/**
 * drivers/net/ks8851_mll.c
 * Copyright (c) 2009 Micrel Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/**
 * Supports:
 * KS8851 16bit MLL chip from Micrel Inc.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/cache.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/slab.h>

#define	DRV_NAME	"ks8851_mll"

static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
#define MAX_RECV_FRAMES			32
#define MAX_BUF_SIZE			2048
#define TX_BUF_SIZE			2000
#define RX_BUF_SIZE			2000

#define KS_CCR				0x08
#define CCR_EEPROM			(1 << 9)
#define CCR_SPI				(1 << 8)
#define CCR_8BIT			(1 << 7)
#define CCR_16BIT			(1 << 6)
#define CCR_32BIT			(1 << 5)
#define CCR_SHARED			(1 << 4)
#define CCR_32PIN			(1 << 0)

/* MAC address registers */
#define KS_MARL				0x10
#define KS_MARM				0x12
#define KS_MARH				0x14

#define KS_OBCR				0x20
#define OBCR_ODS_16MA			(1 << 6)

#define KS_EEPCR			0x22
#define EEPCR_EESA			(1 << 4)
#define EEPCR_EESB			(1 << 3)
#define EEPCR_EEDO			(1 << 2)
#define EEPCR_EESCK			(1 << 1)
#define EEPCR_EECS			(1 << 0)

#define KS_MBIR				0x24
#define MBIR_TXMBF			(1 << 12)
#define MBIR_TXMBFA			(1 << 11)
#define MBIR_RXMBF			(1 << 4)
#define MBIR_RXMBFA			(1 << 3)

#define KS_GRR				0x26
#define GRR_QMU				(1 << 1)
#define GRR_GSR				(1 << 0)

#define KS_WFCR				0x2A
#define WFCR_MPRXE			(1 << 7)
#define WFCR_WF3E			(1 << 3)
#define WFCR_WF2E			(1 << 2)
#define WFCR_WF1E			(1 << 1)
#define WFCR_WF0E			(1 << 0)

#define KS_WF0CRC0			0x30
#define KS_WF0CRC1			0x32
#define KS_WF0BM0			0x34
#define KS_WF0BM1			0x36
#define KS_WF0BM2			0x38
#define KS_WF0BM3			0x3A

#define KS_WF1CRC0			0x40
#define KS_WF1CRC1			0x42
#define KS_WF1BM0			0x44
#define KS_WF1BM1			0x46
#define KS_WF1BM2			0x48
#define KS_WF1BM3			0x4A

#define KS_WF2CRC0			0x50
#define KS_WF2CRC1			0x52
#define KS_WF2BM0			0x54
#define KS_WF2BM1			0x56
#define KS_WF2BM2			0x58
#define KS_WF2BM3			0x5A

#define KS_WF3CRC0			0x60
#define KS_WF3CRC1			0x62
#define KS_WF3BM0			0x64
#define KS_WF3BM1			0x66
#define KS_WF3BM2			0x68
#define KS_WF3BM3			0x6A

#define KS_TXCR				0x70
#define TXCR_TCGICMP			(1 << 8)
#define TXCR_TCGUDP			(1 << 7)
#define TXCR_TCGTCP			(1 << 6)
#define TXCR_TCGIP			(1 << 5)
#define TXCR_FTXQ			(1 << 4)
#define TXCR_TXFCE			(1 << 3)
#define TXCR_TXPE			(1 << 2)
#define TXCR_TXCRC			(1 << 1)
#define TXCR_TXE			(1 << 0)

#define KS_TXSR				0x72
#define TXSR_TXLC			(1 << 13)
#define TXSR_TXMC			(1 << 12)
#define TXSR_TXFID_MASK			(0x3f << 0)
#define TXSR_TXFID_SHIFT		(0)
#define TXSR_TXFID_GET(_v)		(((_v) >> 0) & 0x3f)


#define KS_RXCR1			0x74
#define RXCR1_FRXQ			(1 << 15)
#define RXCR1_RXUDPFCC			(1 << 14)
#define RXCR1_RXTCPFCC			(1 << 13)
#define RXCR1_RXIPFCC			(1 << 12)
#define RXCR1_RXPAFMA			(1 << 11)
#define RXCR1_RXFCE			(1 << 10)
#define RXCR1_RXEFE			(1 << 9)
#define RXCR1_RXMAFMA			(1 << 8)
#define RXCR1_RXBE			(1 << 7)
#define RXCR1_RXME			(1 << 6)
#define RXCR1_RXUE			(1 << 5)
#define RXCR1_RXAE			(1 << 4)
#define RXCR1_RXINVF			(1 << 1)
#define RXCR1_RXE			(1 << 0)
#define RXCR1_FILTER_MASK    		(RXCR1_RXINVF | RXCR1_RXAE | \
					 RXCR1_RXMAFMA | RXCR1_RXPAFMA)

#define KS_RXCR2			0x76
#define RXCR2_SRDBL_MASK		(0x7 << 5)
#define RXCR2_SRDBL_SHIFT		(5)
#define RXCR2_SRDBL_4B			(0x0 << 5)
#define RXCR2_SRDBL_8B			(0x1 << 5)
#define RXCR2_SRDBL_16B			(0x2 << 5)
#define RXCR2_SRDBL_32B			(0x3 << 5)
/* #define RXCR2_SRDBL_FRAME		(0x4 << 5) */
#define RXCR2_IUFFP			(1 << 4)
#define RXCR2_RXIUFCEZ			(1 << 3)
#define RXCR2_UDPLFE			(1 << 2)
#define RXCR2_RXICMPFCC			(1 << 1)
#define RXCR2_RXSAF			(1 << 0)

#define KS_TXMIR			0x78

#define KS_RXFHSR			0x7C
#define RXFSHR_RXFV			(1 << 15)
#define RXFSHR_RXICMPFCS		(1 << 13)
#define RXFSHR_RXIPFCS			(1 << 12)
#define RXFSHR_RXTCPFCS			(1 << 11)
#define RXFSHR_RXUDPFCS			(1 << 10)
#define RXFSHR_RXBF			(1 << 7)
#define RXFSHR_RXMF			(1 << 6)
#define RXFSHR_RXUF			(1 << 5)
#define RXFSHR_RXMR			(1 << 4)
#define RXFSHR_RXFT			(1 << 3)
#define RXFSHR_RXFTL			(1 << 2)
#define RXFSHR_RXRF			(1 << 1)
#define RXFSHR_RXCE			(1 << 0)
#define	RXFSHR_ERR			(RXFSHR_RXCE | RXFSHR_RXRF |\
					RXFSHR_RXFTL | RXFSHR_RXMR |\
					RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
					RXFSHR_RXTCPFCS)
#define KS_RXFHBCR			0x7E
#define RXFHBCR_CNT_MASK		0x0FFF

#define KS_TXQCR			0x80
#define TXQCR_AETFE			(1 << 2)
#define TXQCR_TXQMAM			(1 << 1)
#define TXQCR_METFE			(1 << 0)

#define KS_RXQCR			0x82
#define RXQCR_RXDTTS			(1 << 12)
#define RXQCR_RXDBCTS			(1 << 11)
#define RXQCR_RXFCTS			(1 << 10)
#define RXQCR_RXIPHTOE			(1 << 9)
#define RXQCR_RXDTTE			(1 << 7)
#define RXQCR_RXDBCTE			(1 << 6)
#define RXQCR_RXFCTE			(1 << 5)
#define RXQCR_ADRFE			(1 << 4)
#define RXQCR_SDA			(1 << 3)
#define RXQCR_RRXEF			(1 << 0)
#define RXQCR_CMD_CNTL                	(RXQCR_RXFCTE|RXQCR_ADRFE)

#define KS_TXFDPR			0x84
#define TXFDPR_TXFPAI			(1 << 14)
#define TXFDPR_TXFP_MASK		(0x7ff << 0)
#define TXFDPR_TXFP_SHIFT		(0)

#define KS_RXFDPR			0x86
#define RXFDPR_RXFPAI			(1 << 14)

#define KS_RXDTTR			0x8C
#define KS_RXDBCTR			0x8E

#define KS_IER				0x90
#define KS_ISR				0x92
#define IRQ_LCI				(1 << 15)
#define IRQ_TXI				(1 << 14)
#define IRQ_RXI				(1 << 13)
#define IRQ_RXOI			(1 << 11)
#define IRQ_TXPSI			(1 << 9)
#define IRQ_RXPSI			(1 << 8)
#define IRQ_TXSAI			(1 << 6)
#define IRQ_RXWFDI			(1 << 5)
#define IRQ_RXMPDI			(1 << 4)
#define IRQ_LDI				(1 << 3)
#define IRQ_EDI				(1 << 2)
#define IRQ_SPIBEI			(1 << 1)
#define IRQ_DEDI			(1 << 0)

#define KS_RXFCTR			0x9C
#define RXFCTR_THRESHOLD_MASK     	0x00FF

#define KS_RXFC				0x9D
#define RXFCTR_RXFC_MASK		(0xff << 8)
#define RXFCTR_RXFC_SHIFT		(8)
#define RXFCTR_RXFC_GET(_v)		(((_v) >> 8) & 0xff)
#define RXFCTR_RXFCT_MASK		(0xff << 0)
#define RXFCTR_RXFCT_SHIFT		(0)

#define KS_TXNTFSR			0x9E

#define KS_MAHTR0			0xA0
#define KS_MAHTR1			0xA2
#define KS_MAHTR2			0xA4
#define KS_MAHTR3			0xA6

#define KS_FCLWR			0xB0
#define KS_FCHWR			0xB2
#define KS_FCOWR			0xB4

#define KS_CIDER			0xC0
#define CIDER_ID			0x8870
#define CIDER_REV_MASK			(0x7 << 1)
#define CIDER_REV_SHIFT			(1)
#define CIDER_REV_GET(_v)		(((_v) >> 1) & 0x7)

#define KS_CGCR				0xC6
#define KS_IACR				0xC8
#define IACR_RDEN			(1 << 12)
#define IACR_TSEL_MASK			(0x3 << 10)
#define IACR_TSEL_SHIFT			(10)
#define IACR_TSEL_MIB			(0x3 << 10)
#define IACR_ADDR_MASK			(0x1f << 0)
#define IACR_ADDR_SHIFT			(0)

#define KS_IADLR			0xD0
#define KS_IAHDR			0xD2

#define KS_PMECR			0xD4
#define PMECR_PME_DELAY			(1 << 14)
#define PMECR_PME_POL			(1 << 12)
#define PMECR_WOL_WAKEUP		(1 << 11)
#define PMECR_WOL_MAGICPKT		(1 << 10)
#define PMECR_WOL_LINKUP		(1 << 9)
#define PMECR_WOL_ENERGY		(1 << 8)
#define PMECR_AUTO_WAKE_EN		(1 << 7)
#define PMECR_WAKEUP_NORMAL		(1 << 6)
#define PMECR_WKEVT_MASK		(0xf << 2)
#define PMECR_WKEVT_SHIFT		(2)
#define PMECR_WKEVT_GET(_v)		(((_v) >> 2) & 0xf)
#define PMECR_WKEVT_ENERGY		(0x1 << 2)
#define PMECR_WKEVT_LINK		(0x2 << 2)
#define PMECR_WKEVT_MAGICPKT		(0x4 << 2)
#define PMECR_WKEVT_FRAME		(0x8 << 2)
#define PMECR_PM_MASK			(0x3 << 0)
#define PMECR_PM_SHIFT			(0)
#define PMECR_PM_NORMAL			(0x0 << 0)
#define PMECR_PM_ENERGY			(0x1 << 0)
#define PMECR_PM_SOFTDOWN		(0x2 << 0)
#define PMECR_PM_POWERSAVE		(0x3 << 0)

/* Standard MII PHY data */
#define KS_P1MBCR			0xE4
#define P1MBCR_FORCE_FDX		(1 << 8)

#define KS_P1MBSR			0xE6
#define P1MBSR_AN_COMPLETE		(1 << 5)
#define P1MBSR_AN_CAPABLE		(1 << 3)
#define P1MBSR_LINK_UP			(1 << 2)

#define KS_PHY1ILR			0xE8
#define KS_PHY1IHR			0xEA
#define KS_P1ANAR			0xEC
#define KS_P1ANLPR			0xEE

#define KS_P1SCLMD			0xF4
#define P1SCLMD_LEDOFF			(1 << 15)
#define P1SCLMD_TXIDS			(1 << 14)
#define P1SCLMD_RESTARTAN		(1 << 13)
#define P1SCLMD_DISAUTOMDIX		(1 << 10)
#define P1SCLMD_FORCEMDIX		(1 << 9)
#define P1SCLMD_AUTONEGEN		(1 << 7)
#define P1SCLMD_FORCE100		(1 << 6)
#define P1SCLMD_FORCEFDX		(1 << 5)
#define P1SCLMD_ADV_FLOW		(1 << 4)
#define P1SCLMD_ADV_100BT_FDX		(1 << 3)
#define P1SCLMD_ADV_100BT_HDX		(1 << 2)
#define P1SCLMD_ADV_10BT_FDX		(1 << 1)
#define P1SCLMD_ADV_10BT_HDX		(1 << 0)

#define KS_P1CR				0xF6
#define P1CR_HP_MDIX			(1 << 15)
#define P1CR_REV_POL			(1 << 13)
#define P1CR_OP_100M			(1 << 10)
#define P1CR_OP_FDX			(1 << 9)
#define P1CR_OP_MDI			(1 << 7)
#define P1CR_AN_DONE			(1 << 6)
#define P1CR_LINK_GOOD			(1 << 5)
#define P1CR_PNTR_FLOW			(1 << 4)
#define P1CR_PNTR_100BT_FDX		(1 << 3)
#define P1CR_PNTR_100BT_HDX		(1 << 2)
#define P1CR_PNTR_10BT_FDX		(1 << 1)
#define P1CR_PNTR_10BT_HDX		(1 << 0)

/* TX Frame control */

#define TXFR_TXIC			(1 << 15)
#define TXFR_TXFID_MASK			(0x3f << 0)
#define TXFR_TXFID_SHIFT		(0)

#define KS_P1SR				0xF8
#define P1SR_HP_MDIX			(1 << 15)
#define P1SR_REV_POL			(1 << 13)
#define P1SR_OP_100M			(1 << 10)
#define P1SR_OP_FDX			(1 << 9)
#define P1SR_OP_MDI			(1 << 7)
#define P1SR_AN_DONE			(1 << 6)
#define P1SR_LINK_GOOD			(1 << 5)
#define P1SR_PNTR_FLOW			(1 << 4)
#define P1SR_PNTR_100BT_FDX		(1 << 3)
#define P1SR_PNTR_100BT_HDX		(1 << 2)
#define P1SR_PNTR_10BT_FDX		(1 << 1)
#define P1SR_PNTR_10BT_HDX		(1 << 0)

#define	ENUM_BUS_NONE			0
#define	ENUM_BUS_8BIT			1
#define	ENUM_BUS_16BIT			2
#define	ENUM_BUS_32BIT			3

#define MAX_MCAST_LST			32
#define HW_MCAST_SIZE			8
#define MAC_ADDR_LEN			6

/**
 * union ks_tx_hdr - tx header data
 * @txb: The header as bytes
 * @txw: The header as 16bit, little-endian words
 *
 * A dual representation of the tx header data to allow
 * access to individual bytes, and to allow 16bit accesses
 * with 16bit alignment.
 */
union ks_tx_hdr {
	u8      txb[4];
	__le16  txw[2];
};

/**
 * struct ks_net - KS8851 driver private data
 * @net_device 	: The network device we're bound to
 * @hw_addr	: start address of data register.
 * @hw_addr_cmd	: start address of command register.
 * @txh    	: temporaly buffer to save status/length.
 * @lock	: Lock to ensure that the device is not accessed when busy.
 * @pdev	: Pointer to platform device.
 * @mii		: The MII state information for the mii calls.
 * @frame_head_info   	: frame header information for multi-pkt rx.
 * @statelock	: Lock on this structure for tx list.
 * @msg_enable	: The message flags controlling driver output (see ethtool).
 * @frame_cnt  	: number of frames received.
 * @bus_width  	: i/o bus width.
 * @irq    	: irq number assigned to this device.
 * @rc_rxqcr	: Cached copy of KS_RXQCR.
 * @rc_txcr	: Cached copy of KS_TXCR.
 * @rc_ier	: Cached copy of KS_IER.
 * @sharedbus  	: Multipex(addr and data bus) mode indicator.
 * @cmd_reg_cache	: command register cached.
 * @cmd_reg_cache_int	: command register cached. Used in the irq handler.
 * @promiscuous	: promiscuous mode indicator.
 * @all_mcast  	: mutlicast indicator.
 * @mcast_lst_size   	: size of multicast list.
 * @mcast_lst    	: multicast list.
 * @mcast_bits    	: multicast enabed.
 * @mac_addr   		: MAC address assigned to this device.
 * @fid    		: frame id.
 * @extra_byte    	: number of extra byte prepended rx pkt.
 * @enabled    		: indicator this device works.
 *
 * The @lock ensures that the chip is protected when certain operations are
 * in progress. When the read or write packet transfer is in progress, most
 * of the chip registers are not accessible until the transfer is finished and
 * the DMA has been de-asserted.
 *
 * The @statelock is used to protect information in the structure which may
 * need to be accessed via several sources, such as the network driver layer
 * or one of the work queues.
 *
 */

/* Receive multiplex framer header info */
struct type_frame_head {
	u16	sts;         /* Frame status */
	u16	len;         /* Byte count */
};

struct ks_net {
	struct net_device	*netdev;
	void __iomem    	*hw_addr;
	void __iomem    	*hw_addr_cmd;
	union ks_tx_hdr		txh ____cacheline_aligned;
	struct mutex      	lock; /* spinlock to be interrupt safe */
	struct platform_device *pdev;
	struct mii_if_info	mii;
	struct type_frame_head	*frame_head_info;
	spinlock_t		statelock;
	u32			msg_enable;
	u32			frame_cnt;
	int			bus_width;
	int             	irq;

	u16			rc_rxqcr;
	u16			rc_txcr;
	u16			rc_ier;
	u16			sharedbus;
	u16			cmd_reg_cache;
	u16			cmd_reg_cache_int;
	u16			promiscuous;
	u16			all_mcast;
	u16			mcast_lst_size;
	u8			mcast_lst[MAX_MCAST_LST][MAC_ADDR_LEN];
	u8			mcast_bits[HW_MCAST_SIZE];
	u8			mac_addr[6];
	u8                      fid;
	u8			extra_byte;
	u8			enabled;
};

static int msg_enable;

#define ks_info(_ks, _msg...) dev_info(&(_ks)->pdev->dev, _msg)
#define ks_warn(_ks, _msg...) dev_warn(&(_ks)->pdev->dev, _msg)
#define ks_dbg(_ks, _msg...) dev_dbg(&(_ks)->pdev->dev, _msg)
#define ks_err(_ks, _msg...) dev_err(&(_ks)->pdev->dev, _msg)

#define BE3             0x8000      /* Byte Enable 3 */
#define BE2             0x4000      /* Byte Enable 2 */
#define BE1             0x2000      /* Byte Enable 1 */
#define BE0             0x1000      /* Byte Enable 0 */

/**
 * register read/write calls.
 *
 * All these calls issue transactions to access the chip's registers. They
 * all require that the necessary lock is held to prevent accesses when the
 * chip is busy transfering packet data (RX/TX FIFO accesses).
 */

/**
 * ks_rdreg8 - read 8 bit register from device
 * @ks	  : The chip information
 * @offset: The register address
 *
 * Read a 8bit register from the chip, returning the result
 */
static u8 ks_rdreg8(struct ks_net *ks, int offset)
{
	u16 data;
	u8 shift_bit = offset & 0x03;
	u8 shift_data = (offset & 1) << 3;
	ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
	data  = ioread16(ks->hw_addr);
	return (u8)(data >> shift_data);
}

/**
 * ks_rdreg16 - read 16 bit register from device
 * @ks	  : The chip information
 * @offset: The register address
 *
 * Read a 16bit register from the chip, returning the result
 */

static u16 ks_rdreg16(struct ks_net *ks, int offset)
{
	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
	return ioread16(ks->hw_addr);
}

/**
 * ks_wrreg8 - write 8bit register value to chip
 * @ks: The chip information
 * @offset: The register address
 * @value: The value to write
 *
 */
static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
{
	u8  shift_bit = (offset & 0x03);
	u16 value_write = (u16)(value << ((offset & 1) << 3));
	ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
	iowrite16(value_write, ks->hw_addr);
}

/**
 * ks_wrreg16 - write 16bit register value to chip
 * @ks: The chip information
 * @offset: The register address
 * @value: The value to write
 *
 */

static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
{
	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
	iowrite16(value, ks->hw_addr);
}

/**
 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
 * @ks: The chip state
 * @wptr: buffer address to save data
 * @len: length in byte to read
 *
 */
static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
{
	len >>= 1;
	while (len--)
		*wptr++ = (u16)ioread16(ks->hw_addr);
}

/**
 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
 * @ks: The chip information
 * @wptr: buffer address
 * @len: length in byte to write
 *
 */
static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
{
	len >>= 1;
	while (len--)
		iowrite16(*wptr++, ks->hw_addr);
}

static void ks_disable_int(struct ks_net *ks)
{
	ks_wrreg16(ks, KS_IER, 0x0000);
}  /* ks_disable_int */

static void ks_enable_int(struct ks_net *ks)
{
	ks_wrreg16(ks, KS_IER, ks->rc_ier);
}  /* ks_enable_int */

/**
 * ks_tx_fifo_space - return the available hardware buffer size.
 * @ks: The chip information
 *
 */
static inline u16 ks_tx_fifo_space(struct ks_net *ks)
{
	return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
}

/**
 * ks_save_cmd_reg - save the command register from the cache.
 * @ks: The chip information
 *
 */
static inline void ks_save_cmd_reg(struct ks_net *ks)
{
	/*ks8851 MLL has a bug to read back the command register.
	* So rely on software to save the content of command register.
	*/
	ks->cmd_reg_cache_int = ks->cmd_reg_cache;
}

/**
 * ks_restore_cmd_reg - restore the command register from the cache and
 * 	write to hardware register.
 * @ks: The chip information
 *
 */
static inline void ks_restore_cmd_reg(struct ks_net *ks)
{
	ks->cmd_reg_cache = ks->cmd_reg_cache_int;
	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
}

/**
 * ks_set_powermode - set power mode of the device
 * @ks: The chip information
 * @pwrmode: The power mode value to write to KS_PMECR.
 *
 * Change the power mode of the chip.
 */
static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
{
	unsigned pmecr;

	if (netif_msg_hw(ks))
		ks_dbg(ks, "setting power mode %d\n", pwrmode);

	ks_rdreg16(ks, KS_GRR);
	pmecr = ks_rdreg16(ks, KS_PMECR);
	pmecr &= ~PMECR_PM_MASK;
	pmecr |= pwrmode;

	ks_wrreg16(ks, KS_PMECR, pmecr);
}

/**
 * ks_read_config - read chip configuration of bus width.
 * @ks: The chip information
 *
 */
static void ks_read_config(struct ks_net *ks)
{
	u16 reg_data = 0;

	/* Regardless of bus width, 8 bit read should always work.*/
	reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
	reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;

	/* addr/data bus are multiplexed */
	ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;

	/* There are garbage data when reading data from QMU,
	depending on bus-width.
	*/

	if (reg_data & CCR_8BIT) {
		ks->bus_width = ENUM_BUS_8BIT;
		ks->extra_byte = 1;
	} else if (reg_data & CCR_16BIT) {
		ks->bus_width = ENUM_BUS_16BIT;
		ks->extra_byte = 2;
	} else {
		ks->bus_width = ENUM_BUS_32BIT;
		ks->extra_byte = 4;
	}
}

/**
 * ks_soft_reset - issue one of the soft reset to the device
 * @ks: The device state.
 * @op: The bit(s) to set in the GRR
 *
 * Issue the relevant soft-reset command to the device's GRR register
 * specified by @op.
 *
 * Note, the delays are in there as a caution to ensure that the reset
 * has time to take effect and then complete. Since the datasheet does
 * not currently specify the exact sequence, we have chosen something
 * that seems to work with our device.
 */
static void ks_soft_reset(struct ks_net *ks, unsigned op)
{
	/* Disable interrupt first */
	ks_wrreg16(ks, KS_IER, 0x0000);
	ks_wrreg16(ks, KS_GRR, op);
	mdelay(10);	/* wait a short time to effect reset */
	ks_wrreg16(ks, KS_GRR, 0);
	mdelay(1);	/* wait for condition to clear */
}


void ks_enable_qmu(struct ks_net *ks)
{
	u16 w;

	w = ks_rdreg16(ks, KS_TXCR);
	/* Enables QMU Transmit (TXCR). */
	ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);

	/*
	 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
	 * Enable
	 */

	w = ks_rdreg16(ks, KS_RXQCR);
	ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);

	/* Enables QMU Receive (RXCR1). */
	w = ks_rdreg16(ks, KS_RXCR1);
	ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
	ks->enabled = true;
}  /* ks_enable_qmu */

static void ks_disable_qmu(struct ks_net *ks)
{
	u16	w;

	w = ks_rdreg16(ks, KS_TXCR);

	/* Disables QMU Transmit (TXCR). */
	w  &= ~TXCR_TXE;
	ks_wrreg16(ks, KS_TXCR, w);

	/* Disables QMU Receive (RXCR1). */
	w = ks_rdreg16(ks, KS_RXCR1);
	w &= ~RXCR1_RXE ;
	ks_wrreg16(ks, KS_RXCR1, w);

	ks->enabled = false;

}  /* ks_disable_qmu */

/**
 * ks_read_qmu - read 1 pkt data from the QMU.
 * @ks: The chip information
 * @buf: buffer address to save 1 pkt
 * @len: Pkt length
 * Here is the sequence to read 1 pkt:
 *	1. set sudo DMA mode
 *	2. read prepend data
 *	3. read pkt data
 *	4. reset sudo DMA Mode
 */
static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
{
	u32 r =  ks->extra_byte & 0x1 ;
	u32 w = ks->extra_byte - r;

	/* 1. set sudo DMA mode */
	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);

	/* 2. read prepend data */
	/**
	 * read 4 + extra bytes and discard them.
	 * extra bytes for dummy, 2 for status, 2 for len
	 */

	/* use likely(r) for 8 bit access for performance */
	if (unlikely(r))
		ioread8(ks->hw_addr);
	ks_inblk(ks, buf, w + 2 + 2);

	/* 3. read pkt data */
	ks_inblk(ks, buf, ALIGN(len, 4));

	/* 4. reset sudo DMA Mode */
	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
}

/**
 * ks_rcv - read multiple pkts data from the QMU.
 * @ks: The chip information
 * @netdev: The network device being opened.
 *
 * Read all of header information before reading pkt content.
 * It is not allowed only port of pkts in QMU after issuing
 * interrupt ack.
 */
static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
{
	u32	i;
	struct type_frame_head *frame_hdr = ks->frame_head_info;
	struct sk_buff *skb;

	ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;

	/* read all header information */
	for (i = 0; i < ks->frame_cnt; i++) {
		/* Checking Received packet status */
		frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
		/* Get packet len from hardware */
		frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
		frame_hdr++;
	}

	frame_hdr = ks->frame_head_info;
	while (ks->frame_cnt--) {
		skb = dev_alloc_skb(frame_hdr->len + 16);
		if (likely(skb && (frame_hdr->sts & RXFSHR_RXFV) &&
			(frame_hdr->len < RX_BUF_SIZE) && frame_hdr->len)) {
			skb_reserve(skb, 2);
			/* read data block including CRC 4 bytes */
			ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
			skb_put(skb, frame_hdr->len);
			skb->dev = netdev;
			skb->protocol = eth_type_trans(skb, netdev);
			netif_rx(skb);
		} else {
			printk(KERN_ERR "%s: err:skb alloc\n", __func__);
			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
			if (skb)
				dev_kfree_skb_irq(skb);
		}
		frame_hdr++;
	}
}

/**
 * ks_update_link_status - link status update.
 * @netdev: The network device being opened.
 * @ks: The chip information
 *
 */

static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
{
	/* check the status of the link */
	u32 link_up_status;
	if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
		netif_carrier_on(netdev);
		link_up_status = true;
	} else {
		netif_carrier_off(netdev);
		link_up_status = false;
	}
	if (netif_msg_link(ks))
		ks_dbg(ks, "%s: %s\n",
			__func__, link_up_status ? "UP" : "DOWN");
}

/**
 * ks_irq - device interrupt handler
 * @irq: Interrupt number passed from the IRQ hnalder.
 * @pw: The private word passed to register_irq(), our struct ks_net.
 *
 * This is the handler invoked to find out what happened
 *
 * Read the interrupt status, work out what needs to be done and then clear
 * any of the interrupts that are not needed.
 */

static irqreturn_t ks_irq(int irq, void *pw)
{
	struct net_device *netdev = pw;
	struct ks_net *ks = netdev_priv(netdev);
	u16 status;

	/*this should be the first in IRQ handler */
	ks_save_cmd_reg(ks);

	status = ks_rdreg16(ks, KS_ISR);
	if (unlikely(!status)) {
		ks_restore_cmd_reg(ks);
		return IRQ_NONE;
	}

	ks_wrreg16(ks, KS_ISR, status);

	if (likely(status & IRQ_RXI))
		ks_rcv(ks, netdev);

	if (unlikely(status & IRQ_LCI))
		ks_update_link_status(netdev, ks);

	if (unlikely(status & IRQ_TXI))
		netif_wake_queue(netdev);

	if (unlikely(status & IRQ_LDI)) {

		u16 pmecr = ks_rdreg16(ks, KS_PMECR);
		pmecr &= ~PMECR_WKEVT_MASK;
		ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
	}

	/* this should be the last in IRQ handler*/
	ks_restore_cmd_reg(ks);
	return IRQ_HANDLED;
}


/**
 * ks_net_open - open network device
 * @netdev: The network device being opened.
 *
 * Called when the network device is marked active, such as a user executing
 * 'ifconfig up' on the device.
 */
static int ks_net_open(struct net_device *netdev)
{
	struct ks_net *ks = netdev_priv(netdev);
	int err;

#define	KS_INT_FLAGS	(IRQF_DISABLED|IRQF_TRIGGER_LOW)
	/* lock the card, even if we may not actually do anything
	 * else at the moment.
	 */

	if (netif_msg_ifup(ks))
		ks_dbg(ks, "%s - entry\n", __func__);

	/* reset the HW */
	err = request_irq(ks->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);

	if (err) {
		printk(KERN_ERR "Failed to request IRQ: %d: %d\n",
			ks->irq, err);
		return err;
	}

	/* wake up powermode to normal mode */
	ks_set_powermode(ks, PMECR_PM_NORMAL);
	mdelay(1);	/* wait for normal mode to take effect */

	ks_wrreg16(ks, KS_ISR, 0xffff);
	ks_enable_int(ks);
	ks_enable_qmu(ks);
	netif_start_queue(ks->netdev);

	if (netif_msg_ifup(ks))
		ks_dbg(ks, "network device %s up\n", netdev->name);

	return 0;
}

/**
 * ks_net_stop - close network device
 * @netdev: The device being closed.
 *
 * Called to close down a network device which has been active. Cancell any
 * work, shutdown the RX and TX process and then place the chip into a low
 * power state whilst it is not being used.
 */
static int ks_net_stop(struct net_device *netdev)
{
	struct ks_net *ks = netdev_priv(netdev);

	if (netif_msg_ifdown(ks))
		ks_info(ks, "%s: shutting down\n", netdev->name);

	netif_stop_queue(netdev);

	mutex_lock(&ks->lock);

	/* turn off the IRQs and ack any outstanding */
	ks_wrreg16(ks, KS_IER, 0x0000);
	ks_wrreg16(ks, KS_ISR, 0xffff);

	/* shutdown RX/TX QMU */
	ks_disable_qmu(ks);

	/* set powermode to soft power down to save power */
	ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
	free_irq(ks->irq, netdev);
	mutex_unlock(&ks->lock);
	return 0;
}


/**
 * ks_write_qmu - write 1 pkt data to the QMU.
 * @ks: The chip information
 * @pdata: buffer address to save 1 pkt
 * @len: Pkt length in byte
 * Here is the sequence to write 1 pkt:
 *	1. set sudo DMA mode
 *	2. write status/length
 *	3. write pkt data
 *	4. reset sudo DMA Mode
 *	5. reset sudo DMA mode
 *	6. Wait until pkt is out
 */
static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
{
	/* start header at txb[0] to align txw entries */
	ks->txh.txw[0] = 0;
	ks->txh.txw[1] = cpu_to_le16(len);

	/* 1. set sudo-DMA mode */
	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
	/* 2. write status/lenth info */
	ks_outblk(ks, ks->txh.txw, 4);
	/* 3. write pkt data */
	ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
	/* 4. reset sudo-DMA mode */
	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
	/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
	ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
	/* 6. wait until TXQCR_METFE is auto-cleared */
	while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
		;
}

/**
 * ks_start_xmit - transmit packet
 * @skb		: The buffer to transmit
 * @netdev	: The device used to transmit the packet.
 *
 * Called by the network layer to transmit the @skb.
 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
 * So while tx is in-progress, prevent IRQ interrupt from happenning.
 */
static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
	int retv = NETDEV_TX_OK;
	struct ks_net *ks = netdev_priv(netdev);

	disable_irq(netdev->irq);
	ks_disable_int(ks);
	spin_lock(&ks->statelock);

	/* Extra space are required:
	*  4 byte for alignment, 4 for status/length, 4 for CRC
	*/

	if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
		ks_write_qmu(ks, skb->data, skb->len);
		dev_kfree_skb(skb);
	} else
		retv = NETDEV_TX_BUSY;
	spin_unlock(&ks->statelock);
	ks_enable_int(ks);
	enable_irq(netdev->irq);
	return retv;
}

/**
 * ks_start_rx - ready to serve pkts
 * @ks		: The chip information
 *
 */
static void ks_start_rx(struct ks_net *ks)
{
	u16 cntl;

	/* Enables QMU Receive (RXCR1). */
	cntl = ks_rdreg16(ks, KS_RXCR1);
	cntl |= RXCR1_RXE ;
	ks_wrreg16(ks, KS_RXCR1, cntl);
}  /* ks_start_rx */

/**
 * ks_stop_rx - stop to serve pkts
 * @ks		: The chip information
 *
 */
static void ks_stop_rx(struct ks_net *ks)
{
	u16 cntl;

	/* Disables QMU Receive (RXCR1). */
	cntl = ks_rdreg16(ks, KS_RXCR1);
	cntl &= ~RXCR1_RXE ;
	ks_wrreg16(ks, KS_RXCR1, cntl);

}  /* ks_stop_rx */

static unsigned long const ethernet_polynomial = 0x04c11db7U;

static unsigned long ether_gen_crc(int length, u8 *data)
{
	long crc = -1;
	while (--length >= 0) {
		u8 current_octet = *data++;
		int bit;

		for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
			crc = (crc << 1) ^
				((crc < 0) ^ (current_octet & 1) ?
			ethernet_polynomial : 0);
		}
	}
	return (unsigned long)crc;
}  /* ether_gen_crc */

/**
* ks_set_grpaddr - set multicast information
* @ks : The chip information
*/

static void ks_set_grpaddr(struct ks_net *ks)
{
	u8	i;
	u32	index, position, value;

	memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);

	for (i = 0; i < ks->mcast_lst_size; i++) {
		position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
		index = position >> 3;
		value = 1 << (position & 7);
		ks->mcast_bits[index] |= (u8)value;
	}

	for (i  = 0; i < HW_MCAST_SIZE; i++) {
		if (i & 1) {
			ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
				(ks->mcast_bits[i] << 8) |
				ks->mcast_bits[i - 1]);
		}
	}
}  /* ks_set_grpaddr */

/*
* ks_clear_mcast - clear multicast information
*
* @ks : The chip information
* This routine removes all mcast addresses set in the hardware.
*/

static void ks_clear_mcast(struct ks_net *ks)
{
	u16	i, mcast_size;
	for (i = 0; i < HW_MCAST_SIZE; i++)
		ks->mcast_bits[i] = 0;

	mcast_size = HW_MCAST_SIZE >> 2;
	for (i = 0; i < mcast_size; i++)
		ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
}

static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
{
	u16		cntl;
	ks->promiscuous = promiscuous_mode;
	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
	cntl = ks_rdreg16(ks, KS_RXCR1);

	cntl &= ~RXCR1_FILTER_MASK;
	if (promiscuous_mode)
		/* Enable Promiscuous mode */
		cntl |= RXCR1_RXAE | RXCR1_RXINVF;
	else
		/* Disable Promiscuous mode (default normal mode) */
		cntl |= RXCR1_RXPAFMA;

	ks_wrreg16(ks, KS_RXCR1, cntl);

	if (ks->enabled)
		ks_start_rx(ks);

}  /* ks_set_promis */

static void ks_set_mcast(struct ks_net *ks, u16 mcast)
{
	u16	cntl;

	ks->all_mcast = mcast;
	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
	cntl = ks_rdreg16(ks, KS_RXCR1);
	cntl &= ~RXCR1_FILTER_MASK;
	if (mcast)
		/* Enable "Perfect with Multicast address passed mode" */
		cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
	else
		/**
		 * Disable "Perfect with Multicast address passed
		 * mode" (normal mode).
		 */
		cntl |= RXCR1_RXPAFMA;

	ks_wrreg16(ks, KS_RXCR1, cntl);

	if (ks->enabled)
		ks_start_rx(ks);
}  /* ks_set_mcast */

static void ks_set_rx_mode(struct net_device *netdev)
{
	struct ks_net *ks = netdev_priv(netdev);
	struct dev_mc_list *ptr;

	/* Turn on/off promiscuous mode. */
	if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
		ks_set_promis(ks,
			(u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
	/* Turn on/off all mcast mode. */
	else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
		ks_set_mcast(ks,
			(u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
	else
		ks_set_promis(ks, false);

	if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
		if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
			int i = 0;

			netdev_for_each_mc_addr(ptr, netdev) {
				if (!(*ptr->dmi_addr & 1))
					continue;
				if (i >= MAX_MCAST_LST)
					break;
				memcpy(ks->mcast_lst[i++], ptr->dmi_addr,
				MAC_ADDR_LEN);
			}
			ks->mcast_lst_size = (u8)i;
			ks_set_grpaddr(ks);
		} else {
			/**
			 * List too big to support so
			 * turn on all mcast mode.
			 */
			ks->mcast_lst_size = MAX_MCAST_LST;
			ks_set_mcast(ks, true);
		}
	} else {
		ks->mcast_lst_size = 0;
		ks_clear_mcast(ks);
	}
} /* ks_set_rx_mode */

static void ks_set_mac(struct ks_net *ks, u8 *data)
{
	u16 *pw = (u16 *)data;
	u16 w, u;

	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */

	u = *pw++;
	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
	ks_wrreg16(ks, KS_MARH, w);

	u = *pw++;
	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
	ks_wrreg16(ks, KS_MARM, w);

	u = *pw;
	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
	ks_wrreg16(ks, KS_MARL, w);

	memcpy(ks->mac_addr, data, 6);

	if (ks->enabled)
		ks_start_rx(ks);
}

static int ks_set_mac_address(struct net_device *netdev, void *paddr)
{
	struct ks_net *ks = netdev_priv(netdev);
	struct sockaddr *addr = paddr;
	u8 *da;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);

	da = (u8 *)netdev->dev_addr;

	ks_set_mac(ks, da);
	return 0;
}

static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
{
	struct ks_net *ks = netdev_priv(netdev);

	if (!netif_running(netdev))
		return -EINVAL;

	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
}

static const struct net_device_ops ks_netdev_ops = {
	.ndo_open		= ks_net_open,
	.ndo_stop		= ks_net_stop,
	.ndo_do_ioctl		= ks_net_ioctl,
	.ndo_start_xmit		= ks_start_xmit,
	.ndo_set_mac_address	= ks_set_mac_address,
	.ndo_set_rx_mode	= ks_set_rx_mode,
	.ndo_change_mtu		= eth_change_mtu,
	.ndo_validate_addr	= eth_validate_addr,
};

/* ethtool support */

static void ks_get_drvinfo(struct net_device *netdev,
			       struct ethtool_drvinfo *di)
{
	strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
	strlcpy(di->version, "1.00", sizeof(di->version));
	strlcpy(di->bus_info, dev_name(netdev->dev.parent),
		sizeof(di->bus_info));
}

static u32 ks_get_msglevel(struct net_device *netdev)
{
	struct ks_net *ks = netdev_priv(netdev);
	return ks->msg_enable;
}

static void ks_set_msglevel(struct net_device *netdev, u32 to)
{
	struct ks_net *ks = netdev_priv(netdev);
	ks->msg_enable = to;
}

static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
	struct ks_net *ks = netdev_priv(netdev);
	return mii_ethtool_gset(&ks->mii, cmd);
}

static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
	struct ks_net *ks = netdev_priv(netdev);
	return mii_ethtool_sset(&ks->mii, cmd);
}

static u32 ks_get_link(struct net_device *netdev)
{
	struct ks_net *ks = netdev_priv(netdev);
	return mii_link_ok(&ks->mii);
}

static int ks_nway_reset(struct net_device *netdev)
{
	struct ks_net *ks = netdev_priv(netdev);
	return mii_nway_restart(&ks->mii);
}

static const struct ethtool_ops ks_ethtool_ops = {
	.get_drvinfo	= ks_get_drvinfo,
	.get_msglevel	= ks_get_msglevel,
	.set_msglevel	= ks_set_msglevel,
	.get_settings	= ks_get_settings,
	.set_settings	= ks_set_settings,
	.get_link	= ks_get_link,
	.nway_reset	= ks_nway_reset,
};

/* MII interface controls */

/**
 * ks_phy_reg - convert MII register into a KS8851 register
 * @reg: MII register number.
 *
 * Return the KS8851 register number for the corresponding MII PHY register
 * if possible. Return zero if the MII register has no direct mapping to the
 * KS8851 register set.
 */
static int ks_phy_reg(int reg)
{
	switch (reg) {
	case MII_BMCR:
		return KS_P1MBCR;
	case MII_BMSR:
		return KS_P1MBSR;
	case MII_PHYSID1:
		return KS_PHY1ILR;
	case MII_PHYSID2:
		return KS_PHY1IHR;
	case MII_ADVERTISE:
		return KS_P1ANAR;
	case MII_LPA:
		return KS_P1ANLPR;
	}

	return 0x0;
}

/**
 * ks_phy_read - MII interface PHY register read.
 * @netdev: The network device the PHY is on.
 * @phy_addr: Address of PHY (ignored as we only have one)
 * @reg: The register to read.
 *
 * This call reads data from the PHY register specified in @reg. Since the
 * device does not support all the MII registers, the non-existant values
 * are always returned as zero.
 *
 * We return zero for unsupported registers as the MII code does not check
 * the value returned for any error status, and simply returns it to the
 * caller. The mii-tool that the driver was tested with takes any -ve error
 * as real PHY capabilities, thus displaying incorrect data to the user.
 */
static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
{
	struct ks_net *ks = netdev_priv(netdev);
	int ksreg;
	int result;

	ksreg = ks_phy_reg(reg);
	if (!ksreg)
		return 0x0;	/* no error return allowed, so use zero */

	mutex_lock(&ks->lock);
	result = ks_rdreg16(ks, ksreg);
	mutex_unlock(&ks->lock);

	return result;
}

static void ks_phy_write(struct net_device *netdev,
			     int phy, int reg, int value)
{
	struct ks_net *ks = netdev_priv(netdev);
	int ksreg;

	ksreg = ks_phy_reg(reg);
	if (ksreg) {
		mutex_lock(&ks->lock);
		ks_wrreg16(ks, ksreg, value);
		mutex_unlock(&ks->lock);
	}
}

/**
 * ks_read_selftest - read the selftest memory info.
 * @ks: The device state
 *
 * Read and check the TX/RX memory selftest information.
 */
static int ks_read_selftest(struct ks_net *ks)
{
	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
	int ret = 0;
	unsigned rd;

	rd = ks_rdreg16(ks, KS_MBIR);

	if ((rd & both_done) != both_done) {
		ks_warn(ks, "Memory selftest not finished\n");
		return 0;
	}

	if (rd & MBIR_TXMBFA) {
		ks_err(ks, "TX memory selftest fails\n");
		ret |= 1;
	}

	if (rd & MBIR_RXMBFA) {
		ks_err(ks, "RX memory selftest fails\n");
		ret |= 2;
	}

	ks_info(ks, "the selftest passes\n");
	return ret;
}

static void ks_setup(struct ks_net *ks)
{
	u16	w;

	/**
	 * Configure QMU Transmit
	 */

	/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
	ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);

	/* Setup Receive Frame Data Pointer Auto-Increment */
	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);

	/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
	ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);

	/* Setup RxQ Command Control (RXQCR) */
	ks->rc_rxqcr = RXQCR_CMD_CNTL;
	ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);

	/**
	 * set the force mode to half duplex, default is full duplex
	 *  because if the auto-negotiation fails, most switch uses
	 *  half-duplex.
	 */

	w = ks_rdreg16(ks, KS_P1MBCR);
	w &= ~P1MBCR_FORCE_FDX;
	ks_wrreg16(ks, KS_P1MBCR, w);

	w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
	ks_wrreg16(ks, KS_TXCR, w);

	w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;

	if (ks->promiscuous)         /* bPromiscuous */
		w |= (RXCR1_RXAE | RXCR1_RXINVF);
	else if (ks->all_mcast) /* Multicast address passed mode */
		w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
	else                                   /* Normal mode */
		w |= RXCR1_RXPAFMA;

	ks_wrreg16(ks, KS_RXCR1, w);
}  /*ks_setup */


static void ks_setup_int(struct ks_net *ks)
{
	ks->rc_ier = 0x00;
	/* Clear the interrupts status of the hardware. */
	ks_wrreg16(ks, KS_ISR, 0xffff);

	/* Enables the interrupts of the hardware. */
	ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
}  /* ks_setup_int */

static int ks_hw_init(struct ks_net *ks)
{
#define	MHEADER_SIZE	(sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
	ks->promiscuous = 0;
	ks->all_mcast = 0;
	ks->mcast_lst_size = 0;

	ks->frame_head_info = (struct type_frame_head *) \
		kmalloc(MHEADER_SIZE, GFP_KERNEL);
	if (!ks->frame_head_info) {
		printk(KERN_ERR "Error: Fail to allocate frame memory\n");
		return false;
	}

	ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
	return true;
}


static int __devinit ks8851_probe(struct platform_device *pdev)
{
	int err = -ENOMEM;
	struct resource *io_d, *io_c;
	struct net_device *netdev;
	struct ks_net *ks;
	u16 id, data;

	io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);

	if (!request_mem_region(io_d->start, resource_size(io_d), DRV_NAME))
		goto err_mem_region;

	if (!request_mem_region(io_c->start, resource_size(io_c), DRV_NAME))
		goto err_mem_region1;

	netdev = alloc_etherdev(sizeof(struct ks_net));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	ks = netdev_priv(netdev);
	ks->netdev = netdev;
	ks->hw_addr = ioremap(io_d->start, resource_size(io_d));

	if (!ks->hw_addr)
		goto err_ioremap;

	ks->hw_addr_cmd = ioremap(io_c->start, resource_size(io_c));
	if (!ks->hw_addr_cmd)
		goto err_ioremap1;

	ks->irq = platform_get_irq(pdev, 0);

	if (ks->irq < 0) {
		err = ks->irq;
		goto err_get_irq;
	}

	ks->pdev = pdev;

	mutex_init(&ks->lock);
	spin_lock_init(&ks->statelock);

	netdev->netdev_ops = &ks_netdev_ops;
	netdev->ethtool_ops = &ks_ethtool_ops;

	/* setup mii state */
	ks->mii.dev             = netdev;
	ks->mii.phy_id          = 1,
	ks->mii.phy_id_mask     = 1;
	ks->mii.reg_num_mask    = 0xf;
	ks->mii.mdio_read       = ks_phy_read;
	ks->mii.mdio_write      = ks_phy_write;

	ks_info(ks, "message enable is %d\n", msg_enable);
	/* set the default message enable */
	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
						     NETIF_MSG_PROBE |
						     NETIF_MSG_LINK));
	ks_read_config(ks);

	/* simple check for a valid chip being connected to the bus */
	if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
		ks_err(ks, "failed to read device ID\n");
		err = -ENODEV;
		goto err_register;
	}

	if (ks_read_selftest(ks)) {
		ks_err(ks, "failed to read device ID\n");
		err = -ENODEV;
		goto err_register;
	}

	err = register_netdev(netdev);
	if (err)
		goto err_register;

	platform_set_drvdata(pdev, netdev);

	ks_soft_reset(ks, GRR_GSR);
	ks_hw_init(ks);
	ks_disable_qmu(ks);
	ks_setup(ks);
	ks_setup_int(ks);
	memcpy(netdev->dev_addr, ks->mac_addr, 6);

	data = ks_rdreg16(ks, KS_OBCR);
	ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);

	/**
	 * If you want to use the default MAC addr,
	 * comment out the 2 functions below.
	 */

	random_ether_addr(netdev->dev_addr);
	ks_set_mac(ks, netdev->dev_addr);

	id = ks_rdreg16(ks, KS_CIDER);

	printk(KERN_INFO DRV_NAME
		" Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
		(id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
	return 0;

err_register:
err_get_irq:
	iounmap(ks->hw_addr_cmd);
err_ioremap1:
	iounmap(ks->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
	release_mem_region(io_c->start, resource_size(io_c));
err_mem_region1:
	release_mem_region(io_d->start, resource_size(io_d));
err_mem_region:
	return err;
}

static int __devexit ks8851_remove(struct platform_device *pdev)
{
	struct net_device *netdev = platform_get_drvdata(pdev);
	struct ks_net *ks = netdev_priv(netdev);
	struct resource *iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);

	kfree(ks->frame_head_info);
	unregister_netdev(netdev);
	iounmap(ks->hw_addr);
	free_netdev(netdev);
	release_mem_region(iomem->start, resource_size(iomem));
	platform_set_drvdata(pdev, NULL);
	return 0;

}

static struct platform_driver ks8851_platform_driver = {
	.driver = {
		.name = DRV_NAME,
		.owner = THIS_MODULE,
	},
	.probe = ks8851_probe,
	.remove = __devexit_p(ks8851_remove),
};

static int __init ks8851_init(void)
{
	return platform_driver_register(&ks8851_platform_driver);
}

static void __exit ks8851_exit(void)
{
	platform_driver_unregister(&ks8851_platform_driver);
}

module_init(ks8851_init);
module_exit(ks8851_exit);

MODULE_DESCRIPTION("KS8851 MLL Network driver");
MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
MODULE_LICENSE("GPL");
module_param_named(message, msg_enable, int, 0);
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");