/* * Keystone NetCP Core driver * * Copyright (C) 2014 Texas Instruments Incorporated * Authors: Sandeep Nair * Sandeep Paulraj * Cyril Chemparathy * Santosh Shilimkar * Murali Karicheri * Wingman Kwok * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include "netcp.h" #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD) #define NETCP_NAPI_WEIGHT 64 #define NETCP_TX_TIMEOUT (5 * HZ) #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN) #define NETCP_MIN_PACKET_SIZE ETH_ZLEN #define NETCP_MAX_MCAST_ADDR 16 #define NETCP_EFUSE_REG_INDEX 0 #define NETCP_MOD_PROBE_SKIPPED 1 #define NETCP_MOD_PROBE_FAILED 2 #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ NETIF_MSG_DRV | NETIF_MSG_LINK | \ NETIF_MSG_IFUP | NETIF_MSG_INTR | \ NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ NETIF_MSG_RX_STATUS) #define NETCP_EFUSE_ADDR_SWAP 2 #define knav_queue_get_id(q) knav_queue_device_control(q, \ KNAV_QUEUE_GET_ID, (unsigned long)NULL) #define knav_queue_enable_notify(q) knav_queue_device_control(q, \ KNAV_QUEUE_ENABLE_NOTIFY, \ (unsigned long)NULL) #define knav_queue_disable_notify(q) knav_queue_device_control(q, \ KNAV_QUEUE_DISABLE_NOTIFY, \ (unsigned long)NULL) #define knav_queue_get_count(q) knav_queue_device_control(q, \ KNAV_QUEUE_GET_COUNT, (unsigned long)NULL) #define for_each_netcp_module(module) \ list_for_each_entry(module, &netcp_modules, module_list) #define for_each_netcp_device_module(netcp_device, inst_modpriv) \ list_for_each_entry(inst_modpriv, \ &((netcp_device)->modpriv_head), inst_list) #define for_each_module(netcp, intf_modpriv) \ list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list) /* Module management structures */ struct netcp_device { struct list_head device_list; struct list_head interface_head; struct list_head modpriv_head; struct device *device; }; struct netcp_inst_modpriv { struct netcp_device *netcp_device; struct netcp_module *netcp_module; struct list_head inst_list; void *module_priv; }; struct netcp_intf_modpriv { struct netcp_intf *netcp_priv; struct netcp_module *netcp_module; struct list_head intf_list; void *module_priv; }; static LIST_HEAD(netcp_devices); static LIST_HEAD(netcp_modules); static DEFINE_MUTEX(netcp_modules_lock); static int netcp_debug_level = -1; module_param(netcp_debug_level, int, 0); MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)"); /* Helper functions - Get/Set */ static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc, struct knav_dma_desc *desc) { *buff_len = le32_to_cpu(desc->buff_len); *buff = le32_to_cpu(desc->buff); *ndesc = le32_to_cpu(desc->next_desc); } static void get_pad_info(u32 *pad0, u32 *pad1, u32 *pad2, struct knav_dma_desc *desc) { *pad0 = le32_to_cpu(desc->pad[0]); *pad1 = le32_to_cpu(desc->pad[1]); *pad2 = le32_to_cpu(desc->pad[2]); } static void get_pad_ptr(void **padptr, struct knav_dma_desc *desc) { u64 pad64; pad64 = le32_to_cpu(desc->pad[0]) + ((u64)le32_to_cpu(desc->pad[1]) << 32); *padptr = (void *)(uintptr_t)pad64; } static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len, struct knav_dma_desc *desc) { *buff = le32_to_cpu(desc->orig_buff); *buff_len = le32_to_cpu(desc->orig_len); } static void get_words(dma_addr_t *words, int num_words, __le32 *desc) { int i; for (i = 0; i < num_words; i++) words[i] = le32_to_cpu(desc[i]); } static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc, struct knav_dma_desc *desc) { desc->buff_len = cpu_to_le32(buff_len); desc->buff = cpu_to_le32(buff); desc->next_desc = cpu_to_le32(ndesc); } static void set_desc_info(u32 desc_info, u32 pkt_info, struct knav_dma_desc *desc) { desc->desc_info = cpu_to_le32(desc_info); desc->packet_info = cpu_to_le32(pkt_info); } static void set_pad_info(u32 pad0, u32 pad1, u32 pad2, struct knav_dma_desc *desc) { desc->pad[0] = cpu_to_le32(pad0); desc->pad[1] = cpu_to_le32(pad1); desc->pad[2] = cpu_to_le32(pad1); } static void set_org_pkt_info(dma_addr_t buff, u32 buff_len, struct knav_dma_desc *desc) { desc->orig_buff = cpu_to_le32(buff); desc->orig_len = cpu_to_le32(buff_len); } static void set_words(u32 *words, int num_words, __le32 *desc) { int i; for (i = 0; i < num_words; i++) desc[i] = cpu_to_le32(words[i]); } /* Read the e-fuse value as 32 bit values to be endian independent */ static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap) { unsigned int addr0, addr1; addr1 = readl(efuse_mac + 4); addr0 = readl(efuse_mac); switch (swap) { case NETCP_EFUSE_ADDR_SWAP: addr0 = addr1; addr1 = readl(efuse_mac); break; default: break; } x[0] = (addr1 & 0x0000ff00) >> 8; x[1] = addr1 & 0x000000ff; x[2] = (addr0 & 0xff000000) >> 24; x[3] = (addr0 & 0x00ff0000) >> 16; x[4] = (addr0 & 0x0000ff00) >> 8; x[5] = addr0 & 0x000000ff; return 0; } static const char *netcp_node_name(struct device_node *node) { const char *name; if (of_property_read_string(node, "label", &name) < 0) name = node->name; if (!name) name = "unknown"; return name; } /* Module management routines */ static int netcp_register_interface(struct netcp_intf *netcp) { int ret; ret = register_netdev(netcp->ndev); if (!ret) netcp->netdev_registered = true; return ret; } static int netcp_module_probe(struct netcp_device *netcp_device, struct netcp_module *module) { struct device *dev = netcp_device->device; struct device_node *devices, *interface, *node = dev->of_node; struct device_node *child; struct netcp_inst_modpriv *inst_modpriv; struct netcp_intf *netcp_intf; struct netcp_module *tmp; bool primary_module_registered = false; int ret; /* Find this module in the sub-tree for this device */ devices = of_get_child_by_name(node, "netcp-devices"); if (!devices) { dev_err(dev, "could not find netcp-devices node\n"); return NETCP_MOD_PROBE_SKIPPED; } for_each_available_child_of_node(devices, child) { const char *name = netcp_node_name(child); if (!strcasecmp(module->name, name)) break; } of_node_put(devices); /* If module not used for this device, skip it */ if (!child) { dev_warn(dev, "module(%s) not used for device\n", module->name); return NETCP_MOD_PROBE_SKIPPED; } inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL); if (!inst_modpriv) { of_node_put(child); return -ENOMEM; } inst_modpriv->netcp_device = netcp_device; inst_modpriv->netcp_module = module; list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head); ret = module->probe(netcp_device, dev, child, &inst_modpriv->module_priv); of_node_put(child); if (ret) { dev_err(dev, "Probe of module(%s) failed with %d\n", module->name, ret); list_del(&inst_modpriv->inst_list); devm_kfree(dev, inst_modpriv); return NETCP_MOD_PROBE_FAILED; } /* Attach modules only if the primary module is probed */ for_each_netcp_module(tmp) { if (tmp->primary) primary_module_registered = true; } if (!primary_module_registered) return 0; /* Attach module to interfaces */ list_for_each_entry(netcp_intf, &netcp_device->interface_head, interface_list) { struct netcp_intf_modpriv *intf_modpriv; intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv), GFP_KERNEL); if (!intf_modpriv) return -ENOMEM; interface = of_parse_phandle(netcp_intf->node_interface, module->name, 0); if (!interface) { devm_kfree(dev, intf_modpriv); continue; } intf_modpriv->netcp_priv = netcp_intf; intf_modpriv->netcp_module = module; list_add_tail(&intf_modpriv->intf_list, &netcp_intf->module_head); ret = module->attach(inst_modpriv->module_priv, netcp_intf->ndev, interface, &intf_modpriv->module_priv); of_node_put(interface); if (ret) { dev_dbg(dev, "Attach of module %s declined with %d\n", module->name, ret); list_del(&intf_modpriv->intf_list); devm_kfree(dev, intf_modpriv); continue; } } /* Now register the interface with netdev */ list_for_each_entry(netcp_intf, &netcp_device->interface_head, interface_list) { /* If interface not registered then register now */ if (!netcp_intf->netdev_registered) { ret = netcp_register_interface(netcp_intf); if (ret) return -ENODEV; } } return 0; } int netcp_register_module(struct netcp_module *module) { struct netcp_device *netcp_device; struct netcp_module *tmp; int ret; if (!module->name) { WARN(1, "error registering netcp module: no name\n"); return -EINVAL; } if (!module->probe) { WARN(1, "error registering netcp module: no probe\n"); return -EINVAL; } mutex_lock(&netcp_modules_lock); for_each_netcp_module(tmp) { if (!strcasecmp(tmp->name, module->name)) { mutex_unlock(&netcp_modules_lock); return -EEXIST; } } list_add_tail(&module->module_list, &netcp_modules); list_for_each_entry(netcp_device, &netcp_devices, device_list) { ret = netcp_module_probe(netcp_device, module); if (ret < 0) goto fail; } mutex_unlock(&netcp_modules_lock); return 0; fail: mutex_unlock(&netcp_modules_lock); netcp_unregister_module(module); return ret; } EXPORT_SYMBOL_GPL(netcp_register_module); static void netcp_release_module(struct netcp_device *netcp_device, struct netcp_module *module) { struct netcp_inst_modpriv *inst_modpriv, *inst_tmp; struct netcp_intf *netcp_intf, *netcp_tmp; struct device *dev = netcp_device->device; /* Release the module from each interface */ list_for_each_entry_safe(netcp_intf, netcp_tmp, &netcp_device->interface_head, interface_list) { struct netcp_intf_modpriv *intf_modpriv, *intf_tmp; list_for_each_entry_safe(intf_modpriv, intf_tmp, &netcp_intf->module_head, intf_list) { if (intf_modpriv->netcp_module == module) { module->release(intf_modpriv->module_priv); list_del(&intf_modpriv->intf_list); devm_kfree(dev, intf_modpriv); break; } } } /* Remove the module from each instance */ list_for_each_entry_safe(inst_modpriv, inst_tmp, &netcp_device->modpriv_head, inst_list) { if (inst_modpriv->netcp_module == module) { module->remove(netcp_device, inst_modpriv->module_priv); list_del(&inst_modpriv->inst_list); devm_kfree(dev, inst_modpriv); break; } } } void netcp_unregister_module(struct netcp_module *module) { struct netcp_device *netcp_device; struct netcp_module *module_tmp; mutex_lock(&netcp_modules_lock); list_for_each_entry(netcp_device, &netcp_devices, device_list) { netcp_release_module(netcp_device, module); } /* Remove the module from the module list */ for_each_netcp_module(module_tmp) { if (module == module_tmp) { list_del(&module->module_list); break; } } mutex_unlock(&netcp_modules_lock); } EXPORT_SYMBOL_GPL(netcp_unregister_module); void *netcp_module_get_intf_data(struct netcp_module *module, struct netcp_intf *intf) { struct netcp_intf_modpriv *intf_modpriv; list_for_each_entry(intf_modpriv, &intf->module_head, intf_list) if (intf_modpriv->netcp_module == module) return intf_modpriv->module_priv; return NULL; } EXPORT_SYMBOL_GPL(netcp_module_get_intf_data); /* Module TX and RX Hook management */ struct netcp_hook_list { struct list_head list; netcp_hook_rtn *hook_rtn; void *hook_data; int order; }; int netcp_register_txhook(struct netcp_intf *netcp_priv, int order, netcp_hook_rtn *hook_rtn, void *hook_data) { struct netcp_hook_list *entry; struct netcp_hook_list *next; unsigned long flags; entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; entry->hook_rtn = hook_rtn; entry->hook_data = hook_data; entry->order = order; spin_lock_irqsave(&netcp_priv->lock, flags); list_for_each_entry(next, &netcp_priv->txhook_list_head, list) { if (next->order > order) break; } __list_add(&entry->list, next->list.prev, &next->list); spin_unlock_irqrestore(&netcp_priv->lock, flags); return 0; } EXPORT_SYMBOL_GPL(netcp_register_txhook); int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order, netcp_hook_rtn *hook_rtn, void *hook_data) { struct netcp_hook_list *next, *n; unsigned long flags; spin_lock_irqsave(&netcp_priv->lock, flags); list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) { if ((next->order == order) && (next->hook_rtn == hook_rtn) && (next->hook_data == hook_data)) { list_del(&next->list); spin_unlock_irqrestore(&netcp_priv->lock, flags); devm_kfree(netcp_priv->dev, next); return 0; } } spin_unlock_irqrestore(&netcp_priv->lock, flags); return -ENOENT; } EXPORT_SYMBOL_GPL(netcp_unregister_txhook); int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order, netcp_hook_rtn *hook_rtn, void *hook_data) { struct netcp_hook_list *entry; struct netcp_hook_list *next; unsigned long flags; entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; entry->hook_rtn = hook_rtn; entry->hook_data = hook_data; entry->order = order; spin_lock_irqsave(&netcp_priv->lock, flags); list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) { if (next->order > order) break; } __list_add(&entry->list, next->list.prev, &next->list); spin_unlock_irqrestore(&netcp_priv->lock, flags); return 0; } int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order, netcp_hook_rtn *hook_rtn, void *hook_data) { struct netcp_hook_list *next, *n; unsigned long flags; spin_lock_irqsave(&netcp_priv->lock, flags); list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) { if ((next->order == order) && (next->hook_rtn == hook_rtn) && (next->hook_data == hook_data)) { list_del(&next->list); spin_unlock_irqrestore(&netcp_priv->lock, flags); devm_kfree(netcp_priv->dev, next); return 0; } } spin_unlock_irqrestore(&netcp_priv->lock, flags); return -ENOENT; } static void netcp_frag_free(bool is_frag, void *ptr) { if (is_frag) skb_free_frag(ptr); else kfree(ptr); } static void netcp_free_rx_desc_chain(struct netcp_intf *netcp, struct knav_dma_desc *desc) { struct knav_dma_desc *ndesc; dma_addr_t dma_desc, dma_buf; unsigned int buf_len, dma_sz = sizeof(*ndesc); void *buf_ptr; u32 pad[2]; get_words(&dma_desc, 1, &desc->next_desc); while (dma_desc) { ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); if (unlikely(!ndesc)) { dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); break; } get_pad_ptr(&buf_ptr, ndesc); dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE); __free_page(buf_ptr); knav_pool_desc_put(netcp->rx_pool, desc); } get_pad_info(&pad[0], &pad[1], &buf_len, desc); buf_ptr = (void *)(uintptr_t)(pad[0] + ((u64)pad[1] << 32)); if (buf_ptr) netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr); knav_pool_desc_put(netcp->rx_pool, desc); } static void netcp_empty_rx_queue(struct netcp_intf *netcp) { struct knav_dma_desc *desc; unsigned int dma_sz; dma_addr_t dma; for (; ;) { dma = knav_queue_pop(netcp->rx_queue, &dma_sz); if (!dma) break; desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); if (unlikely(!desc)) { dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n", __func__); netcp->ndev->stats.rx_errors++; continue; } netcp_free_rx_desc_chain(netcp, desc); netcp->ndev->stats.rx_dropped++; } } static int netcp_process_one_rx_packet(struct netcp_intf *netcp) { unsigned int dma_sz, buf_len, org_buf_len; struct knav_dma_desc *desc, *ndesc; unsigned int pkt_sz = 0, accum_sz; struct netcp_hook_list *rx_hook; dma_addr_t dma_desc, dma_buff; struct netcp_packet p_info; struct sk_buff *skb; void *org_buf_ptr; dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz); if (!dma_desc) return -1; desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); if (unlikely(!desc)) { dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); return 0; } get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc); get_pad_ptr(&org_buf_ptr, desc); if (unlikely(!org_buf_ptr)) { dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); goto free_desc; } pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK; accum_sz = buf_len; dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE); /* Build a new sk_buff for the primary buffer */ skb = build_skb(org_buf_ptr, org_buf_len); if (unlikely(!skb)) { dev_err(netcp->ndev_dev, "build_skb() failed\n"); goto free_desc; } /* update data, tail and len */ skb_reserve(skb, NETCP_SOP_OFFSET); __skb_put(skb, buf_len); /* Fill in the page fragment list */ while (dma_desc) { struct page *page; void *ptr; ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); if (unlikely(!ndesc)) { dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); goto free_desc; } get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc); get_pad_ptr(ptr, ndesc); page = ptr; if (likely(dma_buff && buf_len && page)) { dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE, DMA_FROM_DEVICE); } else { dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n", &dma_buff, buf_len, page); goto free_desc; } skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset_in_page(dma_buff), buf_len, PAGE_SIZE); accum_sz += buf_len; /* Free the descriptor */ knav_pool_desc_put(netcp->rx_pool, ndesc); } /* Free the primary descriptor */ knav_pool_desc_put(netcp->rx_pool, desc); /* check for packet len and warn */ if (unlikely(pkt_sz != accum_sz)) dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n", pkt_sz, accum_sz); /* Remove ethernet FCS from the packet */ __pskb_trim(skb, skb->len - ETH_FCS_LEN); /* Call each of the RX hooks */ p_info.skb = skb; p_info.rxtstamp_complete = false; list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) { int ret; ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data, &p_info); if (unlikely(ret)) { dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n", rx_hook->order, ret); netcp->ndev->stats.rx_errors++; dev_kfree_skb(skb); return 0; } } netcp->ndev->stats.rx_packets++; netcp->ndev->stats.rx_bytes += skb->len; /* push skb up the stack */ skb->protocol = eth_type_trans(skb, netcp->ndev); netif_receive_skb(skb); return 0; free_desc: netcp_free_rx_desc_chain(netcp, desc); netcp->ndev->stats.rx_errors++; return 0; } static int netcp_process_rx_packets(struct netcp_intf *netcp, unsigned int budget) { int i; for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++) ; return i; } /* Release descriptors and attached buffers from Rx FDQ */ static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq) { struct knav_dma_desc *desc; unsigned int buf_len, dma_sz; dma_addr_t dma; void *buf_ptr; /* Allocate descriptor */ while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) { desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); if (unlikely(!desc)) { dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); continue; } get_org_pkt_info(&dma, &buf_len, desc); get_pad_ptr(buf_ptr, desc); if (unlikely(!dma)) { dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n"); knav_pool_desc_put(netcp->rx_pool, desc); continue; } if (unlikely(!buf_ptr)) { dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); knav_pool_desc_put(netcp->rx_pool, desc); continue; } if (fdq == 0) { dma_unmap_single(netcp->dev, dma, buf_len, DMA_FROM_DEVICE); netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr); } else { dma_unmap_page(netcp->dev, dma, buf_len, DMA_FROM_DEVICE); __free_page(buf_ptr); } knav_pool_desc_put(netcp->rx_pool, desc); } } static void netcp_rxpool_free(struct netcp_intf *netcp) { int i; for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++) netcp_free_rx_buf(netcp, i); if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size) dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n", netcp->rx_pool_size - knav_pool_count(netcp->rx_pool)); knav_pool_destroy(netcp->rx_pool); netcp->rx_pool = NULL; } static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq) { struct knav_dma_desc *hwdesc; unsigned int buf_len, dma_sz; u32 desc_info, pkt_info; struct page *page; dma_addr_t dma; void *bufptr; u32 pad[3]; /* Allocate descriptor */ hwdesc = knav_pool_desc_get(netcp->rx_pool); if (IS_ERR_OR_NULL(hwdesc)) { dev_dbg(netcp->ndev_dev, "out of rx pool desc\n"); return -ENOMEM; } if (likely(fdq == 0)) { unsigned int primary_buf_len; /* Allocate a primary receive queue entry */ buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET; primary_buf_len = SKB_DATA_ALIGN(buf_len) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); bufptr = netdev_alloc_frag(primary_buf_len); pad[2] = primary_buf_len; if (unlikely(!bufptr)) { dev_warn_ratelimited(netcp->ndev_dev, "Primary RX buffer alloc failed\n"); goto fail; } dma = dma_map_single(netcp->dev, bufptr, buf_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(netcp->dev, dma))) goto fail; pad[0] = lower_32_bits((uintptr_t)bufptr); pad[1] = upper_32_bits((uintptr_t)bufptr); } else { /* Allocate a secondary receive queue entry */ page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD); if (unlikely(!page)) { dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n"); goto fail; } buf_len = PAGE_SIZE; dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE); pad[0] = lower_32_bits(dma); pad[1] = upper_32_bits(dma); pad[2] = 0; } desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC; desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK; pkt_info = KNAV_DMA_DESC_HAS_EPIB; pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT; pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) << KNAV_DMA_DESC_RETQ_SHIFT; set_org_pkt_info(dma, buf_len, hwdesc); set_pad_info(pad[0], pad[1], pad[2], hwdesc); set_desc_info(desc_info, pkt_info, hwdesc); /* Push to FDQs */ knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma, &dma_sz); knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0); return 0; fail: knav_pool_desc_put(netcp->rx_pool, hwdesc); return -ENOMEM; } /* Refill Rx FDQ with descriptors & attached buffers */ static void netcp_rxpool_refill(struct netcp_intf *netcp) { u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0}; int i, ret = 0; /* Calculate the FDQ deficit and refill */ for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) { fdq_deficit[i] = netcp->rx_queue_depths[i] - knav_queue_get_count(netcp->rx_fdq[i]); while (fdq_deficit[i]-- && !ret) ret = netcp_allocate_rx_buf(netcp, i); } /* end for fdqs */ } /* NAPI poll */ static int netcp_rx_poll(struct napi_struct *napi, int budget) { struct netcp_intf *netcp = container_of(napi, struct netcp_intf, rx_napi); unsigned int packets; packets = netcp_process_rx_packets(netcp, budget); netcp_rxpool_refill(netcp); if (packets < budget) { napi_complete(&netcp->rx_napi); knav_queue_enable_notify(netcp->rx_queue); } return packets; } static void netcp_rx_notify(void *arg) { struct netcp_intf *netcp = arg; knav_queue_disable_notify(netcp->rx_queue); napi_schedule(&netcp->rx_napi); } static void netcp_free_tx_desc_chain(struct netcp_intf *netcp, struct knav_dma_desc *desc, unsigned int desc_sz) { struct knav_dma_desc *ndesc = desc; dma_addr_t dma_desc, dma_buf; unsigned int buf_len; while (ndesc) { get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc); if (dma_buf && buf_len) dma_unmap_single(netcp->dev, dma_buf, buf_len, DMA_TO_DEVICE); else dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n", &dma_buf, buf_len); knav_pool_desc_put(netcp->tx_pool, ndesc); ndesc = NULL; if (dma_desc) { ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc, desc_sz); if (!ndesc) dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); } } } static int netcp_process_tx_compl_packets(struct netcp_intf *netcp, unsigned int budget) { struct knav_dma_desc *desc; void *ptr; struct sk_buff *skb; unsigned int dma_sz; dma_addr_t dma; int pkts = 0; while (budget--) { dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz); if (!dma) break; desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz); if (unlikely(!desc)) { dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); netcp->ndev->stats.tx_errors++; continue; } get_pad_ptr(&ptr, desc); skb = ptr; netcp_free_tx_desc_chain(netcp, desc, dma_sz); if (!skb) { dev_err(netcp->ndev_dev, "No skb in Tx desc\n"); netcp->ndev->stats.tx_errors++; continue; } if (netif_subqueue_stopped(netcp->ndev, skb) && netif_running(netcp->ndev) && (knav_pool_count(netcp->tx_pool) > netcp->tx_resume_threshold)) { u16 subqueue = skb_get_queue_mapping(skb); netif_wake_subqueue(netcp->ndev, subqueue); } netcp->ndev->stats.tx_packets++; netcp->ndev->stats.tx_bytes += skb->len; dev_kfree_skb(skb); pkts++; } return pkts; } static int netcp_tx_poll(struct napi_struct *napi, int budget) { int packets; struct netcp_intf *netcp = container_of(napi, struct netcp_intf, tx_napi); packets = netcp_process_tx_compl_packets(netcp, budget); if (packets < budget) { napi_complete(&netcp->tx_napi); knav_queue_enable_notify(netcp->tx_compl_q); } return packets; } static void netcp_tx_notify(void *arg) { struct netcp_intf *netcp = arg; knav_queue_disable_notify(netcp->tx_compl_q); napi_schedule(&netcp->tx_napi); } static struct knav_dma_desc* netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp) { struct knav_dma_desc *desc, *ndesc, *pdesc; unsigned int pkt_len = skb_headlen(skb); struct device *dev = netcp->dev; dma_addr_t dma_addr; unsigned int dma_sz; int i; /* Map the linear buffer */ dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, dma_addr))) { dev_err(netcp->ndev_dev, "Failed to map skb buffer\n"); return NULL; } desc = knav_pool_desc_get(netcp->tx_pool); if (IS_ERR_OR_NULL(desc)) { dev_err(netcp->ndev_dev, "out of TX desc\n"); dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE); return NULL; } set_pkt_info(dma_addr, pkt_len, 0, desc); if (skb_is_nonlinear(skb)) { prefetchw(skb_shinfo(skb)); } else { desc->next_desc = 0; goto upd_pkt_len; } pdesc = desc; /* Handle the case where skb is fragmented in pages */ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; struct page *page = skb_frag_page(frag); u32 page_offset = frag->page_offset; u32 buf_len = skb_frag_size(frag); dma_addr_t desc_dma; u32 desc_dma_32; u32 pkt_info; dma_addr = dma_map_page(dev, page, page_offset, buf_len, DMA_TO_DEVICE); if (unlikely(!dma_addr)) { dev_err(netcp->ndev_dev, "Failed to map skb page\n"); goto free_descs; } ndesc = knav_pool_desc_get(netcp->tx_pool); if (IS_ERR_OR_NULL(ndesc)) { dev_err(netcp->ndev_dev, "out of TX desc for frags\n"); dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE); goto free_descs; } desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc); pkt_info = (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << KNAV_DMA_DESC_RETQ_SHIFT; set_pkt_info(dma_addr, buf_len, 0, ndesc); desc_dma_32 = (u32)desc_dma; set_words(&desc_dma_32, 1, &pdesc->next_desc); pkt_len += buf_len; if (pdesc != desc) knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc), &desc_dma, &dma_sz); pdesc = ndesc; } if (pdesc != desc) knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc), &dma_addr, &dma_sz); /* frag list based linkage is not supported for now. */ if (skb_shinfo(skb)->frag_list) { dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n"); goto free_descs; } upd_pkt_len: WARN_ON(pkt_len != skb->len); pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK; set_words(&pkt_len, 1, &desc->desc_info); return desc; free_descs: netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); return NULL; } static int netcp_tx_submit_skb(struct netcp_intf *netcp, struct sk_buff *skb, struct knav_dma_desc *desc) { struct netcp_tx_pipe *tx_pipe = NULL; struct netcp_hook_list *tx_hook; struct netcp_packet p_info; unsigned int dma_sz; dma_addr_t dma; u32 tmp = 0; int ret = 0; p_info.netcp = netcp; p_info.skb = skb; p_info.tx_pipe = NULL; p_info.psdata_len = 0; p_info.ts_context = NULL; p_info.txtstamp_complete = NULL; p_info.epib = desc->epib; p_info.psdata = (u32 __force *)desc->psdata; memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32)); /* Find out where to inject the packet for transmission */ list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) { ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data, &p_info); if (unlikely(ret != 0)) { dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n", tx_hook->order, ret); ret = (ret < 0) ? ret : NETDEV_TX_OK; goto out; } } /* Make sure some TX hook claimed the packet */ tx_pipe = p_info.tx_pipe; if (!tx_pipe) { dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n"); ret = -ENXIO; goto out; } /* update descriptor */ if (p_info.psdata_len) { /* psdata points to both native-endian and device-endian data */ __le32 *psdata = (void __force *)p_info.psdata; memmove(p_info.psdata, p_info.psdata + p_info.psdata_len, p_info.psdata_len); set_words(p_info.psdata, p_info.psdata_len, psdata); tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) << KNAV_DMA_DESC_PSLEN_SHIFT; } tmp |= KNAV_DMA_DESC_HAS_EPIB | ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << KNAV_DMA_DESC_RETQ_SHIFT); if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) { tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) << KNAV_DMA_DESC_PSFLAG_SHIFT); } set_words(&tmp, 1, &desc->packet_info); tmp = lower_32_bits((uintptr_t)&skb); set_words(&tmp, 1, &desc->pad[0]); tmp = upper_32_bits((uintptr_t)&skb); set_words(&tmp, 1, &desc->pad[1]); if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) { tmp = tx_pipe->switch_to_port; set_words(&tmp, 1, &desc->tag_info); } /* submit packet descriptor */ ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma, &dma_sz); if (unlikely(ret)) { dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__); ret = -ENOMEM; goto out; } skb_tx_timestamp(skb); knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0); out: return ret; } /* Submit the packet */ static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct netcp_intf *netcp = netdev_priv(ndev); int subqueue = skb_get_queue_mapping(skb); struct knav_dma_desc *desc; int desc_count, ret = 0; if (unlikely(skb->len <= 0)) { dev_kfree_skb(skb); return NETDEV_TX_OK; } if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) { ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE); if (ret < 0) { /* If we get here, the skb has already been dropped */ dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n", ret); ndev->stats.tx_dropped++; return ret; } skb->len = NETCP_MIN_PACKET_SIZE; } desc = netcp_tx_map_skb(skb, netcp); if (unlikely(!desc)) { netif_stop_subqueue(ndev, subqueue); ret = -ENOBUFS; goto drop; } ret = netcp_tx_submit_skb(netcp, skb, desc); if (ret) goto drop; ndev->trans_start = jiffies; /* Check Tx pool count & stop subqueue if needed */ desc_count = knav_pool_count(netcp->tx_pool); if (desc_count < netcp->tx_pause_threshold) { dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count); netif_stop_subqueue(ndev, subqueue); } return NETDEV_TX_OK; drop: ndev->stats.tx_dropped++; if (desc) netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); dev_kfree_skb(skb); return ret; } int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe) { if (tx_pipe->dma_channel) { knav_dma_close_channel(tx_pipe->dma_channel); tx_pipe->dma_channel = NULL; } return 0; } EXPORT_SYMBOL_GPL(netcp_txpipe_close); int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe) { struct device *dev = tx_pipe->netcp_device->device; struct knav_dma_cfg config; int ret = 0; u8 name[16]; memset(&config, 0, sizeof(config)); config.direction = DMA_MEM_TO_DEV; config.u.tx.filt_einfo = false; config.u.tx.filt_pswords = false; config.u.tx.priority = DMA_PRIO_MED_L; tx_pipe->dma_channel = knav_dma_open_channel(dev, tx_pipe->dma_chan_name, &config); if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) { dev_err(dev, "failed opening tx chan(%s)\n", tx_pipe->dma_chan_name); goto err; } snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev)); tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id, KNAV_QUEUE_SHARED); if (IS_ERR(tx_pipe->dma_queue)) { dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n", name, ret); ret = PTR_ERR(tx_pipe->dma_queue); goto err; } dev_dbg(dev, "opened tx pipe %s\n", name); return 0; err: if (!IS_ERR_OR_NULL(tx_pipe->dma_channel)) knav_dma_close_channel(tx_pipe->dma_channel); tx_pipe->dma_channel = NULL; return ret; } EXPORT_SYMBOL_GPL(netcp_txpipe_open); int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe, struct netcp_device *netcp_device, const char *dma_chan_name, unsigned int dma_queue_id) { memset(tx_pipe, 0, sizeof(*tx_pipe)); tx_pipe->netcp_device = netcp_device; tx_pipe->dma_chan_name = dma_chan_name; tx_pipe->dma_queue_id = dma_queue_id; return 0; } EXPORT_SYMBOL_GPL(netcp_txpipe_init); static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp, const u8 *addr, enum netcp_addr_type type) { struct netcp_addr *naddr; list_for_each_entry(naddr, &netcp->addr_list, node) { if (naddr->type != type) continue; if (addr && memcmp(addr, naddr->addr, ETH_ALEN)) continue; return naddr; } return NULL; } static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp, const u8 *addr, enum netcp_addr_type type) { struct netcp_addr *naddr; naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC); if (!naddr) return NULL; naddr->type = type; naddr->flags = 0; naddr->netcp = netcp; if (addr) ether_addr_copy(naddr->addr, addr); else eth_zero_addr(naddr->addr); list_add_tail(&naddr->node, &netcp->addr_list); return naddr; } static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr) { list_del(&naddr->node); devm_kfree(netcp->dev, naddr); } static void netcp_addr_clear_mark(struct netcp_intf *netcp) { struct netcp_addr *naddr; list_for_each_entry(naddr, &netcp->addr_list, node) naddr->flags = 0; } static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr, enum netcp_addr_type type) { struct netcp_addr *naddr; naddr = netcp_addr_find(netcp, addr, type); if (naddr) { naddr->flags |= ADDR_VALID; return; } naddr = netcp_addr_add(netcp, addr, type); if (!WARN_ON(!naddr)) naddr->flags |= ADDR_NEW; } static void netcp_addr_sweep_del(struct netcp_intf *netcp) { struct netcp_addr *naddr, *tmp; struct netcp_intf_modpriv *priv; struct netcp_module *module; int error; list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { if (naddr->flags & (ADDR_VALID | ADDR_NEW)) continue; dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n", naddr->addr, naddr->type); for_each_module(netcp, priv) { module = priv->netcp_module; if (!module->del_addr) continue; error = module->del_addr(priv->module_priv, naddr); WARN_ON(error); } netcp_addr_del(netcp, naddr); } } static void netcp_addr_sweep_add(struct netcp_intf *netcp) { struct netcp_addr *naddr, *tmp; struct netcp_intf_modpriv *priv; struct netcp_module *module; int error; list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { if (!(naddr->flags & ADDR_NEW)) continue; dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n", naddr->addr, naddr->type); for_each_module(netcp, priv) { module = priv->netcp_module; if (!module->add_addr) continue; error = module->add_addr(priv->module_priv, naddr); WARN_ON(error); } } } static void netcp_set_rx_mode(struct net_device *ndev) { struct netcp_intf *netcp = netdev_priv(ndev); struct netdev_hw_addr *ndev_addr; bool promisc; promisc = (ndev->flags & IFF_PROMISC || ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR); spin_lock(&netcp->lock); /* first clear all marks */ netcp_addr_clear_mark(netcp); /* next add new entries, mark existing ones */ netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST); for_each_dev_addr(ndev, ndev_addr) netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV); netdev_for_each_uc_addr(ndev_addr, ndev) netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST); netdev_for_each_mc_addr(ndev_addr, ndev) netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST); if (promisc) netcp_addr_add_mark(netcp, NULL, ADDR_ANY); /* finally sweep and callout into modules */ netcp_addr_sweep_del(netcp); netcp_addr_sweep_add(netcp); spin_unlock(&netcp->lock); } static void netcp_free_navigator_resources(struct netcp_intf *netcp) { int i; if (netcp->rx_channel) { knav_dma_close_channel(netcp->rx_channel); netcp->rx_channel = NULL; } if (!IS_ERR_OR_NULL(netcp->rx_pool)) netcp_rxpool_free(netcp); if (!IS_ERR_OR_NULL(netcp->rx_queue)) { knav_queue_close(netcp->rx_queue); netcp->rx_queue = NULL; } for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) { knav_queue_close(netcp->rx_fdq[i]); netcp->rx_fdq[i] = NULL; } if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) { knav_queue_close(netcp->tx_compl_q); netcp->tx_compl_q = NULL; } if (!IS_ERR_OR_NULL(netcp->tx_pool)) { knav_pool_destroy(netcp->tx_pool); netcp->tx_pool = NULL; } } static int netcp_setup_navigator_resources(struct net_device *ndev) { struct netcp_intf *netcp = netdev_priv(ndev); struct knav_queue_notify_config notify_cfg; struct knav_dma_cfg config; u32 last_fdq = 0; u8 name[16]; int ret; int i; /* Create Rx/Tx descriptor pools */ snprintf(name, sizeof(name), "rx-pool-%s", ndev->name); netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size, netcp->rx_pool_region_id); if (IS_ERR_OR_NULL(netcp->rx_pool)) { dev_err(netcp->ndev_dev, "Couldn't create rx pool\n"); ret = PTR_ERR(netcp->rx_pool); goto fail; } snprintf(name, sizeof(name), "tx-pool-%s", ndev->name); netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size, netcp->tx_pool_region_id); if (IS_ERR_OR_NULL(netcp->tx_pool)) { dev_err(netcp->ndev_dev, "Couldn't create tx pool\n"); ret = PTR_ERR(netcp->tx_pool); goto fail; } /* open Tx completion queue */ snprintf(name, sizeof(name), "tx-compl-%s", ndev->name); netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0); if (IS_ERR_OR_NULL(netcp->tx_compl_q)) { ret = PTR_ERR(netcp->tx_compl_q); goto fail; } netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q); /* Set notification for Tx completion */ notify_cfg.fn = netcp_tx_notify; notify_cfg.fn_arg = netcp; ret = knav_queue_device_control(netcp->tx_compl_q, KNAV_QUEUE_SET_NOTIFIER, (unsigned long)¬ify_cfg); if (ret) goto fail; knav_queue_disable_notify(netcp->tx_compl_q); /* open Rx completion queue */ snprintf(name, sizeof(name), "rx-compl-%s", ndev->name); netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0); if (IS_ERR_OR_NULL(netcp->rx_queue)) { ret = PTR_ERR(netcp->rx_queue); goto fail; } netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue); /* Set notification for Rx completion */ notify_cfg.fn = netcp_rx_notify; notify_cfg.fn_arg = netcp; ret = knav_queue_device_control(netcp->rx_queue, KNAV_QUEUE_SET_NOTIFIER, (unsigned long)¬ify_cfg); if (ret) goto fail; knav_queue_disable_notify(netcp->rx_queue); /* open Rx FDQs */ for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i]; ++i) { snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i); netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0); if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) { ret = PTR_ERR(netcp->rx_fdq[i]); goto fail; } } memset(&config, 0, sizeof(config)); config.direction = DMA_DEV_TO_MEM; config.u.rx.einfo_present = true; config.u.rx.psinfo_present = true; config.u.rx.err_mode = DMA_DROP; config.u.rx.desc_type = DMA_DESC_HOST; config.u.rx.psinfo_at_sop = false; config.u.rx.sop_offset = NETCP_SOP_OFFSET; config.u.rx.dst_q = netcp->rx_queue_id; config.u.rx.thresh = DMA_THRESH_NONE; for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) { if (netcp->rx_fdq[i]) last_fdq = knav_queue_get_id(netcp->rx_fdq[i]); config.u.rx.fdq[i] = last_fdq; } netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device, netcp->dma_chan_name, &config); if (IS_ERR_OR_NULL(netcp->rx_channel)) { dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n", netcp->dma_chan_name); goto fail; } dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel); return 0; fail: netcp_free_navigator_resources(netcp); return ret; } /* Open the device */ static int netcp_ndo_open(struct net_device *ndev) { struct netcp_intf *netcp = netdev_priv(ndev); struct netcp_intf_modpriv *intf_modpriv; struct netcp_module *module; int ret; netif_carrier_off(ndev); ret = netcp_setup_navigator_resources(ndev); if (ret) { dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n"); goto fail; } for_each_module(netcp, intf_modpriv) { module = intf_modpriv->netcp_module; if (module->open) { ret = module->open(intf_modpriv->module_priv, ndev); if (ret != 0) { dev_err(netcp->ndev_dev, "module open failed\n"); goto fail_open; } } } napi_enable(&netcp->rx_napi); napi_enable(&netcp->tx_napi); knav_queue_enable_notify(netcp->tx_compl_q); knav_queue_enable_notify(netcp->rx_queue); netcp_rxpool_refill(netcp); netif_tx_wake_all_queues(ndev); dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name); return 0; fail_open: for_each_module(netcp, intf_modpriv) { module = intf_modpriv->netcp_module; if (module->close) module->close(intf_modpriv->module_priv, ndev); } fail: netcp_free_navigator_resources(netcp); return ret; } /* Close the device */ static int netcp_ndo_stop(struct net_device *ndev) { struct netcp_intf *netcp = netdev_priv(ndev); struct netcp_intf_modpriv *intf_modpriv; struct netcp_module *module; int err = 0; netif_tx_stop_all_queues(ndev); netif_carrier_off(ndev); netcp_addr_clear_mark(netcp); netcp_addr_sweep_del(netcp); knav_queue_disable_notify(netcp->rx_queue); knav_queue_disable_notify(netcp->tx_compl_q); napi_disable(&netcp->rx_napi); napi_disable(&netcp->tx_napi); for_each_module(netcp, intf_modpriv) { module = intf_modpriv->netcp_module; if (module->close) { err = module->close(intf_modpriv->module_priv, ndev); if (err != 0) dev_err(netcp->ndev_dev, "Close failed\n"); } } /* Recycle Rx descriptors from completion queue */ netcp_empty_rx_queue(netcp); /* Recycle Tx descriptors from completion queue */ netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size) dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n", netcp->tx_pool_size - knav_pool_count(netcp->tx_pool)); netcp_free_navigator_resources(netcp); dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name); return 0; } static int netcp_ndo_ioctl(struct net_device *ndev, struct ifreq *req, int cmd) { struct netcp_intf *netcp = netdev_priv(ndev); struct netcp_intf_modpriv *intf_modpriv; struct netcp_module *module; int ret = -1, err = -EOPNOTSUPP; if (!netif_running(ndev)) return -EINVAL; for_each_module(netcp, intf_modpriv) { module = intf_modpriv->netcp_module; if (!module->ioctl) continue; err = module->ioctl(intf_modpriv->module_priv, req, cmd); if ((err < 0) && (err != -EOPNOTSUPP)) { ret = err; goto out; } if (err == 0) ret = err; } out: return (ret == 0) ? 0 : err; } static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu) { struct netcp_intf *netcp = netdev_priv(ndev); /* MTU < 68 is an error for IPv4 traffic */ if ((new_mtu < 68) || (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) { dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu); return -EINVAL; } ndev->mtu = new_mtu; return 0; } static void netcp_ndo_tx_timeout(struct net_device *ndev) { struct netcp_intf *netcp = netdev_priv(ndev); unsigned int descs = knav_pool_count(netcp->tx_pool); dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs); netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); ndev->trans_start = jiffies; netif_tx_wake_all_queues(ndev); } static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct netcp_intf *netcp = netdev_priv(ndev); struct netcp_intf_modpriv *intf_modpriv; struct netcp_module *module; unsigned long flags; int err = 0; dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid); spin_lock_irqsave(&netcp->lock, flags); for_each_module(netcp, intf_modpriv) { module = intf_modpriv->netcp_module; if ((module->add_vid) && (vid != 0)) { err = module->add_vid(intf_modpriv->module_priv, vid); if (err != 0) { dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n", vid); break; } } } spin_unlock_irqrestore(&netcp->lock, flags); return err; } static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct netcp_intf *netcp = netdev_priv(ndev); struct netcp_intf_modpriv *intf_modpriv; struct netcp_module *module; unsigned long flags; int err = 0; dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid); spin_lock_irqsave(&netcp->lock, flags); for_each_module(netcp, intf_modpriv) { module = intf_modpriv->netcp_module; if (module->del_vid) { err = module->del_vid(intf_modpriv->module_priv, vid); if (err != 0) { dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n", vid); break; } } } spin_unlock_irqrestore(&netcp->lock, flags); return err; } static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb, void *accel_priv, select_queue_fallback_t fallback) { return 0; } static int netcp_setup_tc(struct net_device *dev, u8 num_tc) { int i; /* setup tc must be called under rtnl lock */ ASSERT_RTNL(); /* Sanity-check the number of traffic classes requested */ if ((dev->real_num_tx_queues <= 1) || (dev->real_num_tx_queues < num_tc)) return -EINVAL; /* Configure traffic class to queue mappings */ if (num_tc) { netdev_set_num_tc(dev, num_tc); for (i = 0; i < num_tc; i++) netdev_set_tc_queue(dev, i, 1, i); } else { netdev_reset_tc(dev); } return 0; } static const struct net_device_ops netcp_netdev_ops = { .ndo_open = netcp_ndo_open, .ndo_stop = netcp_ndo_stop, .ndo_start_xmit = netcp_ndo_start_xmit, .ndo_set_rx_mode = netcp_set_rx_mode, .ndo_do_ioctl = netcp_ndo_ioctl, .ndo_change_mtu = netcp_ndo_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_vlan_rx_add_vid = netcp_rx_add_vid, .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid, .ndo_tx_timeout = netcp_ndo_tx_timeout, .ndo_select_queue = netcp_select_queue, .ndo_setup_tc = netcp_setup_tc, }; static int netcp_create_interface(struct netcp_device *netcp_device, struct device_node *node_interface) { struct device *dev = netcp_device->device; struct device_node *node = dev->of_node; struct netcp_intf *netcp; struct net_device *ndev; resource_size_t size; struct resource res; void __iomem *efuse = NULL; u32 efuse_mac = 0; const void *mac_addr; u8 efuse_mac_addr[6]; u32 temp[2]; int ret = 0; ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1); if (!ndev) { dev_err(dev, "Error allocating netdev\n"); return -ENOMEM; } ndev->features |= NETIF_F_SG; ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; ndev->hw_features = ndev->features; ndev->vlan_features |= NETIF_F_SG; netcp = netdev_priv(ndev); spin_lock_init(&netcp->lock); INIT_LIST_HEAD(&netcp->module_head); INIT_LIST_HEAD(&netcp->txhook_list_head); INIT_LIST_HEAD(&netcp->rxhook_list_head); INIT_LIST_HEAD(&netcp->addr_list); netcp->netcp_device = netcp_device; netcp->dev = netcp_device->device; netcp->ndev = ndev; netcp->ndev_dev = &ndev->dev; netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG); netcp->tx_pause_threshold = MAX_SKB_FRAGS; netcp->tx_resume_threshold = netcp->tx_pause_threshold; netcp->node_interface = node_interface; ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac); if (efuse_mac) { if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) { dev_err(dev, "could not find efuse-mac reg resource\n"); ret = -ENODEV; goto quit; } size = resource_size(&res); if (!devm_request_mem_region(dev, res.start, size, dev_name(dev))) { dev_err(dev, "could not reserve resource\n"); ret = -ENOMEM; goto quit; } efuse = devm_ioremap_nocache(dev, res.start, size); if (!efuse) { dev_err(dev, "could not map resource\n"); devm_release_mem_region(dev, res.start, size); ret = -ENOMEM; goto quit; } emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac); if (is_valid_ether_addr(efuse_mac_addr)) ether_addr_copy(ndev->dev_addr, efuse_mac_addr); else random_ether_addr(ndev->dev_addr); devm_iounmap(dev, efuse); devm_release_mem_region(dev, res.start, size); } else { mac_addr = of_get_mac_address(node_interface); if (mac_addr) ether_addr_copy(ndev->dev_addr, mac_addr); else random_ether_addr(ndev->dev_addr); } ret = of_property_read_string(node_interface, "rx-channel", &netcp->dma_chan_name); if (ret < 0) { dev_err(dev, "missing \"rx-channel\" parameter\n"); ret = -ENODEV; goto quit; } ret = of_property_read_u32(node_interface, "rx-queue", &netcp->rx_queue_id); if (ret < 0) { dev_warn(dev, "missing \"rx-queue\" parameter\n"); netcp->rx_queue_id = KNAV_QUEUE_QPEND; } ret = of_property_read_u32_array(node_interface, "rx-queue-depth", netcp->rx_queue_depths, KNAV_DMA_FDQ_PER_CHAN); if (ret < 0) { dev_err(dev, "missing \"rx-queue-depth\" parameter\n"); netcp->rx_queue_depths[0] = 128; } ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2); if (ret < 0) { dev_err(dev, "missing \"rx-pool\" parameter\n"); ret = -ENODEV; goto quit; } netcp->rx_pool_size = temp[0]; netcp->rx_pool_region_id = temp[1]; ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2); if (ret < 0) { dev_err(dev, "missing \"tx-pool\" parameter\n"); ret = -ENODEV; goto quit; } netcp->tx_pool_size = temp[0]; netcp->tx_pool_region_id = temp[1]; if (netcp->tx_pool_size < MAX_SKB_FRAGS) { dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n", MAX_SKB_FRAGS); ret = -ENODEV; goto quit; } ret = of_property_read_u32(node_interface, "tx-completion-queue", &netcp->tx_compl_qid); if (ret < 0) { dev_warn(dev, "missing \"tx-completion-queue\" parameter\n"); netcp->tx_compl_qid = KNAV_QUEUE_QPEND; } /* NAPI register */ netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT); netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT); /* Register the network device */ ndev->dev_id = 0; ndev->watchdog_timeo = NETCP_TX_TIMEOUT; ndev->netdev_ops = &netcp_netdev_ops; SET_NETDEV_DEV(ndev, dev); list_add_tail(&netcp->interface_list, &netcp_device->interface_head); return 0; quit: free_netdev(ndev); return ret; } static void netcp_delete_interface(struct netcp_device *netcp_device, struct net_device *ndev) { struct netcp_intf_modpriv *intf_modpriv, *tmp; struct netcp_intf *netcp = netdev_priv(ndev); struct netcp_module *module; dev_dbg(netcp_device->device, "Removing interface \"%s\"\n", ndev->name); /* Notify each of the modules that the interface is going away */ list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head, intf_list) { module = intf_modpriv->netcp_module; dev_dbg(netcp_device->device, "Releasing module \"%s\"\n", module->name); if (module->release) module->release(intf_modpriv->module_priv); list_del(&intf_modpriv->intf_list); kfree(intf_modpriv); } WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n", ndev->name); list_del(&netcp->interface_list); of_node_put(netcp->node_interface); unregister_netdev(ndev); netif_napi_del(&netcp->rx_napi); free_netdev(ndev); } static int netcp_probe(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct netcp_intf *netcp_intf, *netcp_tmp; struct device_node *child, *interfaces; struct netcp_device *netcp_device; struct device *dev = &pdev->dev; int ret; if (!node) { dev_err(dev, "could not find device info\n"); return -ENODEV; } /* Allocate a new NETCP device instance */ netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL); if (!netcp_device) return -ENOMEM; pm_runtime_enable(&pdev->dev); ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { dev_err(dev, "Failed to enable NETCP power-domain\n"); pm_runtime_disable(&pdev->dev); return ret; } /* Initialize the NETCP device instance */ INIT_LIST_HEAD(&netcp_device->interface_head); INIT_LIST_HEAD(&netcp_device->modpriv_head); netcp_device->device = dev; platform_set_drvdata(pdev, netcp_device); /* create interfaces */ interfaces = of_get_child_by_name(node, "netcp-interfaces"); if (!interfaces) { dev_err(dev, "could not find netcp-interfaces node\n"); ret = -ENODEV; goto probe_quit; } for_each_available_child_of_node(interfaces, child) { ret = netcp_create_interface(netcp_device, child); if (ret) { dev_err(dev, "could not create interface(%s)\n", child->name); goto probe_quit_interface; } } /* Add the device instance to the list */ list_add_tail(&netcp_device->device_list, &netcp_devices); return 0; probe_quit_interface: list_for_each_entry_safe(netcp_intf, netcp_tmp, &netcp_device->interface_head, interface_list) { netcp_delete_interface(netcp_device, netcp_intf->ndev); } probe_quit: pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); platform_set_drvdata(pdev, NULL); return ret; } static int netcp_remove(struct platform_device *pdev) { struct netcp_device *netcp_device = platform_get_drvdata(pdev); struct netcp_intf *netcp_intf, *netcp_tmp; struct netcp_inst_modpriv *inst_modpriv, *tmp; struct netcp_module *module; list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head, inst_list) { module = inst_modpriv->netcp_module; dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name); module->remove(netcp_device, inst_modpriv->module_priv); list_del(&inst_modpriv->inst_list); kfree(inst_modpriv); } /* now that all modules are removed, clean up the interfaces */ list_for_each_entry_safe(netcp_intf, netcp_tmp, &netcp_device->interface_head, interface_list) { netcp_delete_interface(netcp_device, netcp_intf->ndev); } WARN(!list_empty(&netcp_device->interface_head), "%s interface list not empty!\n", pdev->name); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); platform_set_drvdata(pdev, NULL); return 0; } static const struct of_device_id of_match[] = { { .compatible = "ti,netcp-1.0", }, {}, }; MODULE_DEVICE_TABLE(of, of_match); static struct platform_driver netcp_driver = { .driver = { .name = "netcp-1.0", .of_match_table = of_match, }, .probe = netcp_probe, .remove = netcp_remove, }; module_platform_driver(netcp_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs"); MODULE_AUTHOR("Sandeep Nair