ret) { ath10k_warn("Could not set fixed_nss param %d: %d\n", fixed_nss, ret); ret = -EINVAL; goto exit; } arvif->fixed_nss = fixed_nss; vdev_param = ar->wmi.vdev_param->sgi; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, force_sgi); if (ret) { ath10k_warn("Could not set sgi param %d: %d\n", force_sgi, ret); ret = -EINVAL; goto exit; } arvif->force_sgi = force_sgi; exit: mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_set_bitrate_mask(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const struct cfg80211_bitrate_mask *mask) { struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct ath10k *ar = arvif->ar; enum ieee80211_band band = ar->hw->conf.chandef.chan->band; u8 fixed_rate = WMI_FIXED_RATE_NONE; u8 fixed_nss = ar->num_rf_chains; u8 force_sgi; force_sgi = mask->control[band].gi; if (force_sgi == NL80211_TXRATE_FORCE_LGI) return -EINVAL; if (!ath10k_default_bitrate_mask(ar, band, mask)) { if (!ath10k_get_fixed_rate_nss(mask, band, &fixed_rate, &fixed_nss)) return -EINVAL; } if (fixed_rate == WMI_FIXED_RATE_NONE && force_sgi) { ath10k_warn("Could not force SGI usage for default rate settings\n"); return -EINVAL; } return ath10k_set_fixed_rate_param(arvif, fixed_rate, fixed_nss, force_sgi); } static void ath10k_channel_switch_beacon(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_chan_def *chandef) { /* there's no need to do anything here. vif->csa_active is enough */ return; } static void ath10k_sta_rc_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u32 changed) { struct ath10k *ar = hw->priv; struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; u32 bw, smps; spin_lock_bh(&ar->data_lock); ath10k_dbg(ATH10K_DBG_MAC, "mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n", sta->addr, changed, sta->bandwidth, sta->rx_nss, sta->smps_mode); if (changed & IEEE80211_RC_BW_CHANGED) { bw = WMI_PEER_CHWIDTH_20MHZ; switch (sta->bandwidth) { case IEEE80211_STA_RX_BW_20: bw = WMI_PEER_CHWIDTH_20MHZ; break; case IEEE80211_STA_RX_BW_40: bw = WMI_PEER_CHWIDTH_40MHZ; break; case IEEE80211_STA_RX_BW_80: bw = WMI_PEER_CHWIDTH_80MHZ; break; case IEEE80211_STA_RX_BW_160: ath10k_warn("mac sta rc update for %pM: invalid bw %d\n", sta->addr, sta->bandwidth); bw = WMI_PEER_CHWIDTH_20MHZ; break; } arsta->bw = bw; } if (changed & IEEE80211_RC_NSS_CHANGED) arsta->nss = sta->rx_nss; if (changed & IEEE80211_RC_SMPS_CHANGED) { smps = WMI_PEER_SMPS_PS_NONE; switch (sta->smps_mode) { case IEEE80211_SMPS_AUTOMATIC: case IEEE80211_SMPS_OFF: smps = WMI_PEER_SMPS_PS_NONE; break; case IEEE80211_SMPS_STATIC: smps = WMI_PEER_SMPS_STATIC; break; case IEEE80211_SMPS_DYNAMIC: smps = WMI_PEER_SMPS_DYNAMIC; break; case IEEE80211_SMPS_NUM_MODES: ath10k_warn("mac sta rc update for %pM: invalid smps: %d\n", sta->addr, sta->smps_mode); smps = WMI_PEER_SMPS_PS_NONE; break; } arsta->smps = smps; } if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) { /* FIXME: Not implemented. Probably the only way to do it would * be to re-assoc the peer. */ changed &= ~IEEE80211_RC_SUPP_RATES_CHANGED; ath10k_dbg(ATH10K_DBG_MAC, "mac sta rc update for %pM: changing supported rates not implemented\n", sta->addr); } arsta->changed |= changed; spin_unlock_bh(&ar->data_lock); ieee80211_queue_work(hw, &arsta->update_wk); } static u64 ath10k_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { /* * FIXME: Return 0 for time being. Need to figure out whether FW * has the API to fetch 64-bit local TSF */ return 0; } static const struct ieee80211_ops ath10k_ops = { .tx = ath10k_tx, .start = ath10k_start, .stop = ath10k_stop, .config = ath10k_config, .add_interface = ath10k_add_interface, .remove_interface = ath10k_remove_interface, .configure_filter = ath10k_configure_filter, .bss_info_changed = ath10k_bss_info_changed, .hw_scan = ath10k_hw_scan, .cancel_hw_scan = ath10k_cancel_hw_scan, .set_key = ath10k_set_key, .sta_state = ath10k_sta_state, .conf_tx = ath10k_conf_tx, .remain_on_channel = ath10k_remain_on_channel, .cancel_remain_on_channel = ath10k_cancel_remain_on_channel, .set_rts_threshold = ath10k_set_rts_threshold, .set_frag_threshold = ath10k_set_frag_threshold, .flush = ath10k_flush, .tx_last_beacon = ath10k_tx_last_beacon, .restart_complete = ath10k_restart_complete, .get_survey = ath10k_get_survey, .set_bitrate_mask = ath10k_set_bitrate_mask, .channel_switch_beacon = ath10k_channel_switch_beacon, .sta_rc_update = ath10k_sta_rc_update, .get_tsf = ath10k_get_tsf, #ifdef CONFIG_PM .suspend = ath10k_suspend, .resume = ath10k_resume, #endif }; #define RATETAB_ENT(_rate, _rateid, _flags) { \ .bitrate = (_rate), \ .flags = (_flags), \ .hw_value = (_rateid), \ } #define CHAN2G(_channel, _freq, _flags) { \ .band = IEEE80211_BAND_2GHZ, \ .hw_value = (_channel), \ .center_freq = (_freq), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel, _freq, _flags) { \ .band = IEEE80211_BAND_5GHZ, \ .hw_value = (_channel), \ .center_freq = (_freq), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } static const struct ieee80211_channel ath10k_2ghz_channels[] = { CHAN2G(1, 2412, 0), CHAN2G(2, 2417, 0), CHAN2G(3, 2422, 0), CHAN2G(4, 2427, 0), CHAN2G(5, 2432, 0), CHAN2G(6, 2437, 0), CHAN2G(7, 2442, 0), CHAN2G(8, 2447, 0), CHAN2G(9, 2452, 0), CHAN2G(10, 2457, 0), CHAN2G(11, 2462, 0), CHAN2G(12, 2467, 0), CHAN2G(13, 2472, 0), CHAN2G(14, 2484, 0), }; static const struct ieee80211_channel ath10k_5ghz_channels[] = { CHAN5G(36, 5180, 0), CHAN5G(40, 5200, 0), CHAN5G(44, 5220, 0), CHAN5G(48, 5240, 0), CHAN5G(52, 5260, 0), CHAN5G(56, 5280, 0), CHAN5G(60, 5300, 0), CHAN5G(64, 5320, 0), CHAN5G(100, 5500, 0), CHAN5G(104, 5520, 0), CHAN5G(108, 5540, 0), CHAN5G(112, 5560, 0), CHAN5G(116, 5580, 0), CHAN5G(120, 5600, 0), CHAN5G(124, 5620, 0), CHAN5G(128, 5640, 0), CHAN5G(132, 5660, 0), CHAN5G(136, 5680, 0), CHAN5G(140, 5700, 0), CHAN5G(149, 5745, 0), CHAN5G(153, 5765, 0), CHAN5G(157, 5785, 0), CHAN5G(161, 5805, 0), CHAN5G(165, 5825, 0), }; static struct ieee80211_rate ath10k_rates[] = { /* CCK */ RATETAB_ENT(10, 0x82, 0), RATETAB_ENT(20, 0x84, 0), RATETAB_ENT(55, 0x8b, 0), RATETAB_ENT(110, 0x96, 0), /* OFDM */ RATETAB_ENT(60, 0x0c, 0), RATETAB_ENT(90, 0x12, 0), RATETAB_ENT(120, 0x18, 0), RATETAB_ENT(180, 0x24, 0), RATETAB_ENT(240, 0x30, 0), RATETAB_ENT(360, 0x48, 0), RATETAB_ENT(480, 0x60, 0), RATETAB_ENT(540, 0x6c, 0), }; #define ath10k_a_rates (ath10k_rates + 4) #define ath10k_a_rates_size (ARRAY_SIZE(ath10k_rates) - 4) #define ath10k_g_rates (ath10k_rates + 0) #define ath10k_g_rates_size (ARRAY_SIZE(ath10k_rates)) struct ath10k *ath10k_mac_create(void) { struct ieee80211_hw *hw; struct ath10k *ar; hw = ieee80211_alloc_hw(sizeof(struct ath10k), &ath10k_ops); if (!hw) return NULL; ar = hw->priv; ar->hw = hw; return ar; } void ath10k_mac_destroy(struct ath10k *ar) { ieee80211_free_hw(ar->hw); } static const struct ieee80211_iface_limit ath10k_if_limits[] = { { .max = 8, .types = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_P2P_CLIENT) }, { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) }, { .max = 7, .types = BIT(NL80211_IFTYPE_AP) }, }; static const struct ieee80211_iface_limit ath10k_10x_if_limits[] = { { .max = 8, .types = BIT(NL80211_IFTYPE_AP) }, }; static const struct ieee80211_iface_combination ath10k_if_comb[] = { { .limits = ath10k_if_limits, .n_limits = ARRAY_SIZE(ath10k_if_limits), .max_interfaces = 8, .num_different_channels = 1, .beacon_int_infra_match = true, }, }; static const struct ieee80211_iface_combination ath10k_10x_if_comb[] = { { .limits = ath10k_10x_if_limits, .n_limits = ARRAY_SIZE(ath10k_10x_if_limits), .max_interfaces = 8, .num_different_channels = 1, .beacon_int_infra_match = true, #ifdef CONFIG_ATH10K_DFS_CERTIFIED .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80), #endif }, }; static struct ieee80211_sta_vht_cap ath10k_create_vht_cap(struct ath10k *ar) { struct ieee80211_sta_vht_cap vht_cap = {0}; u16 mcs_map; int i; vht_cap.vht_supported = 1; vht_cap.cap = ar->vht_cap_info; mcs_map = 0; for (i = 0; i < 8; i++) { if (i < ar->num_rf_chains) mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i*2); else mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i*2); } vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); return vht_cap; } static struct ieee80211_sta_ht_cap ath10k_get_ht_cap(struct ath10k *ar) { int i; struct ieee80211_sta_ht_cap ht_cap = {0}; if (!(ar->ht_cap_info & WMI_HT_CAP_ENABLED)) return ht_cap; ht_cap.ht_supported = 1; ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8; ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40; ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT; if (ar->ht_cap_info & WMI_HT_CAP_HT20_SGI) ht_cap.cap |= IEEE80211_HT_CAP_SGI_20; if (ar->ht_cap_info & WMI_HT_CAP_HT40_SGI) ht_cap.cap |= IEEE80211_HT_CAP_SGI_40; if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) { u32 smps; smps = WLAN_HT_CAP_SM_PS_DYNAMIC; smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT; ht_cap.cap |= smps; } if (ar->ht_cap_info & WMI_HT_CAP_TX_STBC) ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC; if (ar->ht_cap_info & WMI_HT_CAP_RX_STBC) { u32 stbc; stbc = ar->ht_cap_info; stbc &= WMI_HT_CAP_RX_STBC; stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT; stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT; stbc &= IEEE80211_HT_CAP_RX_STBC; ht_cap.cap |= stbc; } if (ar->ht_cap_info & WMI_HT_CAP_LDPC) ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING; if (ar->ht_cap_info & WMI_HT_CAP_L_SIG_TXOP_PROT) ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT; /* max AMSDU is implicitly taken from vht_cap_info */ if (ar->vht_cap_info & WMI_VHT_CAP_MAX_MPDU_LEN_MASK) ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU; for (i = 0; i < ar->num_rf_chains; i++) ht_cap.mcs.rx_mask[i] = 0xFF; ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED; return ht_cap; } static void ath10k_get_arvif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct ath10k_vif_iter *arvif_iter = data; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); if (arvif->vdev_id == arvif_iter->vdev_id) arvif_iter->arvif = arvif; } struct ath10k_vif *ath10k_get_arvif(struct ath10k *ar, u32 vdev_id) { struct ath10k_vif_iter arvif_iter; u32 flags; memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter)); arvif_iter.vdev_id = vdev_id; flags = IEEE80211_IFACE_ITER_RESUME_ALL; ieee80211_iterate_active_interfaces_atomic(ar->hw, flags, ath10k_get_arvif_iter, &arvif_iter); if (!arvif_iter.arvif) { ath10k_warn("No VIF found for vdev %d\n", vdev_id); return NULL; } return arvif_iter.arvif; } int ath10k_mac_register(struct ath10k *ar) { struct ieee80211_supported_band *band; struct ieee80211_sta_vht_cap vht_cap; struct ieee80211_sta_ht_cap ht_cap; void *channels; int ret; SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr); SET_IEEE80211_DEV(ar->hw, ar->dev); ht_cap = ath10k_get_ht_cap(ar); vht_cap = ath10k_create_vht_cap(ar); if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) { channels = kmemdup(ath10k_2ghz_channels, sizeof(ath10k_2ghz_channels), GFP_KERNEL); if (!channels) { ret = -ENOMEM; goto err_free; } band = &ar->mac.sbands[IEEE80211_BAND_2GHZ]; band->n_channels = ARRAY_SIZE(ath10k_2ghz_channels); band->channels = channels; band->n_bitrates = ath10k_g_rates_size; band->bitrates = ath10k_g_rates; band->ht_cap = ht_cap; /* vht is not supported in 2.4 GHz */ ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = band; } if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) { channels = kmemdup(ath10k_5ghz_channels, sizeof(ath10k_5ghz_channels), GFP_KERNEL); if (!channels) { ret = -ENOMEM; goto err_free; } band = &ar->mac.sbands[IEEE80211_BAND_5GHZ]; band->n_channels = ARRAY_SIZE(ath10k_5ghz_channels); band->channels = channels; band->n_bitrates = ath10k_a_rates_size; band->bitrates = ath10k_a_rates; band->ht_cap = ht_cap; band->vht_cap = vht_cap; ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = band; } ar->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_AP); if (!test_bit(ATH10K_FW_FEATURE_NO_P2P, ar->fw_features)) ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO); ar->hw->flags = IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_SUPPORTS_PS | IEEE80211_HW_SUPPORTS_DYNAMIC_PS | IEEE80211_HW_SUPPORTS_UAPSD | IEEE80211_HW_MFP_CAPABLE | IEEE80211_HW_REPORTS_TX_ACK_STATUS | IEEE80211_HW_HAS_RATE_CONTROL | IEEE80211_HW_SUPPORTS_STATIC_SMPS | IEEE80211_HW_WANT_MONITOR_VIF | IEEE80211_HW_AP_LINK_PS | IEEE80211_HW_SPECTRUM_MGMT; /* MSDU can have HTT TX fragment pushed in front. The additional 4 * bytes is used for padding/alignment if necessary. */ ar->hw->extra_tx_headroom += sizeof(struct htt_data_tx_desc_frag)*2 + 4; if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) ar->hw->flags |= IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS; if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) { ar->hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION; ar->hw->flags |= IEEE80211_HW_TX_AMPDU_SETUP_IN_HW; } ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID; ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN; ar->hw->vif_data_size = sizeof(struct ath10k_vif); ar->hw->sta_data_size = sizeof(struct ath10k_sta); ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL; ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH; ar->hw->wiphy->max_remain_on_channel_duration = 5000; ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD; /* * on LL hardware queues are managed entirely by the FW * so we only advertise to mac we can do the queues thing */ ar->hw->queues = 4; if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) { ar->hw->wiphy->iface_combinations = ath10k_10x_if_comb; ar->hw->wiphy->n_iface_combinations = ARRAY_SIZE(ath10k_10x_if_comb); } else { ar->hw->wiphy->iface_combinations = ath10k_if_comb; ar->hw->wiphy->n_iface_combinations = ARRAY_SIZE(ath10k_if_comb); } ar->hw->netdev_features = NETIF_F_HW_CSUM; if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED)) { /* Init ath dfs pattern detector */ ar->ath_common.debug_mask = ATH_DBG_DFS; ar->dfs_detector = dfs_pattern_detector_init(&ar->ath_common, NL80211_DFS_UNSET); if (!ar->dfs_detector) ath10k_warn("dfs pattern detector init failed\n"); } ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy, ath10k_reg_notifier); if (ret) { ath10k_err("Regulatory initialization failed: %i\n", ret); goto err_free; } ret = ieee80211_register_hw(ar->hw); if (ret) { ath10k_err("ieee80211 registration failed: %d\n", ret); goto err_free; } if (!ath_is_world_regd(&ar->ath_common.regulatory)) { ret = regulatory_hint(ar->hw->wiphy, ar->ath_common.regulatory.alpha2); if (ret) goto err_unregister; } return 0; err_unregister: ieee80211_unregister_hw(ar->hw); err_free: kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels); kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels); return ret; } void ath10k_mac_unregister(struct ath10k *ar) { ieee80211_unregister_hw(ar->hw); if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) ar->dfs_detector->exit(ar->dfs_detector); kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels); kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels); SET_IEEE80211_DEV(ar->hw, NULL); }