// SPDX-License-Identifier: GPL-2.0 /* SuperH Ethernet device driver * * Copyright (C) 2014 Renesas Electronics Corporation * Copyright (C) 2006-2012 Nobuhiro Iwamatsu * Copyright (C) 2008-2014 Renesas Solutions Corp. * Copyright (C) 2013-2017 Cogent Embedded, Inc. * Copyright (C) 2014 Codethink Limited */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sh_eth.h" #define SH_ETH_DEF_MSG_ENABLE \ (NETIF_MSG_LINK | \ NETIF_MSG_TIMER | \ NETIF_MSG_RX_ERR| \ NETIF_MSG_TX_ERR) #define SH_ETH_OFFSET_INVALID ((u16)~0) #define SH_ETH_OFFSET_DEFAULTS \ [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID /* use some intentionally tricky logic here to initialize the whole struct to * 0xffff, but then override certain fields, requiring us to indicate that we * "know" that there are overrides in this structure, and we'll need to disable * that warning from W=1 builds. GCC has supported this option since 4.2.X, but * the macros available to do this only define GCC 8. */ __diag_push(); __diag_ignore(GCC, 8, "-Woverride-init", "logic to initialize all and then override some is OK"); static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = { SH_ETH_OFFSET_DEFAULTS, [EDSR] = 0x0000, [EDMR] = 0x0400, [EDTRR] = 0x0408, [EDRRR] = 0x0410, [EESR] = 0x0428, [EESIPR] = 0x0430, [TDLAR] = 0x0010, [TDFAR] = 0x0014, [TDFXR] = 0x0018, [TDFFR] = 0x001c, [RDLAR] = 0x0030, [RDFAR] = 0x0034, [RDFXR] = 0x0038, [RDFFR] = 0x003c, [TRSCER] = 0x0438, [RMFCR] = 0x0440, [TFTR] = 0x0448, [FDR] = 0x0450, [RMCR] = 0x0458, [RPADIR] = 0x0460, [FCFTR] = 0x0468, [CSMR] = 0x04E4, [ECMR] = 0x0500, [ECSR] = 0x0510, [ECSIPR] = 0x0518, [PIR] = 0x0520, [PSR] = 0x0528, [PIPR] = 0x052c, [RFLR] = 0x0508, [APR] = 0x0554, [MPR] = 0x0558, [PFTCR] = 0x055c, [PFRCR] = 0x0560, [TPAUSER] = 0x0564, [GECMR] = 0x05b0, [BCULR] = 0x05b4, [MAHR] = 0x05c0, [MALR] = 0x05c8, [TROCR] = 0x0700, [CDCR] = 0x0708, [LCCR] = 0x0710, [CEFCR] = 0x0740, [FRECR] = 0x0748, [TSFRCR] = 0x0750, [TLFRCR] = 0x0758, [RFCR] = 0x0760, [CERCR] = 0x0768, [CEECR] = 0x0770, [MAFCR] = 0x0778, [RMII_MII] = 0x0790, [ARSTR] = 0x0000, [TSU_CTRST] = 0x0004, [TSU_FWEN0] = 0x0010, [TSU_FWEN1] = 0x0014, [TSU_FCM] = 0x0018, [TSU_BSYSL0] = 0x0020, [TSU_BSYSL1] = 0x0024, [TSU_PRISL0] = 0x0028, [TSU_PRISL1] = 0x002c, [TSU_FWSL0] = 0x0030, [TSU_FWSL1] = 0x0034, [TSU_FWSLC] = 0x0038, [TSU_QTAGM0] = 0x0040, [TSU_QTAGM1] = 0x0044, [TSU_FWSR] = 0x0050, [TSU_FWINMK] = 0x0054, [TSU_ADQT0] = 0x0048, [TSU_ADQT1] = 0x004c, [TSU_VTAG0] = 0x0058, [TSU_VTAG1] = 0x005c, [TSU_ADSBSY] = 0x0060, [TSU_TEN] = 0x0064, [TSU_POST1] = 0x0070, [TSU_POST2] = 0x0074, [TSU_POST3] = 0x0078, [TSU_POST4] = 0x007c, [TSU_ADRH0] = 0x0100, [TXNLCR0] = 0x0080, [TXALCR0] = 0x0084, [RXNLCR0] = 0x0088, [RXALCR0] = 0x008c, [FWNLCR0] = 0x0090, [FWALCR0] = 0x0094, [TXNLCR1] = 0x00a0, [TXALCR1] = 0x00a4, [RXNLCR1] = 0x00a8, [RXALCR1] = 0x00ac, [FWNLCR1] = 0x00b0, [FWALCR1] = 0x00b4, }; static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = { SH_ETH_OFFSET_DEFAULTS, [ECMR] = 0x0300, [RFLR] = 0x0308, [ECSR] = 0x0310, [ECSIPR] = 0x0318, [PIR] = 0x0320, [PSR] = 0x0328, [RDMLR] = 0x0340, [IPGR] = 0x0350, [APR] = 0x0354, [MPR] = 0x0358, [RFCF] = 0x0360, [TPAUSER] = 0x0364, [TPAUSECR] = 0x0368, [MAHR] = 0x03c0, [MALR] = 0x03c8, [TROCR] = 0x03d0, [CDCR] = 0x03d4, [LCCR] = 0x03d8, [CNDCR] = 0x03dc, [CEFCR] = 0x03e4, [FRECR] = 0x03e8, [TSFRCR] = 0x03ec, [TLFRCR] = 0x03f0, [RFCR] = 0x03f4, [MAFCR] = 0x03f8, [EDMR] = 0x0200, [EDTRR] = 0x0208, [EDRRR] = 0x0210, [TDLAR] = 0x0218, [RDLAR] = 0x0220, [EESR] = 0x0228, [EESIPR] = 0x0230, [TRSCER] = 0x0238, [RMFCR] = 0x0240, [TFTR] = 0x0248, [FDR] = 0x0250, [RMCR] = 0x0258, [TFUCR] = 0x0264, [RFOCR] = 0x0268, [RMIIMODE] = 0x026c, [FCFTR] = 0x0270, [TRIMD] = 0x027c, }; static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = { SH_ETH_OFFSET_DEFAULTS, [ECMR] = 0x0100, [RFLR] = 0x0108, [ECSR] = 0x0110, [ECSIPR] = 0x0118, [PIR] = 0x0120, [PSR] = 0x0128, [RDMLR] = 0x0140, [IPGR] = 0x0150, [APR] = 0x0154, [MPR] = 0x0158, [TPAUSER] = 0x0164, [RFCF] = 0x0160, [TPAUSECR] = 0x0168, [BCFRR] = 0x016c, [MAHR] = 0x01c0, [MALR] = 0x01c8, [TROCR] = 0x01d0, [CDCR] = 0x01d4, [LCCR] = 0x01d8, [CNDCR] = 0x01dc, [CEFCR] = 0x01e4, [FRECR] = 0x01e8, [TSFRCR] = 0x01ec, [TLFRCR] = 0x01f0, [RFCR] = 0x01f4, [MAFCR] = 0x01f8, [RTRATE] = 0x01fc, [EDMR] = 0x0000, [EDTRR] = 0x0008, [EDRRR] = 0x0010, [TDLAR] = 0x0018, [RDLAR] = 0x0020, [EESR] = 0x0028, [EESIPR] = 0x0030, [TRSCER] = 0x0038, [RMFCR] = 0x0040, [TFTR] = 0x0048, [FDR] = 0x0050, [RMCR] = 0x0058, [TFUCR] = 0x0064, [RFOCR] = 0x0068, [FCFTR] = 0x0070, [RPADIR] = 0x0078, [TRIMD] = 0x007c, [RBWAR] = 0x00c8, [RDFAR] = 0x00cc, [TBRAR] = 0x00d4, [TDFAR] = 0x00d8, }; static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = { SH_ETH_OFFSET_DEFAULTS, [EDMR] = 0x0000, [EDTRR] = 0x0004, [EDRRR] = 0x0008, [TDLAR] = 0x000c, [RDLAR] = 0x0010, [EESR] = 0x0014, [EESIPR] = 0x0018, [TRSCER] = 0x001c, [RMFCR] = 0x0020, [TFTR] = 0x0024, [FDR] = 0x0028, [RMCR] = 0x002c, [EDOCR] = 0x0030, [FCFTR] = 0x0034, [RPADIR] = 0x0038, [TRIMD] = 0x003c, [RBWAR] = 0x0040, [RDFAR] = 0x0044, [TBRAR] = 0x004c, [TDFAR] = 0x0050, [ECMR] = 0x0160, [ECSR] = 0x0164, [ECSIPR] = 0x0168, [PIR] = 0x016c, [MAHR] = 0x0170, [MALR] = 0x0174, [RFLR] = 0x0178, [PSR] = 0x017c, [TROCR] = 0x0180, [CDCR] = 0x0184, [LCCR] = 0x0188, [CNDCR] = 0x018c, [CEFCR] = 0x0194, [FRECR] = 0x0198, [TSFRCR] = 0x019c, [TLFRCR] = 0x01a0, [RFCR] = 0x01a4, [MAFCR] = 0x01a8, [IPGR] = 0x01b4, [APR] = 0x01b8, [MPR] = 0x01bc, [TPAUSER] = 0x01c4, [BCFR] = 0x01cc, [ARSTR] = 0x0000, [TSU_CTRST] = 0x0004, [TSU_FWEN0] = 0x0010, [TSU_FWEN1] = 0x0014, [TSU_FCM] = 0x0018, [TSU_BSYSL0] = 0x0020, [TSU_BSYSL1] = 0x0024, [TSU_PRISL0] = 0x0028, [TSU_PRISL1] = 0x002c, [TSU_FWSL0] = 0x0030, [TSU_FWSL1] = 0x0034, [TSU_FWSLC] = 0x0038, [TSU_QTAGM0] = 0x0040, [TSU_QTAGM1] = 0x0044, [TSU_ADQT0] = 0x0048, [TSU_ADQT1] = 0x004c, [TSU_FWSR] = 0x0050, [TSU_FWINMK] = 0x0054, [TSU_ADSBSY] = 0x0060, [TSU_TEN] = 0x0064, [TSU_POST1] = 0x0070, [TSU_POST2] = 0x0074, [TSU_POST3] = 0x0078, [TSU_POST4] = 0x007c, [TXNLCR0] = 0x0080, [TXALCR0] = 0x0084, [RXNLCR0] = 0x0088, [RXALCR0] = 0x008c, [FWNLCR0] = 0x0090, [FWALCR0] = 0x0094, [TXNLCR1] = 0x00a0, [TXALCR1] = 0x00a4, [RXNLCR1] = 0x00a8, [RXALCR1] = 0x00ac, [FWNLCR1] = 0x00b0, [FWALCR1] = 0x00b4, [TSU_ADRH0] = 0x0100, }; __diag_pop(); static void sh_eth_rcv_snd_disable(struct net_device *ndev); static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev); static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index) { struct sh_eth_private *mdp = netdev_priv(ndev); u16 offset = mdp->reg_offset[enum_index]; if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) return; iowrite32(data, mdp->addr + offset); } static u32 sh_eth_read(struct net_device *ndev, int enum_index) { struct sh_eth_private *mdp = netdev_priv(ndev); u16 offset = mdp->reg_offset[enum_index]; if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) return ~0U; return ioread32(mdp->addr + offset); } static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear, u32 set) { sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set, enum_index); } static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index) { return mdp->reg_offset[enum_index]; } static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data, int enum_index) { u16 offset = sh_eth_tsu_get_offset(mdp, enum_index); if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) return; iowrite32(data, mdp->tsu_addr + offset); } static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index) { u16 offset = sh_eth_tsu_get_offset(mdp, enum_index); if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) return ~0U; return ioread32(mdp->tsu_addr + offset); } static void sh_eth_soft_swap(char *src, int len) { #ifdef __LITTLE_ENDIAN u32 *p = (u32 *)src; u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32)); for (; p < maxp; p++) *p = swab32(*p); #endif } static void sh_eth_select_mii(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 value; switch (mdp->phy_interface) { case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID: value = 0x3; break; case PHY_INTERFACE_MODE_GMII: value = 0x2; break; case PHY_INTERFACE_MODE_MII: value = 0x1; break; case PHY_INTERFACE_MODE_RMII: value = 0x0; break; default: netdev_warn(ndev, "PHY interface mode was not setup. Set to MII.\n"); value = 0x1; break; } sh_eth_write(ndev, value, RMII_MII); } static void sh_eth_set_duplex(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0); } static void sh_eth_chip_reset(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); /* reset device */ sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR); mdelay(1); } static int sh_eth_soft_reset(struct net_device *ndev) { sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER); mdelay(3); sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0); return 0; } static int sh_eth_check_soft_reset(struct net_device *ndev) { int cnt; for (cnt = 100; cnt > 0; cnt--) { if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER)) return 0; mdelay(1); } netdev_err(ndev, "Device reset failed\n"); return -ETIMEDOUT; } static int sh_eth_soft_reset_gether(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int ret; sh_eth_write(ndev, EDSR_ENALL, EDSR); sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER); ret = sh_eth_check_soft_reset(ndev); if (ret) return ret; /* Table Init */ sh_eth_write(ndev, 0, TDLAR); sh_eth_write(ndev, 0, TDFAR); sh_eth_write(ndev, 0, TDFXR); sh_eth_write(ndev, 0, TDFFR); sh_eth_write(ndev, 0, RDLAR); sh_eth_write(ndev, 0, RDFAR); sh_eth_write(ndev, 0, RDFXR); sh_eth_write(ndev, 0, RDFFR); /* Reset HW CRC register */ if (mdp->cd->csmr) sh_eth_write(ndev, 0, CSMR); /* Select MII mode */ if (mdp->cd->select_mii) sh_eth_select_mii(ndev); return ret; } static void sh_eth_set_rate_gether(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); if (WARN_ON(!mdp->cd->gecmr)) return; switch (mdp->speed) { case 10: /* 10BASE */ sh_eth_write(ndev, GECMR_10, GECMR); break; case 100:/* 100BASE */ sh_eth_write(ndev, GECMR_100, GECMR); break; case 1000: /* 1000BASE */ sh_eth_write(ndev, GECMR_1000, GECMR); break; } } #ifdef CONFIG_OF /* R7S72100 */ static struct sh_eth_cpu_data r7s72100_data = { .soft_reset = sh_eth_soft_reset_gether, .chip_reset = sh_eth_chip_reset, .set_duplex = sh_eth_set_duplex, .register_type = SH_ETH_REG_GIGABIT, .edtrr_trns = EDTRR_TRNS_GETHER, .ecsr_value = ECSR_ICD, .ecsipr_value = ECSIPR_ICDIP, .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP | EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .tx_check = EESR_TC1 | EESR_FTC, .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, .fdr_value = 0x0000070f, .trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE, .no_psr = 1, .apr = 1, .mpr = 1, .tpauser = 1, .hw_swap = 1, .rpadir = 1, .no_trimd = 1, .no_ade = 1, .xdfar_rw = 1, .csmr = 1, .rx_csum = 1, .tsu = 1, .no_tx_cntrs = 1, }; static void sh_eth_chip_reset_r8a7740(struct net_device *ndev) { sh_eth_chip_reset(ndev); sh_eth_select_mii(ndev); } /* R8A7740 */ static struct sh_eth_cpu_data r8a7740_data = { .soft_reset = sh_eth_soft_reset_gether, .chip_reset = sh_eth_chip_reset_r8a7740, .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate_gether, .register_type = SH_ETH_REG_GIGABIT, .edtrr_trns = EDTRR_TRNS_GETHER, .ecsr_value = ECSR_ICD | ECSR_MPD, .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .tx_check = EESR_TC1 | EESR_FTC, .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, .fdr_value = 0x0000070f, .apr = 1, .mpr = 1, .tpauser = 1, .gecmr = 1, .bculr = 1, .hw_swap = 1, .rpadir = 1, .no_trimd = 1, .no_ade = 1, .xdfar_rw = 1, .csmr = 1, .rx_csum = 1, .tsu = 1, .select_mii = 1, .magic = 1, .cexcr = 1, }; /* There is CPU dependent code */ static void sh_eth_set_rate_rcar(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); switch (mdp->speed) { case 10: /* 10BASE */ sh_eth_modify(ndev, ECMR, ECMR_ELB, 0); break; case 100:/* 100BASE */ sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB); break; } } /* R-Car Gen1 */ static struct sh_eth_cpu_data rcar_gen1_data = { .soft_reset = sh_eth_soft_reset, .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate_rcar, .register_type = SH_ETH_REG_FAST_RCAR, .edtrr_trns = EDTRR_TRNS_ETHER, .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, .fdr_value = 0x00000f0f, .apr = 1, .mpr = 1, .tpauser = 1, .hw_swap = 1, .no_xdfar = 1, }; /* R-Car Gen2 and RZ/G1 */ static struct sh_eth_cpu_data rcar_gen2_data = { .soft_reset = sh_eth_soft_reset, .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate_rcar, .register_type = SH_ETH_REG_FAST_RCAR, .edtrr_trns = EDTRR_TRNS_ETHER, .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD, .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, .fdr_value = 0x00000f0f, .trscer_err_mask = TRSCER_RMAFCE, .apr = 1, .mpr = 1, .tpauser = 1, .hw_swap = 1, .no_xdfar = 1, .rmiimode = 1, .magic = 1, }; /* R8A77980 */ static struct sh_eth_cpu_data r8a77980_data = { .soft_reset = sh_eth_soft_reset_gether, .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate_gether, .register_type = SH_ETH_REG_GIGABIT, .edtrr_trns = EDTRR_TRNS_GETHER, .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD, .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .tx_check = EESR_FTC | EESR_CD | EESR_TRO, .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI, .fdr_value = 0x0000070f, .apr = 1, .mpr = 1, .tpauser = 1, .gecmr = 1, .bculr = 1, .hw_swap = 1, .nbst = 1, .rpadir = 1, .no_trimd = 1, .no_ade = 1, .xdfar_rw = 1, .csmr = 1, .rx_csum = 1, .select_mii = 1, .magic = 1, .cexcr = 1, }; /* R7S9210 */ static struct sh_eth_cpu_data r7s9210_data = { .soft_reset = sh_eth_soft_reset, .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate_rcar, .register_type = SH_ETH_REG_FAST_SH4, .edtrr_trns = EDTRR_TRNS_ETHER, .ecsr_value = ECSR_ICD, .ecsipr_value = ECSIPR_ICDIP, .eesipr_value = EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP | EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, .fdr_value = 0x0000070f, .trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE, .apr = 1, .mpr = 1, .tpauser = 1, .hw_swap = 1, .rpadir = 1, .no_ade = 1, .xdfar_rw = 1, }; #endif /* CONFIG_OF */ static void sh_eth_set_rate_sh7724(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); switch (mdp->speed) { case 10: /* 10BASE */ sh_eth_modify(ndev, ECMR, ECMR_RTM, 0); break; case 100:/* 100BASE */ sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM); break; } } /* SH7724 */ static struct sh_eth_cpu_data sh7724_data = { .soft_reset = sh_eth_soft_reset, .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate_sh7724, .register_type = SH_ETH_REG_FAST_SH4, .edtrr_trns = EDTRR_TRNS_ETHER, .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, .apr = 1, .mpr = 1, .tpauser = 1, .hw_swap = 1, .rpadir = 1, }; static void sh_eth_set_rate_sh7757(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); switch (mdp->speed) { case 10: /* 10BASE */ sh_eth_write(ndev, 0, RTRATE); break; case 100:/* 100BASE */ sh_eth_write(ndev, 1, RTRATE); break; } } /* SH7757 */ static struct sh_eth_cpu_data sh7757_data = { .soft_reset = sh_eth_soft_reset, .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate_sh7757, .register_type = SH_ETH_REG_FAST_SH4, .edtrr_trns = EDTRR_TRNS_ETHER, .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO, .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, .irq_flags = IRQF_SHARED, .apr = 1, .mpr = 1, .tpauser = 1, .hw_swap = 1, .no_ade = 1, .rpadir = 1, .rtrate = 1, .dual_port = 1, }; #define SH_GIGA_ETH_BASE 0xfee00000UL #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8) #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0) static void sh_eth_chip_reset_giga(struct net_device *ndev) { u32 mahr[2], malr[2]; int i; /* save MAHR and MALR */ for (i = 0; i < 2; i++) { malr[i] = ioread32((void *)GIGA_MALR(i)); mahr[i] = ioread32((void *)GIGA_MAHR(i)); } sh_eth_chip_reset(ndev); /* restore MAHR and MALR */ for (i = 0; i < 2; i++) { iowrite32(malr[i], (void *)GIGA_MALR(i)); iowrite32(mahr[i], (void *)GIGA_MAHR(i)); } } static void sh_eth_set_rate_giga(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); if (WARN_ON(!mdp->cd->gecmr)) return; switch (mdp->speed) { case 10: /* 10BASE */ sh_eth_write(ndev, 0x00000000, GECMR); break; case 100:/* 100BASE */ sh_eth_write(ndev, 0x00000010, GECMR); break; case 1000: /* 1000BASE */ sh_eth_write(ndev, 0x00000020, GECMR); break; } } /* SH7757(GETHERC) */ static struct sh_eth_cpu_data sh7757_data_giga = { .soft_reset = sh_eth_soft_reset_gether, .chip_reset = sh_eth_chip_reset_giga, .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate_giga, .register_type = SH_ETH_REG_GIGABIT, .edtrr_trns = EDTRR_TRNS_GETHER, .ecsr_value = ECSR_ICD | ECSR_MPD, .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .tx_check = EESR_TC1 | EESR_FTC, .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, .fdr_value = 0x0000072f, .irq_flags = IRQF_SHARED, .apr = 1, .mpr = 1, .tpauser = 1, .gecmr = 1, .bculr = 1, .hw_swap = 1, .rpadir = 1, .no_trimd = 1, .no_ade = 1, .xdfar_rw = 1, .tsu = 1, .cexcr = 1, .dual_port = 1, }; /* SH7734 */ static struct sh_eth_cpu_data sh7734_data = { .soft_reset = sh_eth_soft_reset_gether, .chip_reset = sh_eth_chip_reset, .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate_gether, .register_type = SH_ETH_REG_GIGABIT, .edtrr_trns = EDTRR_TRNS_GETHER, .ecsr_value = ECSR_ICD | ECSR_MPD, .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .tx_check = EESR_TC1 | EESR_FTC, .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, .apr = 1, .mpr = 1, .tpauser = 1, .gecmr = 1, .bculr = 1, .hw_swap = 1, .no_trimd = 1, .no_ade = 1, .xdfar_rw = 1, .tsu = 1, .csmr = 1, .rx_csum = 1, .select_mii = 1, .magic = 1, .cexcr = 1, }; /* SH7763 */ static struct sh_eth_cpu_data sh7763_data = { .soft_reset = sh_eth_soft_reset_gether, .chip_reset = sh_eth_chip_reset, .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate_gether, .register_type = SH_ETH_REG_GIGABIT, .edtrr_trns = EDTRR_TRNS_GETHER, .ecsr_value = ECSR_ICD | ECSR_MPD, .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .tx_check = EESR_TC1 | EESR_FTC, .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE, .apr = 1, .mpr = 1, .tpauser = 1, .gecmr = 1, .bculr = 1, .hw_swap = 1, .no_trimd = 1, .no_ade = 1, .xdfar_rw = 1, .tsu = 1, .irq_flags = IRQF_SHARED, .magic = 1, .cexcr = 1, .rx_csum = 1, .dual_port = 1, }; static struct sh_eth_cpu_data sh7619_data = { .soft_reset = sh_eth_soft_reset, .register_type = SH_ETH_REG_FAST_SH3_SH2, .edtrr_trns = EDTRR_TRNS_ETHER, .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .apr = 1, .mpr = 1, .tpauser = 1, .hw_swap = 1, }; static struct sh_eth_cpu_data sh771x_data = { .soft_reset = sh_eth_soft_reset, .register_type = SH_ETH_REG_FAST_SH3_SH2, .edtrr_trns = EDTRR_TRNS_ETHER, .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP | 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP | EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP, .trscer_err_mask = TRSCER_RMAFCE, .tsu = 1, .dual_port = 1, }; static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd) { if (!cd->ecsr_value) cd->ecsr_value = DEFAULT_ECSR_INIT; if (!cd->ecsipr_value) cd->ecsipr_value = DEFAULT_ECSIPR_INIT; if (!cd->fcftr_value) cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | DEFAULT_FIFO_F_D_RFD; if (!cd->fdr_value) cd->fdr_value = DEFAULT_FDR_INIT; if (!cd->tx_check) cd->tx_check = DEFAULT_TX_CHECK; if (!cd->eesr_err_check) cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK; if (!cd->trscer_err_mask) cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK; } static void sh_eth_set_receive_align(struct sk_buff *skb) { uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1); if (reserve) skb_reserve(skb, SH_ETH_RX_ALIGN - reserve); } /* Program the hardware MAC address from dev->dev_addr. */ static void update_mac_address(struct net_device *ndev) { sh_eth_write(ndev, (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); sh_eth_write(ndev, (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); } /* Get MAC address from SuperH MAC address register * * SuperH's Ethernet device doesn't have 'ROM' to MAC address. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g). * When you want use this device, you must set MAC address in bootloader. * */ static void read_mac_address(struct net_device *ndev, unsigned char *mac) { if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) { memcpy(ndev->dev_addr, mac, ETH_ALEN); } else { u32 mahr = sh_eth_read(ndev, MAHR); u32 malr = sh_eth_read(ndev, MALR); ndev->dev_addr[0] = (mahr >> 24) & 0xFF; ndev->dev_addr[1] = (mahr >> 16) & 0xFF; ndev->dev_addr[2] = (mahr >> 8) & 0xFF; ndev->dev_addr[3] = (mahr >> 0) & 0xFF; ndev->dev_addr[4] = (malr >> 8) & 0xFF; ndev->dev_addr[5] = (malr >> 0) & 0xFF; } } struct bb_info { void (*set_gate)(void *addr); struct mdiobb_ctrl ctrl; void *addr; }; static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set) { struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); u32 pir; if (bitbang->set_gate) bitbang->set_gate(bitbang->addr); pir = ioread32(bitbang->addr); if (set) pir |= mask; else pir &= ~mask; iowrite32(pir, bitbang->addr); } /* Data I/O pin control */ static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit) { sh_mdio_ctrl(ctrl, PIR_MMD, bit); } /* Set bit data*/ static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit) { sh_mdio_ctrl(ctrl, PIR_MDO, bit); } /* Get bit data*/ static int sh_get_mdio(struct mdiobb_ctrl *ctrl) { struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); if (bitbang->set_gate) bitbang->set_gate(bitbang->addr); return (ioread32(bitbang->addr) & PIR_MDI) != 0; } /* MDC pin control */ static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit) { sh_mdio_ctrl(ctrl, PIR_MDC, bit); } /* mdio bus control struct */ static const struct mdiobb_ops bb_ops = { .owner = THIS_MODULE, .set_mdc = sh_mdc_ctrl, .set_mdio_dir = sh_mmd_ctrl, .set_mdio_data = sh_set_mdio, .get_mdio_data = sh_get_mdio, }; /* free Tx skb function */ static int sh_eth_tx_free(struct net_device *ndev, bool sent_only) { struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_txdesc *txdesc; int free_num = 0; int entry; bool sent; for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) { entry = mdp->dirty_tx % mdp->num_tx_ring; txdesc = &mdp->tx_ring[entry]; sent = !(txdesc->status & cpu_to_le32(TD_TACT)); if (sent_only && !sent) break; /* TACT bit must be checked before all the following reads */ dma_rmb(); netif_info(mdp, tx_done, ndev, "tx entry %d status 0x%08x\n", entry, le32_to_cpu(txdesc->status)); /* Free the original skb. */ if (mdp->tx_skbuff[entry]) { dma_unmap_single(&mdp->pdev->dev, le32_to_cpu(txdesc->addr), le32_to_cpu(txdesc->len) >> 16, DMA_TO_DEVICE); dev_kfree_skb_irq(mdp->tx_skbuff[entry]); mdp->tx_skbuff[entry] = NULL; free_num++; } txdesc->status = cpu_to_le32(TD_TFP); if (entry >= mdp->num_tx_ring - 1) txdesc->status |= cpu_to_le32(TD_TDLE); if (sent) { ndev->stats.tx_packets++; ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16; } } return free_num; } /* free skb and descriptor buffer */ static void sh_eth_ring_free(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int ringsize, i; if (mdp->rx_ring) { for (i = 0; i < mdp->num_rx_ring; i++) { if (mdp->rx_skbuff[i]) { struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i]; dma_unmap_single(&mdp->pdev->dev, le32_to_cpu(rxdesc->addr), ALIGN(mdp->rx_buf_sz, 32), DMA_FROM_DEVICE); } } ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring, mdp->rx_desc_dma); mdp->rx_ring = NULL; } /* Free Rx skb ringbuffer */ if (mdp->rx_skbuff) { for (i = 0; i < mdp->num_rx_ring; i++) dev_kfree_skb(mdp->rx_skbuff[i]); } kfree(mdp->rx_skbuff); mdp->rx_skbuff = NULL; if (mdp->tx_ring) { sh_eth_tx_free(ndev, false); ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring, mdp->tx_desc_dma); mdp->tx_ring = NULL; } /* Free Tx skb ringbuffer */ kfree(mdp->tx_skbuff); mdp->tx_skbuff = NULL; } /* format skb and descriptor buffer */ static void sh_eth_ring_format(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int i; struct sk_buff *skb; struct sh_eth_rxdesc *rxdesc = NULL; struct sh_eth_txdesc *txdesc = NULL; int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring; int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring; int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1; dma_addr_t dma_addr; u32 buf_len; mdp->cur_rx = 0; mdp->cur_tx = 0; mdp->dirty_rx = 0; mdp->dirty_tx = 0; memset(mdp->rx_ring, 0, rx_ringsize); /* build Rx ring buffer */ for (i = 0; i < mdp->num_rx_ring; i++) { /* skb */ mdp->rx_skbuff[i] = NULL; skb = netdev_alloc_skb(ndev, skbuff_size); if (skb == NULL) break; sh_eth_set_receive_align(skb); /* The size of the buffer is a multiple of 32 bytes. */ buf_len = ALIGN(mdp->rx_buf_sz, 32); dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len, DMA_FROM_DEVICE); if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) { kfree_skb(skb); break; } mdp->rx_skbuff[i] = skb; /* RX descriptor */ rxdesc = &mdp->rx_ring[i]; rxdesc->len = cpu_to_le32(buf_len << 16); rxdesc->addr = cpu_to_le32(dma_addr); rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP); /* Rx descriptor address set */ if (i == 0) { sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR); if (mdp->cd->xdfar_rw) sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR); } } mdp->dirty_rx = (u32) (i - mdp->num_rx_ring); /* Mark the last entry as wrapping the ring. */ if (rxdesc) rxdesc->status |= cpu_to_le32(RD_RDLE); memset(mdp->tx_ring, 0, tx_ringsize); /* build Tx ring buffer */ for (i = 0; i < mdp->num_tx_ring; i++) { mdp->tx_skbuff[i] = NULL; txdesc = &mdp->tx_ring[i]; txdesc->status = cpu_to_le32(TD_TFP); txdesc->len = cpu_to_le32(0); if (i == 0) { /* Tx descriptor address set */ sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR); if (mdp->cd->xdfar_rw) sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR); } } txdesc->status |= cpu_to_le32(TD_TDLE); } /* Get skb and descriptor buffer */ static int sh_eth_ring_init(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int rx_ringsize, tx_ringsize; /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the * card needs room to do 8 byte alignment, +2 so we can reserve * the first 2 bytes, and +16 gets room for the status word from the * card. */ mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : (((ndev->mtu + 26 + 7) & ~7) + 2 + 16)); if (mdp->cd->rpadir) mdp->rx_buf_sz += NET_IP_ALIGN; /* Allocate RX and TX skb rings */ mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff), GFP_KERNEL); if (!mdp->rx_skbuff) return -ENOMEM; mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff), GFP_KERNEL); if (!mdp->tx_skbuff) goto ring_free; /* Allocate all Rx descriptors. */ rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize, &mdp->rx_desc_dma, GFP_KERNEL); if (!mdp->rx_ring) goto ring_free; mdp->dirty_rx = 0; /* Allocate all Tx descriptors. */ tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize, &mdp->tx_desc_dma, GFP_KERNEL); if (!mdp->tx_ring) goto ring_free; return 0; ring_free: /* Free Rx and Tx skb ring buffer and DMA buffer */ sh_eth_ring_free(ndev); return -ENOMEM; } static int sh_eth_dev_init(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int ret; /* Soft Reset */ ret = mdp->cd->soft_reset(ndev); if (ret) return ret; if (mdp->cd->rmiimode) sh_eth_write(ndev, 0x1, RMIIMODE); /* Descriptor format */ sh_eth_ring_format(ndev); if (mdp->cd->rpadir) sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR); /* all sh_eth int mask */ sh_eth_write(ndev, 0, EESIPR); #if defined(__LITTLE_ENDIAN) if (mdp->cd->hw_swap) sh_eth_write(ndev, EDMR_EL, EDMR); else #endif sh_eth_write(ndev, 0, EDMR); /* FIFO size set */ sh_eth_write(ndev, mdp->cd->fdr_value, FDR); sh_eth_write(ndev, 0, TFTR); /* Frame recv control (enable multiple-packets per rx irq) */ sh_eth_write(ndev, RMCR_RNC, RMCR); sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER); /* DMA transfer burst mode */ if (mdp->cd->nbst) sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST); /* Burst cycle count upper-limit */ if (mdp->cd->bculr) sh_eth_write(ndev, 0x800, BCULR); sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR); if (!mdp->cd->no_trimd) sh_eth_write(ndev, 0, TRIMD); /* Recv frame limit set register */ sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR); sh_eth_modify(ndev, EESR, 0, 0); mdp->irq_enabled = true; sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */ sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) | ECMR_TE | ECMR_RE, ECMR); if (mdp->cd->set_rate) mdp->cd->set_rate(ndev); /* E-MAC Status Register clear */ sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR); /* E-MAC Interrupt Enable register */ sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR); /* Set MAC address */ update_mac_address(ndev); /* mask reset */ if (mdp->cd->apr) sh_eth_write(ndev, 1, APR); if (mdp->cd->mpr) sh_eth_write(ndev, 1, MPR); if (mdp->cd->tpauser) sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER); /* Setting the Rx mode will start the Rx process. */ sh_eth_write(ndev, EDRRR_R, EDRRR); return ret; } static void sh_eth_dev_exit(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int i; /* Deactivate all TX descriptors, so DMA should stop at next * packet boundary if it's currently running */ for (i = 0; i < mdp->num_tx_ring; i++) mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT); /* Disable TX FIFO egress to MAC */ sh_eth_rcv_snd_disable(ndev); /* Stop RX DMA at next packet boundary */ sh_eth_write(ndev, 0, EDRRR); /* Aside from TX DMA, we can't tell when the hardware is * really stopped, so we need to reset to make sure. * Before doing that, wait for long enough to *probably* * finish transmitting the last packet and poll stats. */ msleep(2); /* max frame time at 10 Mbps < 1250 us */ sh_eth_get_stats(ndev); mdp->cd->soft_reset(ndev); /* Set the RMII mode again if required */ if (mdp->cd->rmiimode) sh_eth_write(ndev, 0x1, RMIIMODE); /* Set MAC address again */ update_mac_address(ndev); } static void sh_eth_rx_csum(struct sk_buff *skb) { u8 *hw_csum; /* The hardware checksum is 2 bytes appended to packet data */ if (unlikely(skb->len < sizeof(__sum16))) return; hw_csum = skb_tail_pointer(skb) - sizeof(__sum16); skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum)); skb->ip_summed = CHECKSUM_COMPLETE; skb_trim(skb, skb->len - sizeof(__sum16)); } /* Packet receive function */ static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota) { struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_rxdesc *rxdesc; int entry = mdp->cur_rx % mdp->num_rx_ring; int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx; int limit; struct sk_buff *skb; u32 desc_status; int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1; dma_addr_t dma_addr; u16 pkt_len; u32 buf_len; boguscnt = min(boguscnt, *quota); limit = boguscnt; rxdesc = &mdp->rx_ring[entry]; while (!(rxdesc->status & cpu_to_le32(RD_RACT))) { /* RACT bit must be checked before all the following reads */ dma_rmb(); desc_status = le32_to_cpu(rxdesc->status); pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL; if (--boguscnt < 0) break; netif_info(mdp, rx_status, ndev, "rx entry %d status 0x%08x len %d\n", entry, desc_status, pkt_len); if (!(desc_status & RDFEND)) ndev->stats.rx_length_errors++; /* In case of almost all GETHER/ETHERs, the Receive Frame State * (RFS) bits in the Receive Descriptor 0 are from bit 9 to * bit 0. However, in case of the R8A7740 and R7S72100 * the RFS bits are from bit 25 to bit 16. So, the * driver needs right shifting by 16. */ if (mdp->cd->csmr) desc_status >>= 16; skb = mdp->rx_skbuff[entry]; if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 | RD_RFS5 | RD_RFS6 | RD_RFS10)) { ndev->stats.rx_errors++; if (desc_status & RD_RFS1) ndev->stats.rx_crc_errors++; if (desc_status & RD_RFS2) ndev->stats.rx_frame_errors++; if (desc_status & RD_RFS3) ndev->stats.rx_length_errors++; if (desc_status & RD_RFS4) ndev->stats.rx_length_errors++; if (desc_status & RD_RFS6) ndev->stats.rx_missed_errors++; if (desc_status & RD_RFS10) ndev->stats.rx_over_errors++; } else if (skb) { dma_addr = le32_to_cpu(rxdesc->addr); if (!mdp->cd->hw_swap) sh_eth_soft_swap( phys_to_virt(ALIGN(dma_addr, 4)), pkt_len + 2); mdp->rx_skbuff[entry] = NULL; if (mdp->cd->rpadir) skb_reserve(skb, NET_IP_ALIGN); dma_unmap_single(&mdp->pdev->dev, dma_addr, ALIGN(mdp->rx_buf_sz, 32), DMA_FROM_DEVICE); skb_put(skb, pkt_len); skb->protocol = eth_type_trans(skb, ndev); if (ndev->features & NETIF_F_RXCSUM) sh_eth_rx_csum(skb); netif_receive_skb(skb); ndev->stats.rx_packets++; ndev->stats.rx_bytes += pkt_len; if (desc_status & RD_RFS8) ndev->stats.multicast++; } entry = (++mdp->cur_rx) % mdp->num_rx_ring; rxdesc = &mdp->rx_ring[entry]; } /* Refill the Rx ring buffers. */ for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) { entry = mdp->dirty_rx % mdp->num_rx_ring; rxdesc = &mdp->rx_ring[entry]; /* The size of the buffer is 32 byte boundary. */ buf_len = ALIGN(mdp->rx_buf_sz, 32); rxdesc->len = cpu_to_le32(buf_len << 16); if (mdp->rx_skbuff[entry] == NULL) { skb = netdev_alloc_skb(ndev, skbuff_size); if (skb == NULL) break; /* Better luck next round. */ sh_eth_set_receive_align(skb); dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len, DMA_FROM_DEVICE); if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) { kfree_skb(skb); break; } mdp->rx_skbuff[entry] = skb; skb_checksum_none_assert(skb); rxdesc->addr = cpu_to_le32(dma_addr); } dma_wmb(); /* RACT bit must be set after all the above writes */ if (entry >= mdp->num_rx_ring - 1) rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE); else rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP); } /* Restart Rx engine if stopped. */ /* If we don't need to check status, don't. -KDU */ if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) { /* fix the values for the next receiving if RDE is set */ if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) { u32 count = (sh_eth_read(ndev, RDFAR) - sh_eth_read(ndev, RDLAR)) >> 4; mdp->cur_rx = count; mdp->dirty_rx = count; } sh_eth_write(ndev, EDRRR_R, EDRRR); } *quota -= limit - boguscnt - 1; return *quota <= 0; } static void sh_eth_rcv_snd_disable(struct net_device *ndev) { /* disable tx and rx */ sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0); } static void sh_eth_rcv_snd_enable(struct net_device *ndev) { /* enable tx and rx */ sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE); } /* E-MAC interrupt handler */ static void sh_eth_emac_interrupt(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 felic_stat; u32 link_stat; felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR); sh_eth_write(ndev, felic_stat, ECSR); /* clear int */ if (felic_stat & ECSR_ICD) ndev->stats.tx_carrier_errors++; if (felic_stat & ECSR_MPD) pm_wakeup_event(&mdp->pdev->dev, 0); if (felic_stat & ECSR_LCHNG) { /* Link Changed */ if (mdp->cd->no_psr || mdp->no_ether_link) return; link_stat = sh_eth_read(ndev, PSR); if (mdp->ether_link_active_low) link_stat = ~link_stat; if (!(link_stat & PSR_LMON)) { sh_eth_rcv_snd_disable(ndev); } else { /* Link Up */ sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0); /* clear int */ sh_eth_modify(ndev, ECSR, 0, 0); sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP); /* enable tx and rx */ sh_eth_rcv_snd_enable(ndev); } } } /* error control function */ static void sh_eth_error(struct net_device *ndev, u32 intr_status) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 mask; if (intr_status & EESR_TWB) { /* Unused write back interrupt */ if (intr_status & EESR_TABT) { /* Transmit Abort int */ ndev->stats.tx_aborted_errors++; netif_err(mdp, tx_err, ndev, "Transmit Abort\n"); } } if (intr_status & EESR_RABT) { /* Receive Abort int */ if (intr_status & EESR_RFRMER) { /* Receive Frame Overflow int */ ndev->stats.rx_frame_errors++; } } if (intr_status & EESR_TDE) { /* Transmit Descriptor Empty int */ ndev->stats.tx_fifo_errors++; netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n"); } if (intr_status & EESR_TFE) { /* FIFO under flow */ ndev->stats.tx_fifo_errors++; netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n"); } if (intr_status & EESR_RDE) { /* Receive Descriptor Empty int */ ndev->stats.rx_over_errors++; } if (intr_status & EESR_RFE) { /* Receive FIFO Overflow int */ ndev->stats.rx_fifo_errors++; } if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) { /* Address Error */ ndev->stats.tx_fifo_errors++; netif_err(mdp, tx_err, ndev, "Address Error\n"); } mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE; if (mdp->cd->no_ade) mask &= ~EESR_ADE; if (intr_status & mask) { /* Tx error */ u32 edtrr = sh_eth_read(ndev, EDTRR); /* dmesg */ netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n", intr_status, mdp->cur_tx, mdp->dirty_tx, (u32)ndev->state, edtrr); /* dirty buffer free */ sh_eth_tx_free(ndev, true); /* SH7712 BUG */ if (edtrr ^ mdp->cd->edtrr_trns) { /* tx dma start */ sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR); } /* wakeup */ netif_wake_queue(ndev); } } static irqreturn_t sh_eth_interrupt(int irq, void *netdev) { struct net_device *ndev = netdev; struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_cpu_data *cd = mdp->cd; irqreturn_t ret = IRQ_NONE; u32 intr_status, intr_enable; spin_lock(&mdp->lock); /* Get interrupt status */ intr_status = sh_eth_read(ndev, EESR); /* Mask it with the interrupt mask, forcing ECI interrupt to be always * enabled since it's the one that comes thru regardless of the mask, * and we need to fully handle it in sh_eth_emac_interrupt() in order * to quench it as it doesn't get cleared by just writing 1 to the ECI * bit... */ intr_enable = sh_eth_read(ndev, EESIPR); intr_status &= intr_enable | EESIPR_ECIIP; if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI | cd->eesr_err_check)) ret = IRQ_HANDLED; else goto out; if (unlikely(!mdp->irq_enabled)) { sh_eth_write(ndev, 0, EESIPR); goto out; } if (intr_status & EESR_RX_CHECK) { if (napi_schedule_prep(&mdp->napi)) { /* Mask Rx interrupts */ sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK, EESIPR); __napi_schedule(&mdp->napi); } else { netdev_warn(ndev, "ignoring interrupt, status 0x%08x, mask 0x%08x.\n", intr_status, intr_enable); } } /* Tx Check */ if (intr_status & cd->tx_check) { /* Clear Tx interrupts */ sh_eth_write(ndev, intr_status & cd->tx_check, EESR); sh_eth_tx_free(ndev, true); netif_wake_queue(ndev); } /* E-MAC interrupt */ if (intr_status & EESR_ECI) sh_eth_emac_interrupt(ndev); if (intr_status & cd->eesr_err_check) { /* Clear error interrupts */ sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR); sh_eth_error(ndev, intr_status); } out: spin_unlock(&mdp->lock); return ret; } static int sh_eth_poll(struct napi_struct *napi, int budget) { struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private, napi); struct net_device *ndev = napi->dev; int quota = budget; u32 intr_status; for (;;) { intr_status = sh_eth_read(ndev, EESR); if (!(intr_status & EESR_RX_CHECK)) break; /* Clear Rx interrupts */ sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR); if (sh_eth_rx(ndev, intr_status, "a)) goto out; } napi_complete(napi); /* Reenable Rx interrupts */ if (mdp->irq_enabled) sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); out: return budget - quota; } /* PHY state control function */ static void sh_eth_adjust_link(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); struct phy_device *phydev = ndev->phydev; unsigned long flags; int new_state = 0; spin_lock_irqsave(&mdp->lock, flags); /* Disable TX and RX right over here, if E-MAC change is ignored */ if (mdp->cd->no_psr || mdp->no_ether_link) sh_eth_rcv_snd_disable(ndev); if (phydev->link) { if (phydev->duplex != mdp->duplex) { new_state = 1; mdp->duplex = phydev->duplex; if (mdp->cd->set_duplex) mdp->cd->set_duplex(ndev); } if (phydev->speed != mdp->speed) { new_state = 1; mdp->speed = phydev->speed; if (mdp->cd->set_rate) mdp->cd->set_rate(ndev); } if (!mdp->link) { sh_eth_modify(ndev, ECMR, ECMR_TXF, 0); new_state = 1; mdp->link = phydev->link; } } else if (mdp->link) { new_state = 1; mdp->link = 0; mdp->speed = 0; mdp->duplex = -1; } /* Enable TX and RX right over here, if E-MAC change is ignored */ if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link) sh_eth_rcv_snd_enable(ndev); spin_unlock_irqrestore(&mdp->lock, flags); if (new_state && netif_msg_link(mdp)) phy_print_status(phydev); } /* PHY init function */ static int sh_eth_phy_init(struct net_device *ndev) { struct device_node *np = ndev->dev.parent->of_node; struct sh_eth_private *mdp = netdev_priv(ndev); struct phy_device *phydev; mdp->link = 0; mdp->speed = 0; mdp->duplex = -1; /* Try connect to PHY */ if (np) { struct device_node *pn; pn = of_parse_phandle(np, "phy-handle", 0); phydev = of_phy_connect(ndev, pn, sh_eth_adjust_link, 0, mdp->phy_interface); of_node_put(pn); if (!phydev) phydev = ERR_PTR(-ENOENT); } else { char phy_id[MII_BUS_ID_SIZE + 3]; snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, mdp->mii_bus->id, mdp->phy_id); phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link, mdp->phy_interface); } if (IS_ERR(phydev)) { netdev_err(ndev, "failed to connect PHY\n"); return PTR_ERR(phydev); } /* mask with MAC supported features */ if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) { int err = phy_set_max_speed(phydev, SPEED_100); if (err) { netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n"); phy_disconnect(phydev); return err; } } phy_attached_info(phydev); return 0; } /* PHY control start function */ static int sh_eth_phy_start(struct net_device *ndev) { int ret; ret = sh_eth_phy_init(ndev); if (ret) return ret; phy_start(ndev->phydev); return 0; } /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the * version must be bumped as well. Just adding registers up to that * limit is fine, as long as the existing register indices don't * change. */ #define SH_ETH_REG_DUMP_VERSION 1 #define SH_ETH_REG_DUMP_MAX_REGS 256 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf) { struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_cpu_data *cd = mdp->cd; u32 *valid_map; size_t len; BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS); /* Dump starts with a bitmap that tells ethtool which * registers are defined for this chip. */ len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32); if (buf) { valid_map = buf; buf += len; } else { valid_map = NULL; } /* Add a register to the dump, if it has a defined offset. * This automatically skips most undefined registers, but for * some it is also necessary to check a capability flag in * struct sh_eth_cpu_data. */ #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32) #define add_reg_from(reg, read_expr) do { \ if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \ if (buf) { \ mark_reg_valid(reg); \ *buf++ = read_expr; \ } \ ++len; \ } \ } while (0) #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg)) #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg)) add_reg(EDSR); add_reg(EDMR); add_reg(EDTRR); add_reg(EDRRR); add_reg(EESR); add_reg(EESIPR); add_reg(TDLAR); if (!cd->no_xdfar) add_reg(TDFAR); add_reg(TDFXR); add_reg(TDFFR); add_reg(RDLAR); if (!cd->no_xdfar) add_reg(RDFAR); add_reg(RDFXR); add_reg(RDFFR); add_reg(TRSCER); add_reg(RMFCR); add_reg(TFTR); add_reg(FDR); add_reg(RMCR); add_reg(TFUCR); add_reg(RFOCR); if (cd->rmiimode) add_reg(RMIIMODE); add_reg(FCFTR); if (cd->rpadir) add_reg(RPADIR); if (!cd->no_trimd) add_reg(TRIMD); add_reg(ECMR); add_reg(ECSR); add_reg(ECSIPR); add_reg(PIR); if (!cd->no_psr) add_reg(PSR); add_reg(RDMLR); add_reg(RFLR); add_reg(IPGR); if (cd->apr) add_reg(APR); if (cd->mpr) add_reg(MPR); add_reg(RFCR); add_reg(RFCF); if (cd->tpauser) add_reg(TPAUSER); add_reg(TPAUSECR); if (cd->gecmr) add_reg(GECMR); if (cd->bculr) add_reg(BCULR); add_reg(MAHR); add_reg(MALR); if (!cd->no_tx_cntrs) { add_reg(TROCR); add_reg(CDCR); add_reg(LCCR); add_reg(CNDCR); } add_reg(CEFCR); add_reg(FRECR); add_reg(TSFRCR); add_reg(TLFRCR); if (cd->cexcr) { add_reg(CERCR); add_reg(CEECR); } add_reg(MAFCR); if (cd->rtrate) add_reg(RTRATE); if (cd->csmr) add_reg(CSMR); if (cd->select_mii) add_reg(RMII_MII); if (cd->tsu) { add_tsu_reg(ARSTR); add_tsu_reg(TSU_CTRST); if (cd->dual_port) { add_tsu_reg(TSU_FWEN0); add_tsu_reg(TSU_FWEN1); add_tsu_reg(TSU_FCM); add_tsu_reg(TSU_BSYSL0); add_tsu_reg(TSU_BSYSL1); add_tsu_reg(TSU_PRISL0); add_tsu_reg(TSU_PRISL1); add_tsu_reg(TSU_FWSL0); add_tsu_reg(TSU_FWSL1); } add_tsu_reg(TSU_FWSLC); if (cd->dual_port) { add_tsu_reg(TSU_QTAGM0); add_tsu_reg(TSU_QTAGM1); add_tsu_reg(TSU_FWSR); add_tsu_reg(TSU_FWINMK); add_tsu_reg(TSU_ADQT0); add_tsu_reg(TSU_ADQT1); add_tsu_reg(TSU_VTAG0); add_tsu_reg(TSU_VTAG1); } add_tsu_reg(TSU_ADSBSY); add_tsu_reg(TSU_TEN); add_tsu_reg(TSU_POST1); add_tsu_reg(TSU_POST2); add_tsu_reg(TSU_POST3); add_tsu_reg(TSU_POST4); /* This is the start of a table, not just a single register. */ if (buf) { unsigned int i; mark_reg_valid(TSU_ADRH0); for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++) *buf++ = ioread32(mdp->tsu_addr + mdp->reg_offset[TSU_ADRH0] + i * 4); } len += SH_ETH_TSU_CAM_ENTRIES * 2; } #undef mark_reg_valid #undef add_reg_from #undef add_reg #undef add_tsu_reg return len * 4; } static int sh_eth_get_regs_len(struct net_device *ndev) { return __sh_eth_get_regs(ndev, NULL); } static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs, void *buf) { struct sh_eth_private *mdp = netdev_priv(ndev); regs->version = SH_ETH_REG_DUMP_VERSION; pm_runtime_get_sync(&mdp->pdev->dev); __sh_eth_get_regs(ndev, buf); pm_runtime_put_sync(&mdp->pdev->dev); } static u32 sh_eth_get_msglevel(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); return mdp->msg_enable; } static void sh_eth_set_msglevel(struct net_device *ndev, u32 value) { struct sh_eth_private *mdp = netdev_priv(ndev); mdp->msg_enable = value; } static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = { "rx_current", "tx_current", "rx_dirty", "tx_dirty", }; #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats) static int sh_eth_get_sset_count(struct net_device *netdev, int sset) { switch (sset) { case ETH_SS_STATS: return SH_ETH_STATS_LEN; default: return -EOPNOTSUPP; } } static void sh_eth_get_ethtool_stats(struct net_device *ndev, struct ethtool_stats *stats, u64 *data) { struct sh_eth_private *mdp = netdev_priv(ndev); int i = 0; /* device-specific stats */ data[i++] = mdp->cur_rx; data[i++] = mdp->cur_tx; data[i++] = mdp->dirty_rx; data[i++] = mdp->dirty_tx; } static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data) { switch (stringset) { case ETH_SS_STATS: memcpy(data, *sh_eth_gstrings_stats, sizeof(sh_eth_gstrings_stats)); break; } } static void sh_eth_get_ringparam(struct net_device *ndev, struct ethtool_ringparam *ring) { struct sh_eth_private *mdp = netdev_priv(ndev); ring->rx_max_pending = RX_RING_MAX; ring->tx_max_pending = TX_RING_MAX; ring->rx_pending = mdp->num_rx_ring; ring->tx_pending = mdp->num_tx_ring; } static int sh_eth_set_ringparam(struct net_device *ndev, struct ethtool_ringparam *ring) { struct sh_eth_private *mdp = netdev_priv(ndev); int ret; if (ring->tx_pending > TX_RING_MAX || ring->rx_pending > RX_RING_MAX || ring->tx_pending < TX_RING_MIN || ring->rx_pending < RX_RING_MIN) return -EINVAL; if (ring->rx_mini_pending || ring->rx_jumbo_pending) return -EINVAL; if (netif_running(ndev)) { netif_device_detach(ndev); netif_tx_disable(ndev); /* Serialise with the interrupt handler and NAPI, then * disable interrupts. We have to clear the * irq_enabled flag first to ensure that interrupts * won't be re-enabled. */ mdp->irq_enabled = false; synchronize_irq(ndev->irq); napi_synchronize(&mdp->napi); sh_eth_write(ndev, 0x0000, EESIPR); sh_eth_dev_exit(ndev); /* Free all the skbuffs in the Rx queue and the DMA buffers. */ sh_eth_ring_free(ndev); } /* Set new parameters */ mdp->num_rx_ring = ring->rx_pending; mdp->num_tx_ring = ring->tx_pending; if (netif_running(ndev)) { ret = sh_eth_ring_init(ndev); if (ret < 0) { netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", __func__); return ret; } ret = sh_eth_dev_init(ndev); if (ret < 0) { netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", __func__); return ret; } netif_device_attach(ndev); } return 0; } static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { struct sh_eth_private *mdp = netdev_priv(ndev); wol->supported = 0; wol->wolopts = 0; if (mdp->cd->magic) { wol->supported = WAKE_MAGIC; wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0; } } static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { struct sh_eth_private *mdp = netdev_priv(ndev); if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC) return -EOPNOTSUPP; mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC); device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled); return 0; } static const struct ethtool_ops sh_eth_ethtool_ops = { .get_regs_len = sh_eth_get_regs_len, .get_regs = sh_eth_get_regs, .nway_reset = phy_ethtool_nway_reset, .get_msglevel = sh_eth_get_msglevel, .set_msglevel = sh_eth_set_msglevel, .get_link = ethtool_op_get_link, .get_strings = sh_eth_get_strings, .get_ethtool_stats = sh_eth_get_ethtool_stats, .get_sset_count = sh_eth_get_sset_count, .get_ringparam = sh_eth_get_ringparam, .set_ringparam = sh_eth_set_ringparam, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, .get_wol = sh_eth_get_wol, .set_wol = sh_eth_set_wol, }; /* network device open function */ static int sh_eth_open(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int ret; pm_runtime_get_sync(&mdp->pdev->dev); napi_enable(&mdp->napi); ret = request_irq(ndev->irq, sh_eth_interrupt, mdp->cd->irq_flags, ndev->name, ndev); if (ret) { netdev_err(ndev, "Can not assign IRQ number\n"); goto out_napi_off; } /* Descriptor set */ ret = sh_eth_ring_init(ndev); if (ret) goto out_free_irq; /* device init */ ret = sh_eth_dev_init(ndev); if (ret) goto out_free_irq; /* PHY control start*/ ret = sh_eth_phy_start(ndev); if (ret) goto out_free_irq; netif_start_queue(ndev); mdp->is_opened = 1; return ret; out_free_irq: free_irq(ndev->irq, ndev); out_napi_off: napi_disable(&mdp->napi); pm_runtime_put_sync(&mdp->pdev->dev); return ret; } /* Timeout function */ static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue) { struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_rxdesc *rxdesc; int i; netif_stop_queue(ndev); netif_err(mdp, timer, ndev, "transmit timed out, status %8.8x, resetting...\n", sh_eth_read(ndev, EESR)); /* tx_errors count up */ ndev->stats.tx_errors++; /* Free all the skbuffs in the Rx queue. */ for (i = 0; i < mdp->num_rx_ring; i++) { rxdesc = &mdp->rx_ring[i]; rxdesc->status = cpu_to_le32(0); rxdesc->addr = cpu_to_le32(0xBADF00D0); dev_kfree_skb(mdp->rx_skbuff[i]); mdp->rx_skbuff[i] = NULL; } for (i = 0; i < mdp->num_tx_ring; i++) { dev_kfree_skb(mdp->tx_skbuff[i]); mdp->tx_skbuff[i] = NULL; } /* device init */ sh_eth_dev_init(ndev); netif_start_queue(ndev); } /* Packet transmit function */ static netdev_tx_t sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_txdesc *txdesc; dma_addr_t dma_addr; u32 entry; unsigned long flags; spin_lock_irqsave(&mdp->lock, flags); if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) { if (!sh_eth_tx_free(ndev, true)) { netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n"); netif_stop_queue(ndev); spin_unlock_irqrestore(&mdp->lock, flags); return NETDEV_TX_BUSY; } } spin_unlock_irqrestore(&mdp->lock, flags); if (skb_put_padto(skb, ETH_ZLEN)) return NETDEV_TX_OK; entry = mdp->cur_tx % mdp->num_tx_ring; mdp->tx_skbuff[entry] = skb; txdesc = &mdp->tx_ring[entry]; /* soft swap. */ if (!mdp->cd->hw_swap) sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2); dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) { kfree_skb(skb); return NETDEV_TX_OK; } txdesc->addr = cpu_to_le32(dma_addr); txdesc->len = cpu_to_le32(skb->len << 16); dma_wmb(); /* TACT bit must be set after all the above writes */ if (entry >= mdp->num_tx_ring - 1) txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE); else txdesc->status |= cpu_to_le32(TD_TACT); mdp->cur_tx++; if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns)) sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR); return NETDEV_TX_OK; } /* The statistics registers have write-clear behaviour, which means we * will lose any increment between the read and write. We mitigate * this by only clearing when we read a non-zero value, so we will * never falsely report a total of zero. */ static void sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg) { u32 delta = sh_eth_read(ndev, reg); if (delta) { *stat += delta; sh_eth_write(ndev, 0, reg); } } static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); if (mdp->cd->no_tx_cntrs) return &ndev->stats; if (!mdp->is_opened) return &ndev->stats; sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR); sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR); sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR); if (mdp->cd->cexcr) { sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, CERCR); sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, CEECR); } else { sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, CNDCR); } return &ndev->stats; } /* device close function */ static int sh_eth_close(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); netif_stop_queue(ndev); /* Serialise with the interrupt handler and NAPI, then disable * interrupts. We have to clear the irq_enabled flag first to * ensure that interrupts won't be re-enabled. */ mdp->irq_enabled = false; synchronize_irq(ndev->irq); napi_disable(&mdp->napi); sh_eth_write(ndev, 0x0000, EESIPR); sh_eth_dev_exit(ndev); /* PHY Disconnect */ if (ndev->phydev) { phy_stop(ndev->phydev); phy_disconnect(ndev->phydev); } free_irq(ndev->irq, ndev); /* Free all the skbuffs in the Rx queue and the DMA buffer. */ sh_eth_ring_free(ndev); mdp->is_opened = 0; pm_runtime_put(&mdp->pdev->dev); return 0; } static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu) { if (netif_running(ndev)) return -EBUSY; ndev->mtu = new_mtu; netdev_update_features(ndev); return 0; } /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */ static u32 sh_eth_tsu_get_post_mask(int entry) { return 0x0f << (28 - ((entry % 8) * 4)); } static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry) { return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4)); } static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev, int entry) { struct sh_eth_private *mdp = netdev_priv(ndev); int reg = TSU_POST1 + entry / 8; u32 tmp; tmp = sh_eth_tsu_read(mdp, reg); sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg); } static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev, int entry) { struct sh_eth_private *mdp = netdev_priv(ndev); int reg = TSU_POST1 + entry / 8; u32 post_mask, ref_mask, tmp; post_mask = sh_eth_tsu_get_post_mask(entry); ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask; tmp = sh_eth_tsu_read(mdp, reg); sh_eth_tsu_write(mdp, tmp & ~post_mask, reg); /* If other port enables, the function returns "true" */ return tmp & ref_mask; } static int sh_eth_tsu_busy(struct net_device *ndev) { int timeout = SH_ETH_TSU_TIMEOUT_MS * 100; struct sh_eth_private *mdp = netdev_priv(ndev); while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) { udelay(10); timeout--; if (timeout <= 0) { netdev_err(ndev, "%s: timeout\n", __func__); return -ETIMEDOUT; } } return 0; } static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset, const u8 *addr) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 val; val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3]; iowrite32(val, mdp->tsu_addr + offset); if (sh_eth_tsu_busy(ndev) < 0) return -EBUSY; val = addr[4] << 8 | addr[5]; iowrite32(val, mdp->tsu_addr + offset + 4); if (sh_eth_tsu_busy(ndev) < 0) return -EBUSY; return 0; } static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 val; val = ioread32(mdp->tsu_addr + offset); addr[0] = (val >> 24) & 0xff; addr[1] = (val >> 16) & 0xff; addr[2] = (val >> 8) & 0xff; addr[3] = val & 0xff; val = ioread32(mdp->tsu_addr + offset + 4); addr[4] = (val >> 8) & 0xff; addr[5] = val & 0xff; } static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr) { struct sh_eth_private *mdp = netdev_priv(ndev); u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); int i; u8 c_addr[ETH_ALEN]; for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { sh_eth_tsu_read_entry(ndev, reg_offset, c_addr); if (ether_addr_equal(addr, c_addr)) return i; } return -ENOENT; } static int sh_eth_tsu_find_empty(struct net_device *ndev) { u8 blank[ETH_ALEN]; int entry; memset(blank, 0, sizeof(blank)); entry = sh_eth_tsu_find_entry(ndev, blank); return (entry < 0) ? -ENOMEM : entry; } static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev, int entry) { struct sh_eth_private *mdp = netdev_priv(ndev); u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); int ret; u8 blank[ETH_ALEN]; sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) & ~(1 << (31 - entry)), TSU_TEN); memset(blank, 0, sizeof(blank)); ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank); if (ret < 0) return ret; return 0; } static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr) { struct sh_eth_private *mdp = netdev_priv(ndev); u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); int i, ret; if (!mdp->cd->tsu) return 0; i = sh_eth_tsu_find_entry(ndev, addr); if (i < 0) { /* No entry found, create one */ i = sh_eth_tsu_find_empty(ndev); if (i < 0) return -ENOMEM; ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr); if (ret < 0) return ret; /* Enable the entry */ sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) | (1 << (31 - i)), TSU_TEN); } /* Entry found or created, enable POST */ sh_eth_tsu_enable_cam_entry_post(ndev, i); return 0; } static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr) { struct sh_eth_private *mdp = netdev_priv(ndev); int i, ret; if (!mdp->cd->tsu) return 0; i = sh_eth_tsu_find_entry(ndev, addr); if (i) { /* Entry found */ if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) goto done; /* Disable the entry if both ports was disabled */ ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); if (ret < 0) return ret; } done: return 0; } static int sh_eth_tsu_purge_all(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int i, ret; if (!mdp->cd->tsu) return 0; for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) { if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) continue; /* Disable the entry if both ports was disabled */ ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); if (ret < 0) return ret; } return 0; } static void sh_eth_tsu_purge_mcast(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); u8 addr[ETH_ALEN]; int i; if (!mdp->cd->tsu) return; for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { sh_eth_tsu_read_entry(ndev, reg_offset, addr); if (is_multicast_ether_addr(addr)) sh_eth_tsu_del_entry(ndev, addr); } } /* Update promiscuous flag and multicast filter */ static void sh_eth_set_rx_mode(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 ecmr_bits; int mcast_all = 0; unsigned long flags; spin_lock_irqsave(&mdp->lock, flags); /* Initial condition is MCT = 1, PRM = 0. * Depending on ndev->flags, set PRM or clear MCT */ ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM; if (mdp->cd->tsu) ecmr_bits |= ECMR_MCT; if (!(ndev->flags & IFF_MULTICAST)) { sh_eth_tsu_purge_mcast(ndev); mcast_all = 1; } if (ndev->flags & IFF_ALLMULTI) { sh_eth_tsu_purge_mcast(ndev); ecmr_bits &= ~ECMR_MCT; mcast_all = 1; } if (ndev->flags & IFF_PROMISC) { sh_eth_tsu_purge_all(ndev); ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM; } else if (mdp->cd->tsu) { struct netdev_hw_addr *ha; netdev_for_each_mc_addr(ha, ndev) { if (mcast_all && is_multicast_ether_addr(ha->addr)) continue; if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) { if (!mcast_all) { sh_eth_tsu_purge_mcast(ndev); ecmr_bits &= ~ECMR_MCT; mcast_all = 1; } } } } /* update the ethernet mode */ sh_eth_write(ndev, ecmr_bits, ECMR); spin_unlock_irqrestore(&mdp->lock, flags); } static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable) { struct sh_eth_private *mdp = netdev_priv(ndev); unsigned long flags; spin_lock_irqsave(&mdp->lock, flags); /* Disable TX and RX */ sh_eth_rcv_snd_disable(ndev); /* Modify RX Checksum setting */ sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0); /* Enable TX and RX */ sh_eth_rcv_snd_enable(ndev); spin_unlock_irqrestore(&mdp->lock, flags); } static int sh_eth_set_features(struct net_device *ndev, netdev_features_t features) { netdev_features_t changed = ndev->features ^ features; struct sh_eth_private *mdp = netdev_priv(ndev); if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum) sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM); ndev->features = features; return 0; } static int sh_eth_get_vtag_index(struct sh_eth_private *mdp) { if (!mdp->port) return TSU_VTAG0; else return TSU_VTAG1; } static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct sh_eth_private *mdp = netdev_priv(ndev); int vtag_reg_index = sh_eth_get_vtag_index(mdp); if (unlikely(!mdp->cd->tsu)) return -EPERM; /* No filtering if vid = 0 */ if (!vid) return 0; mdp->vlan_num_ids++; /* The controller has one VLAN tag HW filter. So, if the filter is * already enabled, the driver disables it and the filte */ if (mdp->vlan_num_ids > 1) { /* disable VLAN filter */ sh_eth_tsu_write(mdp, 0, vtag_reg_index); return 0; } sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK), vtag_reg_index); return 0; } static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct sh_eth_private *mdp = netdev_priv(ndev); int vtag_reg_index = sh_eth_get_vtag_index(mdp); if (unlikely(!mdp->cd->tsu)) return -EPERM; /* No filtering if vid = 0 */ if (!vid) return 0; mdp->vlan_num_ids--; sh_eth_tsu_write(mdp, 0, vtag_reg_index); return 0; } /* SuperH's TSU register init function */ static void sh_eth_tsu_init(struct sh_eth_private *mdp) { if (!mdp->cd->dual_port) { sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC); /* Enable POST registers */ return; } sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */ sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */ sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */ sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0); sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1); sh_eth_tsu_write(mdp, 0, TSU_PRISL0); sh_eth_tsu_write(mdp, 0, TSU_PRISL1); sh_eth_tsu_write(mdp, 0, TSU_FWSL0); sh_eth_tsu_write(mdp, 0, TSU_FWSL1); sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC); sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */ sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */ sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */ sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */ sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */ sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */ sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */ sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */ } /* MDIO bus release function */ static int sh_mdio_release(struct sh_eth_private *mdp) { /* unregister mdio bus */ mdiobus_unregister(mdp->mii_bus); /* free bitbang info */ free_mdio_bitbang(mdp->mii_bus); return 0; } static int sh_mdiobb_read(struct mii_bus *bus, int phy, int reg) { int res; pm_runtime_get_sync(bus->parent); res = mdiobb_read(bus, phy, reg); pm_runtime_put(bus->parent); return res; } static int sh_mdiobb_write(struct mii_bus *bus, int phy, int reg, u16 val) { int res; pm_runtime_get_sync(bus->parent); res = mdiobb_write(bus, phy, reg, val); pm_runtime_put(bus->parent); return res; } /* MDIO bus init function */ static int sh_mdio_init(struct sh_eth_private *mdp, struct sh_eth_plat_data *pd) { int ret; struct bb_info *bitbang; struct platform_device *pdev = mdp->pdev; struct device *dev = &mdp->pdev->dev; /* create bit control struct for PHY */ bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL); if (!bitbang) return -ENOMEM; /* bitbang init */ bitbang->addr = mdp->addr + mdp->reg_offset[PIR]; bitbang->set_gate = pd->set_mdio_gate; bitbang->ctrl.ops = &bb_ops; /* MII controller setting */ mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl); if (!mdp->mii_bus) return -ENOMEM; /* Wrap accessors with Runtime PM-aware ops */ mdp->mii_bus->read = sh_mdiobb_read; mdp->mii_bus->write = sh_mdiobb_write; /* Hook up MII support for ethtool */ mdp->mii_bus->name = "sh_mii"; mdp->mii_bus->parent = dev; snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", pdev->name, pdev->id); /* register MDIO bus */ if (pd->phy_irq > 0) mdp->mii_bus->irq[pd->phy] = pd->phy_irq; ret = of_mdiobus_register(mdp->mii_bus, dev->of_node); if (ret) goto out_free_bus; return 0; out_free_bus: free_mdio_bitbang(mdp->mii_bus); return ret; } static const u16 *sh_eth_get_register_offset(int register_type) { const u16 *reg_offset = NULL; switch (register_type) { case SH_ETH_REG_GIGABIT: reg_offset = sh_eth_offset_gigabit; break; case SH_ETH_REG_FAST_RCAR: reg_offset = sh_eth_offset_fast_rcar; break; case SH_ETH_REG_FAST_SH4: reg_offset = sh_eth_offset_fast_sh4; break; case SH_ETH_REG_FAST_SH3_SH2: reg_offset = sh_eth_offset_fast_sh3_sh2; break; } return reg_offset; } static const struct net_device_ops sh_eth_netdev_ops = { .ndo_open = sh_eth_open, .ndo_stop = sh_eth_close, .ndo_start_xmit = sh_eth_start_xmit, .ndo_get_stats = sh_eth_get_stats, .ndo_set_rx_mode = sh_eth_set_rx_mode, .ndo_tx_timeout = sh_eth_tx_timeout, .ndo_do_ioctl = phy_do_ioctl_running, .ndo_change_mtu = sh_eth_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, .ndo_set_features = sh_eth_set_features, }; static const struct net_device_ops sh_eth_netdev_ops_tsu = { .ndo_open = sh_eth_open, .ndo_stop = sh_eth_close, .ndo_start_xmit = sh_eth_start_xmit, .ndo_get_stats = sh_eth_get_stats, .ndo_set_rx_mode = sh_eth_set_rx_mode, .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid, .ndo_tx_timeout = sh_eth_tx_timeout, .ndo_do_ioctl = phy_do_ioctl_running, .ndo_change_mtu = sh_eth_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, .ndo_set_features = sh_eth_set_features, }; #ifdef CONFIG_OF static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) { struct device_node *np = dev->of_node; struct sh_eth_plat_data *pdata; phy_interface_t interface; const char *mac_addr; int ret; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return NULL; ret = of_get_phy_mode(np, &interface); if (ret) return NULL; pdata->phy_interface = interface; mac_addr = of_get_mac_address(np); if (!IS_ERR(mac_addr)) ether_addr_copy(pdata->mac_addr, mac_addr); pdata->no_ether_link = of_property_read_bool(np, "renesas,no-ether-link"); pdata->ether_link_active_low = of_property_read_bool(np, "renesas,ether-link-active-low"); return pdata; } static const struct of_device_id sh_eth_match_table[] = { { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data }, { .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data }, { .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data }, { .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data }, { .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data }, { .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data }, { .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data }, { .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data }, { .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data }, { .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data }, { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data }, { .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data }, { .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data }, { .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data }, { } }; MODULE_DEVICE_TABLE(of, sh_eth_match_table); #else static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) { return NULL; } #endif static int sh_eth_drv_probe(struct platform_device *pdev) { struct resource *res; struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev); const struct platform_device_id *id = platform_get_device_id(pdev); struct sh_eth_private *mdp; struct net_device *ndev; int ret; /* get base addr */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ndev = alloc_etherdev(sizeof(struct sh_eth_private)); if (!ndev) return -ENOMEM; pm_runtime_enable(&pdev->dev); pm_runtime_get_sync(&pdev->dev); ret = platform_get_irq(pdev, 0); if (ret < 0) goto out_release; ndev->irq = ret; SET_NETDEV_DEV(ndev, &pdev->dev); mdp = netdev_priv(ndev); mdp->num_tx_ring = TX_RING_SIZE; mdp->num_rx_ring = RX_RING_SIZE; mdp->addr = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(mdp->addr)) { ret = PTR_ERR(mdp->addr); goto out_release; } ndev->base_addr = res->start; spin_lock_init(&mdp->lock); mdp->pdev = pdev; if (pdev->dev.of_node) pd = sh_eth_parse_dt(&pdev->dev); if (!pd) { dev_err(&pdev->dev, "no platform data\n"); ret = -EINVAL; goto out_release; } /* get PHY ID */ mdp->phy_id = pd->phy; mdp->phy_interface = pd->phy_interface; mdp->no_ether_link = pd->no_ether_link; mdp->ether_link_active_low = pd->ether_link_active_low; /* set cpu data */ if (id) mdp->cd = (struct sh_eth_cpu_data *)id->driver_data; else mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev); mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type); if (!mdp->reg_offset) { dev_err(&pdev->dev, "Unknown register type (%d)\n", mdp->cd->register_type); ret = -EINVAL; goto out_release; } sh_eth_set_default_cpu_data(mdp->cd); /* User's manual states max MTU should be 2048 but due to the * alignment calculations in sh_eth_ring_init() the practical * MTU is a bit less. Maybe this can be optimized some more. */ ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); ndev->min_mtu = ETH_MIN_MTU; if (mdp->cd->rx_csum) { ndev->features = NETIF_F_RXCSUM; ndev->hw_features = NETIF_F_RXCSUM; } /* set function */ if (mdp->cd->tsu) ndev->netdev_ops = &sh_eth_netdev_ops_tsu; else ndev->netdev_ops = &sh_eth_netdev_ops; ndev->ethtool_ops = &sh_eth_ethtool_ops; ndev->watchdog_timeo = TX_TIMEOUT; /* debug message level */ mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE; /* read and set MAC address */ read_mac_address(ndev, pd->mac_addr); if (!is_valid_ether_addr(ndev->dev_addr)) { dev_warn(&pdev->dev, "no valid MAC address supplied, using a random one.\n"); eth_hw_addr_random(ndev); } if (mdp->cd->tsu) { int port = pdev->id < 0 ? 0 : pdev->id % 2; struct resource *rtsu; rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!rtsu) { dev_err(&pdev->dev, "no TSU resource\n"); ret = -ENODEV; goto out_release; } /* We can only request the TSU region for the first port * of the two sharing this TSU for the probe to succeed... */ if (port == 0 && !devm_request_mem_region(&pdev->dev, rtsu->start, resource_size(rtsu), dev_name(&pdev->dev))) { dev_err(&pdev->dev, "can't request TSU resource.\n"); ret = -EBUSY; goto out_release; } /* ioremap the TSU registers */ mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start, resource_size(rtsu)); if (!mdp->tsu_addr) { dev_err(&pdev->dev, "TSU region ioremap() failed.\n"); ret = -ENOMEM; goto out_release; } mdp->port = port; ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; /* Need to init only the first port of the two sharing a TSU */ if (port == 0) { if (mdp->cd->chip_reset) mdp->cd->chip_reset(ndev); /* TSU init (Init only)*/ sh_eth_tsu_init(mdp); } } if (mdp->cd->rmiimode) sh_eth_write(ndev, 0x1, RMIIMODE); /* MDIO bus init */ ret = sh_mdio_init(mdp, pd); if (ret) { if (ret != -EPROBE_DEFER) dev_err(&pdev->dev, "MDIO init failed: %d\n", ret); goto out_release; } netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64); /* network device register */ ret = register_netdev(ndev); if (ret) goto out_napi_del; if (mdp->cd->magic) device_set_wakeup_capable(&pdev->dev, 1); /* print device information */ netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n", (u32)ndev->base_addr, ndev->dev_addr, ndev->irq); pm_runtime_put(&pdev->dev); platform_set_drvdata(pdev, ndev); return ret; out_napi_del: netif_napi_del(&mdp->napi); sh_mdio_release(mdp); out_release: /* net_dev free */ free_netdev(ndev); pm_runtime_put(&pdev->dev); pm_runtime_disable(&pdev->dev); return ret; } static int sh_eth_drv_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct sh_eth_private *mdp = netdev_priv(ndev); unregister_netdev(ndev); netif_napi_del(&mdp->napi); sh_mdio_release(mdp); pm_runtime_disable(&pdev->dev); free_netdev(ndev); return 0; } #ifdef CONFIG_PM #ifdef CONFIG_PM_SLEEP static int sh_eth_wol_setup(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); /* Only allow ECI interrupts */ synchronize_irq(ndev->irq); napi_disable(&mdp->napi); sh_eth_write(ndev, EESIPR_ECIIP, EESIPR); /* Enable MagicPacket */ sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE); return enable_irq_wake(ndev->irq); } static int sh_eth_wol_restore(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int ret; napi_enable(&mdp->napi); /* Disable MagicPacket */ sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0); /* The device needs to be reset to restore MagicPacket logic * for next wakeup. If we close and open the device it will * both be reset and all registers restored. This is what * happens during suspend and resume without WoL enabled. */ ret = sh_eth_close(ndev); if (ret < 0) return ret; ret = sh_eth_open(ndev); if (ret < 0) return ret; return disable_irq_wake(ndev->irq); } static int sh_eth_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct sh_eth_private *mdp = netdev_priv(ndev); int ret = 0; if (!netif_running(ndev)) return 0; netif_device_detach(ndev); if (mdp->wol_enabled) ret = sh_eth_wol_setup(ndev); else ret = sh_eth_close(ndev); return ret; } static int sh_eth_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct sh_eth_private *mdp = netdev_priv(ndev); int ret = 0; if (!netif_running(ndev)) return 0; if (mdp->wol_enabled) ret = sh_eth_wol_restore(ndev); else ret = sh_eth_open(ndev); if (ret < 0) return ret; netif_device_attach(ndev); return ret; } #endif static int sh_eth_runtime_nop(struct device *dev) { /* Runtime PM callback shared between ->runtime_suspend() * and ->runtime_resume(). Simply returns success. * * This driver re-initializes all registers after * pm_runtime_get_sync() anyway so there is no need * to save and restore registers here. */ return 0; } static const struct dev_pm_ops sh_eth_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume) SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL) }; #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops) #else #define SH_ETH_PM_OPS NULL #endif static const struct platform_device_id sh_eth_id_table[] = { { "sh7619-ether", (kernel_ulong_t)&sh7619_data }, { "sh771x-ether", (kernel_ulong_t)&sh771x_data }, { "sh7724-ether", (kernel_ulong_t)&sh7724_data }, { "sh7734-gether", (kernel_ulong_t)&sh7734_data }, { "sh7757-ether", (kernel_ulong_t)&sh7757_data }, { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga }, { "sh7763-gether", (kernel_ulong_t)&sh7763_data }, { } }; MODULE_DEVICE_TABLE(platform, sh_eth_id_table); static struct platform_driver sh_eth_driver = { .probe = sh_eth_drv_probe, .remove = sh_eth_drv_remove, .id_table = sh_eth_id_table, .driver = { .name = CARDNAME, .pm = SH_ETH_PM_OPS, .of_match_table = of_match_ptr(sh_eth_match_table), }, }; module_platform_driver(sh_eth_driver); MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda"); MODULE_DESCRIPTION("Renesas SuperH Ethernet driver"); MODULE_LICENSE("GPL v2");