/* * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) * * Right now, I am very wasteful with the buffers. I allocate memory * pages and then divide them into 2K frame buffers. This way I know I * have buffers large enough to hold one frame within one buffer descriptor. * Once I get this working, I will use 64 or 128 byte CPM buffers, which * will be much more memory efficient and will easily handle lots of * small packets. * * Much better multiple PHY support by Magnus Damm. * Copyright (c) 2000 Ericsson Radio Systems AB. * * Support for FEC controller of ColdFire processors. * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) * * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) * Copyright (c) 2004-2006 Macq Electronique SA. * * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fec.h" static void set_multicast_list(struct net_device *ndev); static void fec_enet_itr_coal_init(struct net_device *ndev); #define DRIVER_NAME "fec" #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0)) /* Pause frame feild and FIFO threshold */ #define FEC_ENET_FCE (1 << 5) #define FEC_ENET_RSEM_V 0x84 #define FEC_ENET_RSFL_V 16 #define FEC_ENET_RAEM_V 0x8 #define FEC_ENET_RAFL_V 0x8 #define FEC_ENET_OPD_V 0xFFF0 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ static struct platform_device_id fec_devtype[] = { { /* keep it for coldfire */ .name = DRIVER_NAME, .driver_data = 0, }, { .name = "imx25-fec", .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC, }, { .name = "imx27-fec", .driver_data = FEC_QUIRK_HAS_RACC, }, { .name = "imx28-fec", .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC, }, { .name = "imx6q-fec", .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | FEC_QUIRK_HAS_RACC, }, { .name = "mvf600-fec", .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, }, { .name = "imx6sx-fec", .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, fec_devtype); enum imx_fec_type { IMX25_FEC = 1, /* runs on i.mx25/50/53 */ IMX27_FEC, /* runs on i.mx27/35/51 */ IMX28_FEC, IMX6Q_FEC, MVF600_FEC, IMX6SX_FEC, }; static const struct of_device_id fec_dt_ids[] = { { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fec_dt_ids); static unsigned char macaddr[ETH_ALEN]; module_param_array(macaddr, byte, NULL, 0); MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); #if defined(CONFIG_M5272) /* * Some hardware gets it MAC address out of local flash memory. * if this is non-zero then assume it is the address to get MAC from. */ #if defined(CONFIG_NETtel) #define FEC_FLASHMAC 0xf0006006 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) #define FEC_FLASHMAC 0xf0006000 #elif defined(CONFIG_CANCam) #define FEC_FLASHMAC 0xf0020000 #elif defined (CONFIG_M5272C3) #define FEC_FLASHMAC (0xffe04000 + 4) #elif defined(CONFIG_MOD5272) #define FEC_FLASHMAC 0xffc0406b #else #define FEC_FLASHMAC 0 #endif #endif /* CONFIG_M5272 */ /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. */ #define PKT_MAXBUF_SIZE 1522 #define PKT_MINBUF_SIZE 64 #define PKT_MAXBLR_SIZE 1536 /* FEC receive acceleration */ #define FEC_RACC_IPDIS (1 << 1) #define FEC_RACC_PRODIS (1 << 2) #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) /* * The 5270/5271/5280/5282/532x RX control register also contains maximum frame * size bits. Other FEC hardware does not, so we need to take that into * account when setting it. */ #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) #else #define OPT_FRAME_SIZE 0 #endif /* FEC MII MMFR bits definition */ #define FEC_MMFR_ST (1 << 30) #define FEC_MMFR_OP_READ (2 << 28) #define FEC_MMFR_OP_WRITE (1 << 28) #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) #define FEC_MMFR_TA (2 << 16) #define FEC_MMFR_DATA(v) (v & 0xffff) /* FEC ECR bits definition */ #define FEC_ECR_MAGICEN (1 << 2) #define FEC_ECR_SLEEP (1 << 3) #define FEC_MII_TIMEOUT 30000 /* us */ /* Transmitter timeout */ #define TX_TIMEOUT (2 * HZ) #define FEC_PAUSE_FLAG_AUTONEG 0x1 #define FEC_PAUSE_FLAG_ENABLE 0x2 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) #define FEC_WOL_FLAG_ENABLE (0x1 << 1) #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) #define COPYBREAK_DEFAULT 256 #define TSO_HEADER_SIZE 128 /* Max number of allowed TCP segments for software TSO */ #define FEC_MAX_TSO_SEGS 100 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) #define IS_TSO_HEADER(txq, addr) \ ((addr >= txq->tso_hdrs_dma) && \ (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE)) static int mii_cnt; static inline struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep, int queue_id) { struct bufdesc *new_bd = bdp + 1; struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1; struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id]; struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id]; struct bufdesc_ex *ex_base; struct bufdesc *base; int ring_size; if (bdp >= txq->tx_bd_base) { base = txq->tx_bd_base; ring_size = txq->tx_ring_size; ex_base = (struct bufdesc_ex *)txq->tx_bd_base; } else { base = rxq->rx_bd_base; ring_size = rxq->rx_ring_size; ex_base = (struct bufdesc_ex *)rxq->rx_bd_base; } if (fep->bufdesc_ex) return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ? ex_base : ex_new_bd); else return (new_bd >= (base + ring_size)) ? base : new_bd; } static inline struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep, int queue_id) { struct bufdesc *new_bd = bdp - 1; struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1; struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id]; struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id]; struct bufdesc_ex *ex_base; struct bufdesc *base; int ring_size; if (bdp >= txq->tx_bd_base) { base = txq->tx_bd_base; ring_size = txq->tx_ring_size; ex_base = (struct bufdesc_ex *)txq->tx_bd_base; } else { base = rxq->rx_bd_base; ring_size = rxq->rx_ring_size; ex_base = (struct bufdesc_ex *)rxq->rx_bd_base; } if (fep->bufdesc_ex) return (struct bufdesc *)((ex_new_bd < ex_base) ? (ex_new_bd + ring_size) : ex_new_bd); else return (new_bd < base) ? (new_bd + ring_size) : new_bd; } static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp, struct fec_enet_private *fep) { return ((const char *)bdp - (const char *)base) / fep->bufdesc_size; } static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep, struct fec_enet_priv_tx_q *txq) { int entries; entries = ((const char *)txq->dirty_tx - (const char *)txq->cur_tx) / fep->bufdesc_size - 1; return entries > 0 ? entries : entries + txq->tx_ring_size; } static void swap_buffer(void *bufaddr, int len) { int i; unsigned int *buf = bufaddr; for (i = 0; i < len; i += 4, buf++) swab32s(buf); } static void swap_buffer2(void *dst_buf, void *src_buf, int len) { int i; unsigned int *src = src_buf; unsigned int *dst = dst_buf; for (i = 0; i < len; i += 4, src++, dst++) *dst = swab32p(src); } static void fec_dump(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct bufdesc *bdp; struct fec_enet_priv_tx_q *txq; int index = 0; netdev_info(ndev, "TX ring dump\n"); pr_info("Nr SC addr len SKB\n"); txq = fep->tx_queue[0]; bdp = txq->tx_bd_base; do { pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n", index, bdp == txq->cur_tx ? 'S' : ' ', bdp == txq->dirty_tx ? 'H' : ' ', bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen, txq->tx_skbuff[index]); bdp = fec_enet_get_nextdesc(bdp, fep, 0); index++; } while (bdp != txq->tx_bd_base); } static inline bool is_ipv4_pkt(struct sk_buff *skb) { return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; } static int fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) { /* Only run for packets requiring a checksum. */ if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (unlikely(skb_cow_head(skb, 0))) return -1; if (is_ipv4_pkt(skb)) ip_hdr(skb)->check = 0; *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; return 0; } static struct bufdesc * fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct bufdesc *bdp = txq->cur_tx; struct bufdesc_ex *ebdp; int nr_frags = skb_shinfo(skb)->nr_frags; unsigned short queue = skb_get_queue_mapping(skb); int frag, frag_len; unsigned short status; unsigned int estatus = 0; skb_frag_t *this_frag; unsigned int index; void *bufaddr; dma_addr_t addr; int i; for (frag = 0; frag < nr_frags; frag++) { this_frag = &skb_shinfo(skb)->frags[frag]; bdp = fec_enet_get_nextdesc(bdp, fep, queue); ebdp = (struct bufdesc_ex *)bdp; status = bdp->cbd_sc; status &= ~BD_ENET_TX_STATS; status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); frag_len = skb_shinfo(skb)->frags[frag].size; /* Handle the last BD specially */ if (frag == nr_frags - 1) { status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); if (fep->bufdesc_ex) { estatus |= BD_ENET_TX_INT; if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && fep->hwts_tx_en)) estatus |= BD_ENET_TX_TS; } } if (fep->bufdesc_ex) { if (fep->quirks & FEC_QUIRK_HAS_AVB) estatus |= FEC_TX_BD_FTYPE(queue); if (skb->ip_summed == CHECKSUM_PARTIAL) estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; ebdp->cbd_bdu = 0; ebdp->cbd_esc = estatus; } bufaddr = page_address(this_frag->page.p) + this_frag->page_offset; index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); if (((unsigned long) bufaddr) & fep->tx_align || fep->quirks & FEC_QUIRK_SWAP_FRAME) { memcpy(txq->tx_bounce[index], bufaddr, frag_len); bufaddr = txq->tx_bounce[index]; if (fep->quirks & FEC_QUIRK_SWAP_FRAME) swap_buffer(bufaddr, frag_len); } addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, DMA_TO_DEVICE); if (dma_mapping_error(&fep->pdev->dev, addr)) { dev_kfree_skb_any(skb); if (net_ratelimit()) netdev_err(ndev, "Tx DMA memory map failed\n"); goto dma_mapping_error; } bdp->cbd_bufaddr = addr; bdp->cbd_datlen = frag_len; bdp->cbd_sc = status; } return bdp; dma_mapping_error: bdp = txq->cur_tx; for (i = 0; i < frag; i++) { bdp = fec_enet_get_nextdesc(bdp, fep, queue); dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, bdp->cbd_datlen, DMA_TO_DEVICE); } return ERR_PTR(-ENOMEM); } static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); int nr_frags = skb_shinfo(skb)->nr_frags; struct bufdesc *bdp, *last_bdp; void *bufaddr; dma_addr_t addr; unsigned short status; unsigned short buflen; unsigned short queue; unsigned int estatus = 0; unsigned int index; int entries_free; entries_free = fec_enet_get_free_txdesc_num(fep, txq); if (entries_free < MAX_SKB_FRAGS + 1) { dev_kfree_skb_any(skb); if (net_ratelimit()) netdev_err(ndev, "NOT enough BD for SG!\n"); return NETDEV_TX_OK; } /* Protocol checksum off-load for TCP and UDP. */ if (fec_enet_clear_csum(skb, ndev)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* Fill in a Tx ring entry */ bdp = txq->cur_tx; last_bdp = bdp; status = bdp->cbd_sc; status &= ~BD_ENET_TX_STATS; /* Set buffer length and buffer pointer */ bufaddr = skb->data; buflen = skb_headlen(skb); queue = skb_get_queue_mapping(skb); index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); if (((unsigned long) bufaddr) & fep->tx_align || fep->quirks & FEC_QUIRK_SWAP_FRAME) { memcpy(txq->tx_bounce[index], skb->data, buflen); bufaddr = txq->tx_bounce[index]; if (fep->quirks & FEC_QUIRK_SWAP_FRAME) swap_buffer(bufaddr, buflen); } /* Push the data cache so the CPM does not get stale memory data. */ addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); if (dma_mapping_error(&fep->pdev->dev, addr)) { dev_kfree_skb_any(skb); if (net_ratelimit()) netdev_err(ndev, "Tx DMA memory map failed\n"); return NETDEV_TX_OK; } if (nr_frags) { last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); if (IS_ERR(last_bdp)) return NETDEV_TX_OK; } else { status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); if (fep->bufdesc_ex) { estatus = BD_ENET_TX_INT; if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && fep->hwts_tx_en)) estatus |= BD_ENET_TX_TS; } } if (fep->bufdesc_ex) { struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && fep->hwts_tx_en)) skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; if (fep->quirks & FEC_QUIRK_HAS_AVB) estatus |= FEC_TX_BD_FTYPE(queue); if (skb->ip_summed == CHECKSUM_PARTIAL) estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; ebdp->cbd_bdu = 0; ebdp->cbd_esc = estatus; } index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep); /* Save skb pointer */ txq->tx_skbuff[index] = skb; bdp->cbd_datlen = buflen; bdp->cbd_bufaddr = addr; /* Send it on its way. Tell FEC it's ready, interrupt when done, * it's the last BD of the frame, and to put the CRC on the end. */ status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); bdp->cbd_sc = status; /* If this was the last BD in the ring, start at the beginning again. */ bdp = fec_enet_get_nextdesc(last_bdp, fep, queue); skb_tx_timestamp(skb); /* Make sure the update to bdp and tx_skbuff are performed before * cur_tx. */ wmb(); txq->cur_tx = bdp; /* Trigger transmission start */ writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue)); return 0; } static int fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev, struct bufdesc *bdp, int index, char *data, int size, bool last_tcp, bool is_last) { struct fec_enet_private *fep = netdev_priv(ndev); struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); unsigned short queue = skb_get_queue_mapping(skb); unsigned short status; unsigned int estatus = 0; dma_addr_t addr; status = bdp->cbd_sc; status &= ~BD_ENET_TX_STATS; status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); if (((unsigned long) data) & fep->tx_align || fep->quirks & FEC_QUIRK_SWAP_FRAME) { memcpy(txq->tx_bounce[index], data, size); data = txq->tx_bounce[index]; if (fep->quirks & FEC_QUIRK_SWAP_FRAME) swap_buffer(data, size); } addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); if (dma_mapping_error(&fep->pdev->dev, addr)) { dev_kfree_skb_any(skb); if (net_ratelimit()) netdev_err(ndev, "Tx DMA memory map failed\n"); return NETDEV_TX_BUSY; } bdp->cbd_datlen = size; bdp->cbd_bufaddr = addr; if (fep->bufdesc_ex) { if (fep->quirks & FEC_QUIRK_HAS_AVB) estatus |= FEC_TX_BD_FTYPE(queue); if (skb->ip_summed == CHECKSUM_PARTIAL) estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; ebdp->cbd_bdu = 0; ebdp->cbd_esc = estatus; } /* Handle the last BD specially */ if (last_tcp) status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); if (is_last) { status |= BD_ENET_TX_INTR; if (fep->bufdesc_ex) ebdp->cbd_esc |= BD_ENET_TX_INT; } bdp->cbd_sc = status; return 0; } static int fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev, struct bufdesc *bdp, int index) { struct fec_enet_private *fep = netdev_priv(ndev); int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); unsigned short queue = skb_get_queue_mapping(skb); void *bufaddr; unsigned long dmabuf; unsigned short status; unsigned int estatus = 0; status = bdp->cbd_sc; status &= ~BD_ENET_TX_STATS; status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; if (((unsigned long)bufaddr) & fep->tx_align || fep->quirks & FEC_QUIRK_SWAP_FRAME) { memcpy(txq->tx_bounce[index], skb->data, hdr_len); bufaddr = txq->tx_bounce[index]; if (fep->quirks & FEC_QUIRK_SWAP_FRAME) swap_buffer(bufaddr, hdr_len); dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, hdr_len, DMA_TO_DEVICE); if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { dev_kfree_skb_any(skb); if (net_ratelimit()) netdev_err(ndev, "Tx DMA memory map failed\n"); return NETDEV_TX_BUSY; } } bdp->cbd_bufaddr = dmabuf; bdp->cbd_datlen = hdr_len; if (fep->bufdesc_ex) { if (fep->quirks & FEC_QUIRK_HAS_AVB) estatus |= FEC_TX_BD_FTYPE(queue); if (skb->ip_summed == CHECKSUM_PARTIAL) estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; ebdp->cbd_bdu = 0; ebdp->cbd_esc = estatus; } bdp->cbd_sc = status; return 0; } static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); int total_len, data_left; struct bufdesc *bdp = txq->cur_tx; unsigned short queue = skb_get_queue_mapping(skb); struct tso_t tso; unsigned int index = 0; int ret; if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) { dev_kfree_skb_any(skb); if (net_ratelimit()) netdev_err(ndev, "NOT enough BD for TSO!\n"); return NETDEV_TX_OK; } /* Protocol checksum off-load for TCP and UDP. */ if (fec_enet_clear_csum(skb, ndev)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* Initialize the TSO handler, and prepare the first payload */ tso_start(skb, &tso); total_len = skb->len - hdr_len; while (total_len > 0) { char *hdr; index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); total_len -= data_left; /* prepare packet headers: MAC + IP + TCP */ hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); if (ret) goto err_release; while (data_left > 0) { int size; size = min_t(int, tso.size, data_left); bdp = fec_enet_get_nextdesc(bdp, fep, queue); index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); ret = fec_enet_txq_put_data_tso(txq, skb, ndev, bdp, index, tso.data, size, size == data_left, total_len == 0); if (ret) goto err_release; data_left -= size; tso_build_data(skb, &tso, size); } bdp = fec_enet_get_nextdesc(bdp, fep, queue); } /* Save skb pointer */ txq->tx_skbuff[index] = skb; skb_tx_timestamp(skb); txq->cur_tx = bdp; /* Trigger transmission start */ if (!(fep->quirks & FEC_QUIRK_ERR007885) || !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) || !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) || !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) || !readl(fep->hwp + FEC_X_DES_ACTIVE(queue))) writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue)); return 0; err_release: /* TODO: Release all used data descriptors for TSO */ return ret; } static netdev_tx_t fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); int entries_free; unsigned short queue; struct fec_enet_priv_tx_q *txq; struct netdev_queue *nq; int ret; queue = skb_get_queue_mapping(skb); txq = fep->tx_queue[queue]; nq = netdev_get_tx_queue(ndev, queue); if (skb_is_gso(skb)) ret = fec_enet_txq_submit_tso(txq, skb, ndev); else ret = fec_enet_txq_submit_skb(txq, skb, ndev); if (ret) return ret; entries_free = fec_enet_get_free_txdesc_num(fep, txq); if (entries_free <= txq->tx_stop_threshold) netif_tx_stop_queue(nq); return NETDEV_TX_OK; } /* Init RX & TX buffer descriptors */ static void fec_enet_bd_init(struct net_device *dev) { struct fec_enet_private *fep = netdev_priv(dev); struct fec_enet_priv_tx_q *txq; struct fec_enet_priv_rx_q *rxq; struct bufdesc *bdp; unsigned int i; unsigned int q; for (q = 0; q < fep->num_rx_queues; q++) { /* Initialize the receive buffer descriptors. */ rxq = fep->rx_queue[q]; bdp = rxq->rx_bd_base; for (i = 0; i < rxq->rx_ring_size; i++) { /* Initialize the BD for every fragment in the page. */ if (bdp->cbd_bufaddr) bdp->cbd_sc = BD_ENET_RX_EMPTY; else bdp->cbd_sc = 0; bdp = fec_enet_get_nextdesc(bdp, fep, q); } /* Set the last buffer to wrap */ bdp = fec_enet_get_prevdesc(bdp, fep, q); bdp->cbd_sc |= BD_SC_WRAP; rxq->cur_rx = rxq->rx_bd_base; } for (q = 0; q < fep->num_tx_queues; q++) { /* ...and the same for transmit */ txq = fep->tx_queue[q]; bdp = txq->tx_bd_base; txq->cur_tx = bdp; for (i = 0; i < txq->tx_ring_size; i++) { /* Initialize the BD for every fragment in the page. */ bdp->cbd_sc = 0; if (txq->tx_skbuff[i]) { dev_kfree_skb_any(txq->tx_skbuff[i]); txq->tx_skbuff[i] = NULL; } bdp->cbd_bufaddr = 0; bdp = fec_enet_get_nextdesc(bdp, fep, q); } /* Set the last buffer to wrap */ bdp = fec_enet_get_prevdesc(bdp, fep, q); bdp->cbd_sc |= BD_SC_WRAP; txq->dirty_tx = bdp; } } static void fec_enet_active_rxring(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); int i; for (i = 0; i < fep->num_rx_queues; i++) writel(0, fep->hwp + FEC_R_DES_ACTIVE(i)); } static void fec_enet_enable_ring(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct fec_enet_priv_tx_q *txq; struct fec_enet_priv_rx_q *rxq; int i; for (i = 0; i < fep->num_rx_queues; i++) { rxq = fep->rx_queue[i]; writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i)); writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); /* enable DMA1/2 */ if (i) writel(RCMR_MATCHEN | RCMR_CMP(i), fep->hwp + FEC_RCMR(i)); } for (i = 0; i < fep->num_tx_queues; i++) { txq = fep->tx_queue[i]; writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i)); /* enable DMA1/2 */ if (i) writel(DMA_CLASS_EN | IDLE_SLOPE(i), fep->hwp + FEC_DMA_CFG(i)); } } static void fec_enet_reset_skb(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct fec_enet_priv_tx_q *txq; int i, j; for (i = 0; i < fep->num_tx_queues; i++) { txq = fep->tx_queue[i]; for (j = 0; j < txq->tx_ring_size; j++) { if (txq->tx_skbuff[j]) { dev_kfree_skb_any(txq->tx_skbuff[j]); txq->tx_skbuff[j] = NULL; } } } } /* * This function is called to start or restart the FEC during a link * change, transmit timeout, or to reconfigure the FEC. The network * packet processing for this device must be stopped before this call. */ static void fec_restart(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); u32 val; u32 temp_mac[2]; u32 rcntl = OPT_FRAME_SIZE | 0x04; u32 ecntl = 0x2; /* ETHEREN */ /* Whack a reset. We should wait for this. * For i.MX6SX SOC, enet use AXI bus, we use disable MAC * instead of reset MAC itself. */ if (fep->quirks & FEC_QUIRK_HAS_AVB) { writel(0, fep->hwp + FEC_ECNTRL); } else { writel(1, fep->hwp + FEC_ECNTRL); udelay(10); } /* * enet-mac reset will reset mac address registers too, * so need to reconfigure it. */ if (fep->quirks & FEC_QUIRK_ENET_MAC) { memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW); writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH); } /* Clear any outstanding interrupt. */ writel(0xffffffff, fep->hwp + FEC_IEVENT); fec_enet_bd_init(ndev); fec_enet_enable_ring(ndev); /* Reset tx SKB buffers. */ fec_enet_reset_skb(ndev); /* Enable MII mode */ if (fep->full_duplex == DUPLEX_FULL) { /* FD enable */ writel(0x04, fep->hwp + FEC_X_CNTRL); } else { /* No Rcv on Xmit */ rcntl |= 0x02; writel(0x0, fep->hwp + FEC_X_CNTRL); } /* Set MII speed */ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); #if !defined(CONFIG_M5272) if (fep->quirks & FEC_QUIRK_HAS_RACC) { /* set RX checksum */ val = readl(fep->hwp + FEC_RACC); if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) val |= FEC_RACC_OPTIONS; else val &= ~FEC_RACC_OPTIONS; writel(val, fep->hwp + FEC_RACC); } #endif /* * The phy interface and speed need to get configured * differently on enet-mac. */ if (fep->quirks & FEC_QUIRK_ENET_MAC) { /* Enable flow control and length check */ rcntl |= 0x40000000 | 0x00000020; /* RGMII, RMII or MII */ if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) rcntl |= (1 << 6); else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) rcntl |= (1 << 8); else rcntl &= ~(1 << 8); /* 1G, 100M or 10M */ if (fep->phy_dev) { if (fep->phy_dev->speed == SPEED_1000) ecntl |= (1 << 5); else if (fep->phy_dev->speed == SPEED_100) rcntl &= ~(1 << 9); else rcntl |= (1 << 9); } } else { #ifdef FEC_MIIGSK_ENR if (fep->quirks & FEC_QUIRK_USE_GASKET) { u32 cfgr; /* disable the gasket and wait */ writel(0, fep->hwp + FEC_MIIGSK_ENR); while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) udelay(1); /* * configure the gasket: * RMII, 50 MHz, no loopback, no echo * MII, 25 MHz, no loopback, no echo */ cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; if (fep->phy_dev && fep->phy_dev->speed == SPEED_10) cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); /* re-enable the gasket */ writel(2, fep->hwp + FEC_MIIGSK_ENR); } #endif } #if !defined(CONFIG_M5272) /* enable pause frame*/ if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && fep->phy_dev && fep->phy_dev->pause)) { rcntl |= FEC_ENET_FCE; /* set FIFO threshold parameter to reduce overrun */ writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); /* OPD */ writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); } else { rcntl &= ~FEC_ENET_FCE; } #endif /* !defined(CONFIG_M5272) */ writel(rcntl, fep->hwp + FEC_R_CNTRL); /* Setup multicast filter. */ set_multicast_list(ndev); #ifndef CONFIG_M5272 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); writel(0, fep->hwp + FEC_HASH_TABLE_LOW); #endif if (fep->quirks & FEC_QUIRK_ENET_MAC) { /* enable ENET endian swap */ ecntl |= (1 << 8); /* enable ENET store and forward mode */ writel(1 << 8, fep->hwp + FEC_X_WMRK); } if (fep->bufdesc_ex) ecntl |= (1 << 4); #ifndef CONFIG_M5272 /* Enable the MIB statistic event counters */ writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); #endif /* And last, enable the transmit and receive processing */ writel(ecntl, fep->hwp + FEC_ECNTRL); fec_enet_active_rxring(ndev); if (fep->bufdesc_ex) fec_ptp_start_cyclecounter(ndev); /* Enable interrupts we wish to service */ if (fep->link) writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); else writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); /* Init the interrupt coalescing */ fec_enet_itr_coal_init(ndev); } static void fec_stop(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct fec_platform_data *pdata = fep->pdev->dev.platform_data; u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); u32 val; /* We cannot expect a graceful transmit stop without link !!! */ if (fep->link) { writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ udelay(10); if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) netdev_err(ndev, "Graceful transmit stop did not complete!\n"); } /* Whack a reset. We should wait for this. * For i.MX6SX SOC, enet use AXI bus, we use disable MAC * instead of reset MAC itself. */ if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { if (fep->quirks & FEC_QUIRK_HAS_AVB) { writel(0, fep->hwp + FEC_ECNTRL); } else { writel(1, fep->hwp + FEC_ECNTRL); udelay(10); } writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); } else { writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); val = readl(fep->hwp + FEC_ECNTRL); val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); writel(val, fep->hwp + FEC_ECNTRL); if (pdata && pdata->sleep_mode_enable) pdata->sleep_mode_enable(true); } writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); /* We have to keep ENET enabled to have MII interrupt stay working */ if (fep->quirks & FEC_QUIRK_ENET_MAC && !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { writel(2, fep->hwp + FEC_ECNTRL); writel(rmii_mode, fep->hwp + FEC_R_CNTRL); } } static void fec_timeout(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); fec_dump(ndev); ndev->stats.tx_errors++; schedule_work(&fep->tx_timeout_work); } static void fec_enet_timeout_work(struct work_struct *work) { struct fec_enet_private *fep = container_of(work, struct fec_enet_private, tx_timeout_work); struct net_device *ndev = fep->netdev; rtnl_lock(); if (netif_device_present(ndev) || netif_running(ndev)) { napi_disable(&fep->napi); netif_tx_lock_bh(ndev); fec_restart(ndev); netif_wake_queue(ndev); netif_tx_unlock_bh(ndev); napi_enable(&fep->napi); } rtnl_unlock(); } static void fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, struct skb_shared_hwtstamps *hwtstamps) { unsigned long flags; u64 ns; spin_lock_irqsave(&fep->tmreg_lock, flags); ns = timecounter_cyc2time(&fep->tc, ts); spin_unlock_irqrestore(&fep->tmreg_lock, flags); memset(hwtstamps, 0, sizeof(*hwtstamps)); hwtstamps->hwtstamp = ns_to_ktime(ns); } static void fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) { struct fec_enet_private *fep; struct bufdesc *bdp; unsigned short status; struct sk_buff *skb; struct fec_enet_priv_tx_q *txq; struct netdev_queue *nq; int index = 0; int entries_free; fep = netdev_priv(ndev); queue_id = FEC_ENET_GET_QUQUE(queue_id); txq = fep->tx_queue[queue_id]; /* get next bdp of dirty_tx */ nq = netdev_get_tx_queue(ndev, queue_id); bdp = txq->dirty_tx; /* get next bdp of dirty_tx */ bdp = fec_enet_get_nextdesc(bdp, fep, queue_id); while (bdp != READ_ONCE(txq->cur_tx)) { /* Order the load of cur_tx and cbd_sc */ rmb(); status = READ_ONCE(bdp->cbd_sc); if (status & BD_ENET_TX_READY) break; index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); skb = txq->tx_skbuff[index]; txq->tx_skbuff[index] = NULL; if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr)) dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, bdp->cbd_datlen, DMA_TO_DEVICE); bdp->cbd_bufaddr = 0; if (!skb) { bdp = fec_enet_get_nextdesc(bdp, fep, queue_id); continue; } /* Check for errors. */ if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { ndev->stats.tx_errors++; if (status & BD_ENET_TX_HB) /* No heartbeat */ ndev->stats.tx_heartbeat_errors++; if (status & BD_ENET_TX_LC) /* Late collision */ ndev->stats.tx_window_errors++; if (status & BD_ENET_TX_RL) /* Retrans limit */ ndev->stats.tx_aborted_errors++; if (status & BD_ENET_TX_UN) /* Underrun */ ndev->stats.tx_fifo_errors++; if (status & BD_ENET_TX_CSL) /* Carrier lost */ ndev->stats.tx_carrier_errors++; } else { ndev->stats.tx_packets++; ndev->stats.tx_bytes += skb->len; } if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) && fep->bufdesc_ex) { struct skb_shared_hwtstamps shhwtstamps; struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps); skb_tstamp_tx(skb, &shhwtstamps); } /* Deferred means some collisions occurred during transmit, * but we eventually sent the packet OK. */ if (status & BD_ENET_TX_DEF) ndev->stats.collisions++; /* Free the sk buffer associated with this last transmit */ dev_kfree_skb_any(skb); /* Make sure the update to bdp and tx_skbuff are performed * before dirty_tx */ wmb(); txq->dirty_tx = bdp; /* Update pointer to next buffer descriptor to be transmitted */ bdp = fec_enet_get_nextdesc(bdp, fep, queue_id); /* Since we have freed up a buffer, the ring is no longer full */ if (netif_queue_stopped(ndev)) { entries_free = fec_enet_get_free_txdesc_num(fep, txq); if (entries_free >= txq->tx_wake_threshold) netif_tx_wake_queue(nq); } } /* ERR006538: Keep the transmitter going */ if (bdp != txq->cur_tx && readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0) writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id)); } static void fec_enet_tx(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); u16 queue_id; /* First process class A queue, then Class B and Best Effort queue */ for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) { clear_bit(queue_id, &fep->work_tx); fec_enet_tx_queue(ndev, queue_id); } return; } static int fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) { struct fec_enet_private *fep = netdev_priv(ndev); int off; off = ((unsigned long)skb->data) & fep->rx_align; if (off) skb_reserve(skb, fep->rx_align + 1 - off); bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE); if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) { if (net_ratelimit()) netdev_err(ndev, "Rx DMA memory map failed\n"); return -ENOMEM; } return 0; } static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, struct bufdesc *bdp, u32 length, bool swap) { struct fec_enet_private *fep = netdev_priv(ndev); struct sk_buff *new_skb; if (length > fep->rx_copybreak) return false; new_skb = netdev_alloc_skb(ndev, length); if (!new_skb) return false; dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE); if (!swap) memcpy(new_skb->data, (*skb)->data, length); else swap_buffer2(new_skb->data, (*skb)->data, length); *skb = new_skb; return true; } /* During a receive, the cur_rx points to the current incoming buffer. * When we update through the ring, if the next incoming buffer has * not been given to the system, we just set the empty indicator, * effectively tossing the packet. */ static int fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) { struct fec_enet_private *fep = netdev_priv(ndev); struct fec_enet_priv_rx_q *rxq; struct bufdesc *bdp; unsigned short status; struct sk_buff *skb_new = NULL; struct sk_buff *skb; ushort pkt_len; __u8 *data; int pkt_received = 0; struct bufdesc_ex *ebdp = NULL; bool vlan_packet_rcvd = false; u16 vlan_tag; int index = 0; bool is_copybreak; bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; #ifdef CONFIG_M532x flush_cache_all(); #endif queue_id = FEC_ENET_GET_QUQUE(queue_id); rxq = fep->rx_queue[queue_id]; /* First, grab all of the stats for the incoming packet. * These get messed up if we get called due to a busy condition. */ bdp = rxq->cur_rx; while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { if (pkt_received >= budget) break; pkt_received++; /* Since we have allocated space to hold a complete frame, * the last indicator should be set. */ if ((status & BD_ENET_RX_LAST) == 0) netdev_err(ndev, "rcv is not +last\n"); /* Check for errors. */ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { ndev->stats.rx_errors++; if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { /* Frame too long or too short. */ ndev->stats.rx_length_errors++; } if (status & BD_ENET_RX_NO) /* Frame alignment */ ndev->stats.rx_frame_errors++; if (status & BD_ENET_RX_CR) /* CRC Error */ ndev->stats.rx_crc_errors++; if (status & BD_ENET_RX_OV) /* FIFO overrun */ ndev->stats.rx_fifo_errors++; } /* Report late collisions as a frame error. * On this error, the BD is closed, but we don't know what we * have in the buffer. So, just drop this frame on the floor. */ if (status & BD_ENET_RX_CL) { ndev->stats.rx_errors++; ndev->stats.rx_frame_errors++; goto rx_processing_done; } /* Process the incoming frame. */ ndev->stats.rx_packets++; pkt_len = bdp->cbd_datlen; ndev->stats.rx_bytes += pkt_len; index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep); skb = rxq->rx_skbuff[index]; /* The packet length includes FCS, but we don't want to * include that when passing upstream as it messes up * bridging applications. */ is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, need_swap); if (!is_copybreak) { skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); if (unlikely(!skb_new)) { ndev->stats.rx_dropped++; goto rx_processing_done; } dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE); } prefetch(skb->data - NET_IP_ALIGN); skb_put(skb, pkt_len - 4); data = skb->data; if (!is_copybreak && need_swap) swap_buffer(data, pkt_len); /* Extract the enhanced buffer descriptor */ ebdp = NULL; if (fep->bufdesc_ex) ebdp = (struct bufdesc_ex *)bdp; /* If this is a VLAN packet remove the VLAN Tag */ vlan_packet_rcvd = false; if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) { /* Push and remove the vlan tag */ struct vlan_hdr *vlan_header = (struct vlan_hdr *) (data + ETH_HLEN); vlan_tag = ntohs(vlan_header->h_vlan_TCI); vlan_packet_rcvd = true; memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); skb_pull(skb, VLAN_HLEN); } skb->protocol = eth_type_trans(skb, ndev); /* Get receive timestamp from the skb */ if (fep->hwts_rx_en && fep->bufdesc_ex) fec_enet_hwtstamp(fep, ebdp->ts, skb_hwtstamps(skb)); if (fep->bufdesc_ex && (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) { /* don't check it */ skb->ip_summed = CHECKSUM_UNNECESSARY; } else { skb_checksum_none_assert(skb); } } /* Handle received VLAN packets */ if (vlan_packet_rcvd) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); napi_gro_receive(&fep->napi, skb); if (is_copybreak) { dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE); } else { rxq->rx_skbuff[index] = skb_new; fec_enet_new_rxbdp(ndev, bdp, skb_new); } rx_processing_done: /* Clear the status flags for this buffer */ status &= ~BD_ENET_RX_STATS; /* Mark the buffer empty */ status |= BD_ENET_RX_EMPTY; bdp->cbd_sc = status; if (fep->bufdesc_ex) { struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ebdp->cbd_esc = BD_ENET_RX_INT; ebdp->cbd_prot = 0; ebdp->cbd_bdu = 0; } /* Update BD pointer to next entry */ bdp = fec_enet_get_nextdesc(bdp, fep, queue_id); /* Doing this here will keep the FEC running while we process * incoming frames. On a heavily loaded network, we should be * able to keep up at the expense of system resources. */ writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id)); } rxq->cur_rx = bdp; return pkt_received; } static int fec_enet_rx(struct net_device *ndev, int budget) { int pkt_received = 0; u16 queue_id; struct fec_enet_private *fep = netdev_priv(ndev); for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) { clear_bit(queue_id, &fep->work_rx); pkt_received += fec_enet_rx_queue(ndev, budget - pkt_received, queue_id); } return pkt_received; } static bool fec_enet_collect_events(struct fec_enet_private *fep, uint int_events) { if (int_events == 0) return false; if (int_events & FEC_ENET_RXF) fep->work_rx |= (1 << 2); if (int_events & FEC_ENET_RXF_1) fep->work_rx |= (1 << 0); if (int_events & FEC_ENET_RXF_2) fep->work_rx |= (1 << 1); if (int_events & FEC_ENET_TXF) fep->work_tx |= (1 << 2); if (int_events & FEC_ENET_TXF_1) fep->work_tx |= (1 << 0); if (int_events & FEC_ENET_TXF_2) fep->work_tx |= (1 << 1); return true; } static irqreturn_t fec_enet_interrupt(int irq, void *dev_id) { struct net_device *ndev = dev_id; struct fec_enet_private *fep = netdev_priv(ndev); uint int_events; irqreturn_t ret = IRQ_NONE; int_events = readl(fep->hwp + FEC_IEVENT); writel(int_events, fep->hwp + FEC_IEVENT); fec_enet_collect_events(fep, int_events); if ((fep->work_tx || fep->work_rx) && fep->link) { ret = IRQ_HANDLED; if (napi_schedule_prep(&fep->napi)) { /* Disable the NAPI interrupts */ writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); __napi_schedule(&fep->napi); } } if (int_events & FEC_ENET_MII) { ret = IRQ_HANDLED; complete(&fep->mdio_done); } if (fep->ptp_clock) fec_ptp_check_pps_event(fep); return ret; } static int fec_enet_rx_napi(struct napi_struct *napi, int budget) { struct net_device *ndev = napi->dev; struct fec_enet_private *fep = netdev_priv(ndev); int pkts; pkts = fec_enet_rx(ndev, budget); fec_enet_tx(ndev); if (pkts < budget) { napi_complete(napi); writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); } return pkts; } /* ------------------------------------------------------------------------- */ static void fec_get_mac(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); unsigned char *iap, tmpaddr[ETH_ALEN]; /* * try to get mac address in following order: * * 1) module parameter via kernel command line in form * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 */ iap = macaddr; /* * 2) from device tree data */ if (!is_valid_ether_addr(iap)) { struct device_node *np = fep->pdev->dev.of_node; if (np) { const char *mac = of_get_mac_address(np); if (mac) iap = (unsigned char *) mac; } } /* * 3) from flash or fuse (via platform data) */ if (!is_valid_ether_addr(iap)) { #ifdef CONFIG_M5272 if (FEC_FLASHMAC) iap = (unsigned char *)FEC_FLASHMAC; #else if (pdata) iap = (unsigned char *)&pdata->mac; #endif } /* * 4) FEC mac registers set by bootloader */ if (!is_valid_ether_addr(iap)) { *((__be32 *) &tmpaddr[0]) = cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); *((__be16 *) &tmpaddr[4]) = cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); iap = &tmpaddr[0]; } /* * 5) random mac address */ if (!is_valid_ether_addr(iap)) { /* Report it and use a random ethernet address instead */ netdev_err(ndev, "Invalid MAC address: %pM\n", iap); eth_hw_addr_random(ndev); netdev_info(ndev, "Using random MAC address: %pM\n", ndev->dev_addr); return; } memcpy(ndev->dev_addr, iap, ETH_ALEN); /* Adjust MAC if using macaddr */ if (iap == macaddr) ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; } /* ------------------------------------------------------------------------- */ /* * Phy section */ static void fec_enet_adjust_link(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phy_dev = fep->phy_dev; int status_change = 0; /* Prevent a state halted on mii error */ if (fep->mii_timeout && phy_dev->state == PHY_HALTED) { phy_dev->state = PHY_RESUMING; return; } /* * If the netdev is down, or is going down, we're not interested * in link state events, so just mark our idea of the link as down * and ignore the event. */ if (!netif_running(ndev) || !netif_device_present(ndev)) { fep->link = 0; } else if (phy_dev->link) { if (!fep->link) { fep->link = phy_dev->link; status_change = 1; } if (fep->full_duplex != phy_dev->duplex) { fep->full_duplex = phy_dev->duplex; status_change = 1; } if (phy_dev->speed != fep->speed) { fep->speed = phy_dev->speed; status_change = 1; } /* if any of the above changed restart the FEC */ if (status_change) { napi_disable(&fep->napi); netif_tx_lock_bh(ndev); fec_restart(ndev); netif_wake_queue(ndev); netif_tx_unlock_bh(ndev); napi_enable(&fep->napi); } } else { if (fep->link) { napi_disable(&fep->napi); netif_tx_lock_bh(ndev); fec_stop(ndev); netif_tx_unlock_bh(ndev); napi_enable(&fep->napi); fep->link = phy_dev->link; status_change = 1; } } if (status_change) phy_print_status(phy_dev); } static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) { struct fec_enet_private *fep = bus->priv; struct device *dev = &fep->pdev->dev; unsigned long time_left; int ret = 0; ret = pm_runtime_get_sync(dev); if (ret < 0) return ret; fep->mii_timeout = 0; reinit_completion(&fep->mdio_done); /* start a read op */ writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); /* wait for end of transfer */ time_left = wait_for_completion_timeout(&fep->mdio_done, usecs_to_jiffies(FEC_MII_TIMEOUT)); if (time_left == 0) { fep->mii_timeout = 1; netdev_err(fep->netdev, "MDIO read timeout\n"); ret = -ETIMEDOUT; goto out; } ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); out: pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 value) { struct fec_enet_private *fep = bus->priv; struct device *dev = &fep->pdev->dev; unsigned long time_left; int ret = 0; ret = pm_runtime_get_sync(dev); if (ret < 0) return ret; fep->mii_timeout = 0; reinit_completion(&fep->mdio_done); /* start a write op */ writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE | FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | FEC_MMFR_TA | FEC_MMFR_DATA(value), fep->hwp + FEC_MII_DATA); /* wait for end of transfer */ time_left = wait_for_completion_timeout(&fep->mdio_done, usecs_to_jiffies(FEC_MII_TIMEOUT)); if (time_left == 0) { fep->mii_timeout = 1; netdev_err(fep->netdev, "MDIO write timeout\n"); ret = -ETIMEDOUT; } pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } static int fec_enet_clk_enable(struct net_device *ndev, bool enable) { struct fec_enet_private *fep = netdev_priv(ndev); int ret; if (enable) { ret = clk_prepare_enable(fep->clk_ahb); if (ret) return ret; if (fep->clk_enet_out) { ret = clk_prepare_enable(fep->clk_enet_out); if (ret) goto failed_clk_enet_out; } if (fep->clk_ptp) { mutex_lock(&fep->ptp_clk_mutex); ret = clk_prepare_enable(fep->clk_ptp); if (ret) { mutex_unlock(&fep->ptp_clk_mutex); goto failed_clk_ptp; } else { fep->ptp_clk_on = true; } mutex_unlock(&fep->ptp_clk_mutex); } if (fep->clk_ref) { ret = clk_prepare_enable(fep->clk_ref); if (ret) goto failed_clk_ref; } } else { clk_disable_unprepare(fep->clk_ahb); if (fep->clk_enet_out) clk_disable_unprepare(fep->clk_enet_out); if (fep->clk_ptp) { mutex_lock(&fep->ptp_clk_mutex); clk_disable_unprepare(fep->clk_ptp); fep->ptp_clk_on = false; mutex_unlock(&fep->ptp_clk_mutex); } if (fep->clk_ref) clk_disable_unprepare(fep->clk_ref); } return 0; failed_clk_ref: if (fep->clk_ref) clk_disable_unprepare(fep->clk_ref); failed_clk_ptp: if (fep->clk_enet_out) clk_disable_unprepare(fep->clk_enet_out); failed_clk_enet_out: clk_disable_unprepare(fep->clk_ahb); return ret; } static int fec_enet_mii_probe(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phy_dev = NULL; char mdio_bus_id[MII_BUS_ID_SIZE]; char phy_name[MII_BUS_ID_SIZE + 3]; int phy_id; int dev_id = fep->dev_id; fep->phy_dev = NULL; if (fep->phy_node) { phy_dev = of_phy_connect(ndev, fep->phy_node, &fec_enet_adjust_link, 0, fep->phy_interface); if (!phy_dev) return -ENODEV; } else { /* check for attached phy */ for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { if ((fep->mii_bus->phy_mask & (1 << phy_id))) continue; if (fep->mii_bus->phy_map[phy_id] == NULL) continue; if (fep->mii_bus->phy_map[phy_id]->phy_id == 0) continue; if (dev_id--) continue; strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); break; } if (phy_id >= PHY_MAX_ADDR) { netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); phy_id = 0; } snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id); phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, fep->phy_interface); } if (IS_ERR(phy_dev)) { netdev_err(ndev, "could not attach to PHY\n"); return PTR_ERR(phy_dev); } /* mask with MAC supported features */ if (fep->quirks & FEC_QUIRK_HAS_GBIT) { phy_dev->supported &= PHY_GBIT_FEATURES; phy_dev->supported &= ~SUPPORTED_1000baseT_Half; #if !defined(CONFIG_M5272) phy_dev->supported |= SUPPORTED_Pause; #endif } else phy_dev->supported &= PHY_BASIC_FEATURES; phy_dev->advertising = phy_dev->supported; fep->phy_dev = phy_dev; fep->link = 0; fep->full_duplex = 0; netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n", fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev), fep->phy_dev->irq); return 0; } static int fec_enet_mii_init(struct platform_device *pdev) { static struct mii_bus *fec0_mii_bus; struct net_device *ndev = platform_get_drvdata(pdev); struct fec_enet_private *fep = netdev_priv(ndev); struct device_node *node; int err = -ENXIO, i; u32 mii_speed, holdtime; /* * The i.MX28 dual fec interfaces are not equal. * Here are the differences: * * - fec0 supports MII & RMII modes while fec1 only supports RMII * - fec0 acts as the 1588 time master while fec1 is slave * - external phys can only be configured by fec0 * * That is to say fec1 can not work independently. It only works * when fec0 is working. The reason behind this design is that the * second interface is added primarily for Switch mode. * * Because of the last point above, both phys are attached on fec0 * mdio interface in board design, and need to be configured by * fec0 mii_bus. */ if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { /* fec1 uses fec0 mii_bus */ if (mii_cnt && fec0_mii_bus) { fep->mii_bus = fec0_mii_bus; mii_cnt++; return 0; } return -ENOENT; } fep->mii_timeout = 0; /* * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) * * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 * Reference Manual has an error on this, and gets fixed on i.MX6Q * document. */ mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000); if (fep->quirks & FEC_QUIRK_ENET_MAC) mii_speed--; if (mii_speed > 63) { dev_err(&pdev->dev, "fec clock (%lu) to fast to get right mii speed\n", clk_get_rate(fep->clk_ipg)); err = -EINVAL; goto err_out; } /* * The i.MX28 and i.MX6 types have another filed in the MSCR (aka * MII_SPEED) register that defines the MDIO output hold time. Earlier * versions are RAZ there, so just ignore the difference and write the * register always. * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. * HOLDTIME + 1 is the number of clk cycles the fec is holding the * output. * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). * Given that ceil(clkrate / 5000000) <= 64, the calculation for * holdtime cannot result in a value greater than 3. */ holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; fep->phy_speed = mii_speed << 1 | holdtime << 8; writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); fep->mii_bus = mdiobus_alloc(); if (fep->mii_bus == NULL) { err = -ENOMEM; goto err_out; } fep->mii_bus->name = "fec_enet_mii_bus"; fep->mii_bus->read = fec_enet_mdio_read; fep->mii_bus->write = fec_enet_mdio_write; snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", pdev->name, fep->dev_id + 1); fep->mii_bus->priv = fep; fep->mii_bus->parent = &pdev->dev; fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); if (!fep->mii_bus->irq) { err = -ENOMEM; goto err_out_free_mdiobus; } for (i = 0; i < PHY_MAX_ADDR; i++) fep->mii_bus->irq[i] = PHY_POLL; node = of_get_child_by_name(pdev->dev.of_node, "mdio"); if (node) { err = of_mdiobus_register(fep->mii_bus, node); of_node_put(node); } else { err = mdiobus_register(fep->mii_bus); } if (err) goto err_out_free_mdio_irq; mii_cnt++; /* save fec0 mii_bus */ if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) fec0_mii_bus = fep->mii_bus; return 0; err_out_free_mdio_irq: kfree(fep->mii_bus->irq); err_out_free_mdiobus: mdiobus_free(fep->mii_bus); err_out: return err; } static void fec_enet_mii_remove(struct fec_enet_private *fep) { if (--mii_cnt == 0) { mdiobus_unregister(fep->mii_bus); kfree(fep->mii_bus->irq); mdiobus_free(fep->mii_bus); } } static int fec_enet_get_settings(struct net_device *ndev, struct ethtool_cmd *cmd) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phydev = fep->phy_dev; if (!phydev) return -ENODEV; return phy_ethtool_gset(phydev, cmd); } static int fec_enet_set_settings(struct net_device *ndev, struct ethtool_cmd *cmd) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phydev = fep->phy_dev; if (!phydev) return -ENODEV; return phy_ethtool_sset(phydev, cmd); } static void fec_enet_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info) { struct fec_enet_private *fep = netdev_priv(ndev); strlcpy(info->driver, fep->pdev->dev.driver->name, sizeof(info->driver)); strlcpy(info->version, "Revision: 1.0", sizeof(info->version)); strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); } static int fec_enet_get_regs_len(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct resource *r; int s = 0; r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); if (r) s = resource_size(r); return s; } /* List of registers that can be safety be read to dump them with ethtool */ #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ defined(CONFIG_M520x) || defined(CONFIG_M532x) || \ defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28) static u32 fec_enet_register_offset[] = { FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, RMON_T_P_GTE2048, RMON_T_OCTETS, IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, IEEE_T_FDXFC, IEEE_T_OCTETS_OK, RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, RMON_R_P_GTE2048, RMON_R_OCTETS, IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, IEEE_R_FDXFC, IEEE_R_OCTETS_OK }; #else static u32 fec_enet_register_offset[] = { FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 }; #endif static void fec_enet_get_regs(struct net_device *ndev, struct ethtool_regs *regs, void *regbuf) { struct fec_enet_private *fep = netdev_priv(ndev); u32 __iomem *theregs = (u32 __iomem *)fep->hwp; u32 *buf = (u32 *)regbuf; u32 i, off; memset(buf, 0, regs->len); for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { off = fec_enet_register_offset[i] / 4; buf[off] = readl(&theregs[off]); } } static int fec_enet_get_ts_info(struct net_device *ndev, struct ethtool_ts_info *info) { struct fec_enet_private *fep = netdev_priv(ndev); if (fep->bufdesc_ex) { info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; if (fep->ptp_clock) info->phc_index = ptp_clock_index(fep->ptp_clock); else info->phc_index = -1; info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_ALL); return 0; } else { return ethtool_op_get_ts_info(ndev, info); } } #if !defined(CONFIG_M5272) static void fec_enet_get_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause) { struct fec_enet_private *fep = netdev_priv(ndev); pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; pause->rx_pause = pause->tx_pause; } static int fec_enet_set_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause) { struct fec_enet_private *fep = netdev_priv(ndev); if (!fep->phy_dev) return -ENODEV; if (pause->tx_pause != pause->rx_pause) { netdev_info(ndev, "hardware only support enable/disable both tx and rx"); return -EINVAL; } fep->pause_flag = 0; /* tx pause must be same as rx pause */ fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; if (pause->rx_pause || pause->autoneg) { fep->phy_dev->supported |= ADVERTISED_Pause; fep->phy_dev->advertising |= ADVERTISED_Pause; } else { fep->phy_dev->supported &= ~ADVERTISED_Pause; fep->phy_dev->advertising &= ~ADVERTISED_Pause; } if (pause->autoneg) { if (netif_running(ndev)) fec_stop(ndev); phy_start_aneg(fep->phy_dev); } if (netif_running(ndev)) { napi_disable(&fep->napi); netif_tx_lock_bh(ndev); fec_restart(ndev); netif_wake_queue(ndev); netif_tx_unlock_bh(ndev); napi_enable(&fep->napi); } return 0; } static const struct fec_stat { char name[ETH_GSTRING_LEN]; u16 offset; } fec_stats[] = { /* RMON TX */ { "tx_dropped", RMON_T_DROP }, { "tx_packets", RMON_T_PACKETS }, { "tx_broadcast", RMON_T_BC_PKT }, { "tx_multicast", RMON_T_MC_PKT }, { "tx_crc_errors", RMON_T_CRC_ALIGN }, { "tx_undersize", RMON_T_UNDERSIZE }, { "tx_oversize", RMON_T_OVERSIZE }, { "tx_fragment", RMON_T_FRAG }, { "tx_jabber", RMON_T_JAB }, { "tx_collision", RMON_T_COL }, { "tx_64byte", RMON_T_P64 }, { "tx_65to127byte", RMON_T_P65TO127 }, { "tx_128to255byte", RMON_T_P128TO255 }, { "tx_256to511byte", RMON_T_P256TO511 }, { "tx_512to1023byte", RMON_T_P512TO1023 }, { "tx_1024to2047byte", RMON_T_P1024TO2047 }, { "tx_GTE2048byte", RMON_T_P_GTE2048 }, { "tx_octets", RMON_T_OCTETS }, /* IEEE TX */ { "IEEE_tx_drop", IEEE_T_DROP }, { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, { "IEEE_tx_1col", IEEE_T_1COL }, { "IEEE_tx_mcol", IEEE_T_MCOL }, { "IEEE_tx_def", IEEE_T_DEF }, { "IEEE_tx_lcol", IEEE_T_LCOL }, { "IEEE_tx_excol", IEEE_T_EXCOL }, { "IEEE_tx_macerr", IEEE_T_MACERR }, { "IEEE_tx_cserr", IEEE_T_CSERR }, { "IEEE_tx_sqe", IEEE_T_SQE }, { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, /* RMON RX */ { "rx_packets", RMON_R_PACKETS }, { "rx_broadcast", RMON_R_BC_PKT }, { "rx_multicast", RMON_R_MC_PKT }, { "rx_crc_errors", RMON_R_CRC_ALIGN }, { "rx_undersize", RMON_R_UNDERSIZE }, { "rx_oversize", RMON_R_OVERSIZE }, { "rx_fragment", RMON_R_FRAG }, { "rx_jabber", RMON_R_JAB }, { "rx_64byte", RMON_R_P64 }, { "rx_65to127byte", RMON_R_P65TO127 }, { "rx_128to255byte", RMON_R_P128TO255 }, { "rx_256to511byte", RMON_R_P256TO511 }, { "rx_512to1023byte", RMON_R_P512TO1023 }, { "rx_1024to2047byte", RMON_R_P1024TO2047 }, { "rx_GTE2048byte", RMON_R_P_GTE2048 }, { "rx_octets", RMON_R_OCTETS }, /* IEEE RX */ { "IEEE_rx_drop", IEEE_R_DROP }, { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, { "IEEE_rx_crc", IEEE_R_CRC }, { "IEEE_rx_align", IEEE_R_ALIGN }, { "IEEE_rx_macerr", IEEE_R_MACERR }, { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, }; static void fec_enet_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct fec_enet_private *fep = netdev_priv(dev); int i; for (i = 0; i < ARRAY_SIZE(fec_stats); i++) data[i] = readl(fep->hwp + fec_stats[i].offset); } static void fec_enet_get_strings(struct net_device *netdev, u32 stringset, u8 *data) { int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < ARRAY_SIZE(fec_stats); i++) memcpy(data + i * ETH_GSTRING_LEN, fec_stats[i].name, ETH_GSTRING_LEN); break; } } static int fec_enet_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(fec_stats); default: return -EOPNOTSUPP; } } #endif /* !defined(CONFIG_M5272) */ static int fec_enet_nway_reset(struct net_device *dev) { struct fec_enet_private *fep = netdev_priv(dev); struct phy_device *phydev = fep->phy_dev; if (!phydev) return -ENODEV; return genphy_restart_aneg(phydev); } /* ITR clock source is enet system clock (clk_ahb). * TCTT unit is cycle_ns * 64 cycle * So, the ICTT value = X us / (cycle_ns * 64) */ static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) { struct fec_enet_private *fep = netdev_priv(ndev); return us * (fep->itr_clk_rate / 64000) / 1000; } /* Set threshold for interrupt coalescing */ static void fec_enet_itr_coal_set(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); int rx_itr, tx_itr; if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) return; /* Must be greater than zero to avoid unpredictable behavior */ if (!fep->rx_time_itr || !fep->rx_pkts_itr || !fep->tx_time_itr || !fep->tx_pkts_itr) return; /* Select enet system clock as Interrupt Coalescing * timer Clock Source */ rx_itr = FEC_ITR_CLK_SEL; tx_itr = FEC_ITR_CLK_SEL; /* set ICFT and ICTT */ rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); rx_itr |= FEC_ITR_EN; tx_itr |= FEC_ITR_EN; writel(tx_itr, fep->hwp + FEC_TXIC0); writel(rx_itr, fep->hwp + FEC_RXIC0); writel(tx_itr, fep->hwp + FEC_TXIC1); writel(rx_itr, fep->hwp + FEC_RXIC1); writel(tx_itr, fep->hwp + FEC_TXIC2); writel(rx_itr, fep->hwp + FEC_RXIC2); } static int fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) { struct fec_enet_private *fep = netdev_priv(ndev); if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) return -EOPNOTSUPP; ec->rx_coalesce_usecs = fep->rx_time_itr; ec->rx_max_coalesced_frames = fep->rx_pkts_itr; ec->tx_coalesce_usecs = fep->tx_time_itr; ec->tx_max_coalesced_frames = fep->tx_pkts_itr; return 0; } static int fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) { struct fec_enet_private *fep = netdev_priv(ndev); unsigned int cycle; if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) return -EOPNOTSUPP; if (ec->rx_max_coalesced_frames > 255) { pr_err("Rx coalesced frames exceed hardware limiation"); return -EINVAL; } if (ec->tx_max_coalesced_frames > 255) { pr_err("Tx coalesced frame exceed hardware limiation"); return -EINVAL; } cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr); if (cycle > 0xFFFF) { pr_err("Rx coalesed usec exceeed hardware limiation"); return -EINVAL; } cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr); if (cycle > 0xFFFF) { pr_err("Rx coalesed usec exceeed hardware limiation"); return -EINVAL; } fep->rx_time_itr = ec->rx_coalesce_usecs; fep->rx_pkts_itr = ec->rx_max_coalesced_frames; fep->tx_time_itr = ec->tx_coalesce_usecs; fep->tx_pkts_itr = ec->tx_max_coalesced_frames; fec_enet_itr_coal_set(ndev); return 0; } static void fec_enet_itr_coal_init(struct net_device *ndev) { struct ethtool_coalesce ec; ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; fec_enet_set_coalesce(ndev, &ec); } static int fec_enet_get_tunable(struct net_device *netdev, const struct ethtool_tunable *tuna, void *data) { struct fec_enet_private *fep = netdev_priv(netdev); int ret = 0; switch (tuna->id) { case ETHTOOL_RX_COPYBREAK: *(u32 *)data = fep->rx_copybreak; break; default: ret = -EINVAL; break; } return ret; } static int fec_enet_set_tunable(struct net_device *netdev, const struct ethtool_tunable *tuna, const void *data) { struct fec_enet_private *fep = netdev_priv(netdev); int ret = 0; switch (tuna->id) { case ETHTOOL_RX_COPYBREAK: fep->rx_copybreak = *(u32 *)data; break; default: ret = -EINVAL; break; } return ret; } static void fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { struct fec_enet_private *fep = netdev_priv(ndev); if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { wol->supported = WAKE_MAGIC; wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; } else { wol->supported = wol->wolopts = 0; } } static int fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { struct fec_enet_private *fep = netdev_priv(ndev); if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) return -EINVAL; if (wol->wolopts & ~WAKE_MAGIC) return -EINVAL; device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); if (device_may_wakeup(&ndev->dev)) { fep->wol_flag |= FEC_WOL_FLAG_ENABLE; if (fep->irq[0] > 0) enable_irq_wake(fep->irq[0]); } else { fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); if (fep->irq[0] > 0) disable_irq_wake(fep->irq[0]); } return 0; } static const struct ethtool_ops fec_enet_ethtool_ops = { .get_settings = fec_enet_get_settings, .set_settings = fec_enet_set_settings, .get_drvinfo = fec_enet_get_drvinfo, .get_regs_len = fec_enet_get_regs_len, .get_regs = fec_enet_get_regs, .nway_reset = fec_enet_nway_reset, .get_link = ethtool_op_get_link, .get_coalesce = fec_enet_get_coalesce, .set_coalesce = fec_enet_set_coalesce, #ifndef CONFIG_M5272 .get_pauseparam = fec_enet_get_pauseparam, .set_pauseparam = fec_enet_set_pauseparam, .get_strings = fec_enet_get_strings, .get_ethtool_stats = fec_enet_get_ethtool_stats, .get_sset_count = fec_enet_get_sset_count, #endif .get_ts_info = fec_enet_get_ts_info, .get_tunable = fec_enet_get_tunable, .set_tunable = fec_enet_set_tunable, .get_wol = fec_enet_get_wol, .set_wol = fec_enet_set_wol, }; static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phydev = fep->phy_dev; if (!netif_running(ndev)) return -EINVAL; if (!phydev) return -ENODEV; if (fep->bufdesc_ex) { if (cmd == SIOCSHWTSTAMP) return fec_ptp_set(ndev, rq); if (cmd == SIOCGHWTSTAMP) return fec_ptp_get(ndev, rq); } return phy_mii_ioctl(phydev, rq, cmd); } static void fec_enet_free_buffers(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); unsigned int i; struct sk_buff *skb; struct bufdesc *bdp; struct fec_enet_priv_tx_q *txq; struct fec_enet_priv_rx_q *rxq; unsigned int q; for (q = 0; q < fep->num_rx_queues; q++) { rxq = fep->rx_queue[q]; bdp = rxq->rx_bd_base; for (i = 0; i < rxq->rx_ring_size; i++) { skb = rxq->rx_skbuff[i]; rxq->rx_skbuff[i] = NULL; if (skb) { dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE); dev_kfree_skb(skb); } bdp = fec_enet_get_nextdesc(bdp, fep, q); } } for (q = 0; q < fep->num_tx_queues; q++) { txq = fep->tx_queue[q]; bdp = txq->tx_bd_base; for (i = 0; i < txq->tx_ring_size; i++) { kfree(txq->tx_bounce[i]); txq->tx_bounce[i] = NULL; skb = txq->tx_skbuff[i]; txq->tx_skbuff[i] = NULL; dev_kfree_skb(skb); } } } static void fec_enet_free_queue(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); int i; struct fec_enet_priv_tx_q *txq; for (i = 0; i < fep->num_tx_queues; i++) if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { txq = fep->tx_queue[i]; dma_free_coherent(NULL, txq->tx_ring_size * TSO_HEADER_SIZE, txq->tso_hdrs, txq->tso_hdrs_dma); } for (i = 0; i < fep->num_rx_queues; i++) kfree(fep->rx_queue[i]); for (i = 0; i < fep->num_tx_queues; i++) kfree(fep->tx_queue[i]); } static int fec_enet_alloc_queue(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); int i; int ret = 0; struct fec_enet_priv_tx_q *txq; for (i = 0; i < fep->num_tx_queues; i++) { txq = kzalloc(sizeof(*txq), GFP_KERNEL); if (!txq) { ret = -ENOMEM; goto alloc_failed; } fep->tx_queue[i] = txq; txq->tx_ring_size = TX_RING_SIZE; fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size; txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; txq->tx_wake_threshold = (txq->tx_ring_size - txq->tx_stop_threshold) / 2; txq->tso_hdrs = dma_alloc_coherent(NULL, txq->tx_ring_size * TSO_HEADER_SIZE, &txq->tso_hdrs_dma, GFP_KERNEL); if (!txq->tso_hdrs) { ret = -ENOMEM; goto alloc_failed; } } for (i = 0; i < fep->num_rx_queues; i++) { fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), GFP_KERNEL); if (!fep->rx_queue[i]) { ret = -ENOMEM; goto alloc_failed; } fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE; fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size; } return ret; alloc_failed: fec_enet_free_queue(ndev); return ret; } static int fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) { struct fec_enet_private *fep = netdev_priv(ndev); unsigned int i; struct sk_buff *skb; struct bufdesc *bdp; struct fec_enet_priv_rx_q *rxq; rxq = fep->rx_queue[queue]; bdp = rxq->rx_bd_base; for (i = 0; i < rxq->rx_ring_size; i++) { skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); if (!skb) goto err_alloc; if (fec_enet_new_rxbdp(ndev, bdp, skb)) { dev_kfree_skb(skb); goto err_alloc; } rxq->rx_skbuff[i] = skb; bdp->cbd_sc = BD_ENET_RX_EMPTY; if (fep->bufdesc_ex) { struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ebdp->cbd_esc = BD_ENET_RX_INT; } bdp = fec_enet_get_nextdesc(bdp, fep, queue); } /* Set the last buffer to wrap. */ bdp = fec_enet_get_prevdesc(bdp, fep, queue); bdp->cbd_sc |= BD_SC_WRAP; return 0; err_alloc: fec_enet_free_buffers(ndev); return -ENOMEM; } static int fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) { struct fec_enet_private *fep = netdev_priv(ndev); unsigned int i; struct bufdesc *bdp; struct fec_enet_priv_tx_q *txq; txq = fep->tx_queue[queue]; bdp = txq->tx_bd_base; for (i = 0; i < txq->tx_ring_size; i++) { txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); if (!txq->tx_bounce[i]) goto err_alloc; bdp->cbd_sc = 0; bdp->cbd_bufaddr = 0; if (fep->bufdesc_ex) { struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ebdp->cbd_esc = BD_ENET_TX_INT; } bdp = fec_enet_get_nextdesc(bdp, fep, queue); } /* Set the last buffer to wrap. */ bdp = fec_enet_get_prevdesc(bdp, fep, queue); bdp->cbd_sc |= BD_SC_WRAP; return 0; err_alloc: fec_enet_free_buffers(ndev); return -ENOMEM; } static int fec_enet_alloc_buffers(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); unsigned int i; for (i = 0; i < fep->num_rx_queues; i++) if (fec_enet_alloc_rxq_buffers(ndev, i)) return -ENOMEM; for (i = 0; i < fep->num_tx_queues; i++) if (fec_enet_alloc_txq_buffers(ndev, i)) return -ENOMEM; return 0; } static int fec_enet_open(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); int ret; ret = pm_runtime_get_sync(&fep->pdev->dev); if (ret < 0) return ret; pinctrl_pm_select_default_state(&fep->pdev->dev); ret = fec_enet_clk_enable(ndev, true); if (ret) goto clk_enable; /* I should reset the ring buffers here, but I don't yet know * a simple way to do that. */ ret = fec_enet_alloc_buffers(ndev); if (ret) goto err_enet_alloc; /* Init MAC prior to mii bus probe */ fec_restart(ndev); /* Probe and connect to PHY when open the interface */ ret = fec_enet_mii_probe(ndev); if (ret) goto err_enet_mii_probe; napi_enable(&fep->napi); phy_start(fep->phy_dev); netif_tx_start_all_queues(ndev); device_set_wakeup_enable(&ndev->dev, fep->wol_flag & FEC_WOL_FLAG_ENABLE); return 0; err_enet_mii_probe: fec_enet_free_buffers(ndev); err_enet_alloc: fec_enet_clk_enable(ndev, false); clk_enable: pm_runtime_mark_last_busy(&fep->pdev->dev); pm_runtime_put_autosuspend(&fep->pdev->dev); pinctrl_pm_select_sleep_state(&fep->pdev->dev); return ret; } static int fec_enet_close(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); phy_stop(fep->phy_dev); if (netif_device_present(ndev)) { napi_disable(&fep->napi); netif_tx_disable(ndev); fec_stop(ndev); } phy_disconnect(fep->phy_dev); fep->phy_dev = NULL; fec_enet_clk_enable(ndev, false); pinctrl_pm_select_sleep_state(&fep->pdev->dev); pm_runtime_mark_last_busy(&fep->pdev->dev); pm_runtime_put_autosuspend(&fep->pdev->dev); fec_enet_free_buffers(ndev); return 0; } /* Set or clear the multicast filter for this adaptor. * Skeleton taken from sunlance driver. * The CPM Ethernet implementation allows Multicast as well as individual * MAC address filtering. Some of the drivers check to make sure it is * a group multicast address, and discard those that are not. I guess I * will do the same for now, but just remove the test if you want * individual filtering as well (do the upper net layers want or support * this kind of feature?). */ #define HASH_BITS 6 /* #bits in hash */ #define CRC32_POLY 0xEDB88320 static void set_multicast_list(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct netdev_hw_addr *ha; unsigned int i, bit, data, crc, tmp; unsigned char hash; if (ndev->flags & IFF_PROMISC) { tmp = readl(fep->hwp + FEC_R_CNTRL); tmp |= 0x8; writel(tmp, fep->hwp + FEC_R_CNTRL); return; } tmp = readl(fep->hwp + FEC_R_CNTRL); tmp &= ~0x8; writel(tmp, fep->hwp + FEC_R_CNTRL); if (ndev->flags & IFF_ALLMULTI) { /* Catch all multicast addresses, so set the * filter to all 1's */ writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); return; } /* Clear filter and add the addresses in hash register */ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); netdev_for_each_mc_addr(ha, ndev) { /* calculate crc32 value of mac address */ crc = 0xffffffff; for (i = 0; i < ndev->addr_len; i++) { data = ha->addr[i]; for (bit = 0; bit < 8; bit++, data >>= 1) { crc = (crc >> 1) ^ (((crc ^ data) & 1) ? CRC32_POLY : 0); } } /* only upper 6 bits (HASH_BITS) are used * which point to specific bit in he hash registers */ hash = (crc >> (32 - HASH_BITS)) & 0x3f; if (hash > 31) { tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH); tmp |= 1 << (hash - 32); writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); } else { tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW); tmp |= 1 << hash; writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW); } } } /* Set a MAC change in hardware. */ static int fec_set_mac_address(struct net_device *ndev, void *p) { struct fec_enet_private *fep = netdev_priv(ndev); struct sockaddr *addr = p; if (addr) { if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); } writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), fep->hwp + FEC_ADDR_LOW); writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), fep->hwp + FEC_ADDR_HIGH); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER /** * fec_poll_controller - FEC Poll controller function * @dev: The FEC network adapter * * Polled functionality used by netconsole and others in non interrupt mode * */ static void fec_poll_controller(struct net_device *dev) { int i; struct fec_enet_private *fep = netdev_priv(dev); for (i = 0; i < FEC_IRQ_NUM; i++) { if (fep->irq[i] > 0) { disable_irq(fep->irq[i]); fec_enet_interrupt(fep->irq[i], dev); enable_irq(fep->irq[i]); } } } #endif #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM static inline void fec_enet_set_netdev_features(struct net_device *netdev, netdev_features_t features) { struct fec_enet_private *fep = netdev_priv(netdev); netdev_features_t changed = features ^ netdev->features; netdev->features = features; /* Receive checksum has been changed */ if (changed & NETIF_F_RXCSUM) { if (features & NETIF_F_RXCSUM) fep->csum_flags |= FLAG_RX_CSUM_ENABLED; else fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; } } static int fec_set_features(struct net_device *netdev, netdev_features_t features) { struct fec_enet_private *fep = netdev_priv(netdev); netdev_features_t changed = features ^ netdev->features; if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) { napi_disable(&fep->napi); netif_tx_lock_bh(netdev); fec_stop(netdev); fec_enet_set_netdev_features(netdev, features); fec_restart(netdev); netif_tx_wake_all_queues(netdev); netif_tx_unlock_bh(netdev); napi_enable(&fep->napi); } else { fec_enet_set_netdev_features(netdev, features); } return 0; } static const struct net_device_ops fec_netdev_ops = { .ndo_open = fec_enet_open, .ndo_stop = fec_enet_close, .ndo_start_xmit = fec_enet_start_xmit, .ndo_set_rx_mode = set_multicast_list, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_tx_timeout = fec_timeout, .ndo_set_mac_address = fec_set_mac_address, .ndo_do_ioctl = fec_enet_ioctl, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = fec_poll_controller, #endif .ndo_set_features = fec_set_features, }; /* * XXX: We need to clean up on failure exits here. * */ static int fec_enet_init(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct fec_enet_priv_tx_q *txq; struct fec_enet_priv_rx_q *rxq; struct bufdesc *cbd_base; dma_addr_t bd_dma; int bd_size; unsigned int i; #if defined(CONFIG_ARM) fep->rx_align = 0xf; fep->tx_align = 0xf; #else fep->rx_align = 0x3; fep->tx_align = 0x3; #endif fec_enet_alloc_queue(ndev); if (fep->bufdesc_ex) fep->bufdesc_size = sizeof(struct bufdesc_ex); else fep->bufdesc_size = sizeof(struct bufdesc); bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * fep->bufdesc_size; /* Allocate memory for buffer descriptors. */ cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, GFP_KERNEL); if (!cbd_base) { return -ENOMEM; } memset(cbd_base, 0, bd_size); /* Get the Ethernet address */ fec_get_mac(ndev); /* make sure MAC we just acquired is programmed into the hw */ fec_set_mac_address(ndev, NULL); /* Set receive and transmit descriptor base. */ for (i = 0; i < fep->num_rx_queues; i++) { rxq = fep->rx_queue[i]; rxq->index = i; rxq->rx_bd_base = (struct bufdesc *)cbd_base; rxq->bd_dma = bd_dma; if (fep->bufdesc_ex) { bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size; cbd_base = (struct bufdesc *) (((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size); } else { bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size; cbd_base += rxq->rx_ring_size; } } for (i = 0; i < fep->num_tx_queues; i++) { txq = fep->tx_queue[i]; txq->index = i; txq->tx_bd_base = (struct bufdesc *)cbd_base; txq->bd_dma = bd_dma; if (fep->bufdesc_ex) { bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size; cbd_base = (struct bufdesc *) (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size); } else { bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size; cbd_base += txq->tx_ring_size; } } /* The FEC Ethernet specific entries in the device structure */ ndev->watchdog_timeo = TX_TIMEOUT; ndev->netdev_ops = &fec_netdev_ops; ndev->ethtool_ops = &fec_enet_ethtool_ops; writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); if (fep->quirks & FEC_QUIRK_HAS_VLAN) /* enable hw VLAN support */ ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; if (fep->quirks & FEC_QUIRK_HAS_CSUM) { ndev->gso_max_segs = FEC_MAX_TSO_SEGS; /* enable hw accelerator */ ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); fep->csum_flags |= FLAG_RX_CSUM_ENABLED; } if (fep->quirks & FEC_QUIRK_HAS_AVB) { fep->tx_align = 0; fep->rx_align = 0x3f; } ndev->hw_features = ndev->features; fec_restart(ndev); return 0; } #ifdef CONFIG_OF static void fec_reset_phy(struct platform_device *pdev) { int err, phy_reset; int msec = 1; struct device_node *np = pdev->dev.of_node; if (!np) return; of_property_read_u32(np, "phy-reset-duration", &msec); /* A sane reset duration should not be longer than 1s */ if (msec > 1000) msec = 1; phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); if (!gpio_is_valid(phy_reset)) return; err = devm_gpio_request_one(&pdev->dev, phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset"); if (err) { dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); return; } msleep(msec); gpio_set_value(phy_reset, 1); } #else /* CONFIG_OF */ static void fec_reset_phy(struct platform_device *pdev) { /* * In case of platform probe, the reset has been done * by machine code. */ } #endif /* CONFIG_OF */ static void fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) { struct device_node *np = pdev->dev.of_node; int err; *num_tx = *num_rx = 1; if (!np || !of_device_is_available(np)) return; /* parse the num of tx and rx queues */ err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx); if (err) *num_tx = 1; err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx); if (err) *num_rx = 1; if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", *num_tx); *num_tx = 1; return; } if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", *num_rx); *num_rx = 1; return; } } static int fec_probe(struct platform_device *pdev) { struct fec_enet_private *fep; struct fec_platform_data *pdata; struct net_device *ndev; int i, irq, ret = 0; struct resource *r; const struct of_device_id *of_id; static int dev_id; struct device_node *np = pdev->dev.of_node, *phy_node; int num_tx_qs; int num_rx_qs; fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); /* Init network device */ ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private), num_tx_qs, num_rx_qs); if (!ndev) return -ENOMEM; SET_NETDEV_DEV(ndev, &pdev->dev); /* setup board info structure */ fep = netdev_priv(ndev); of_id = of_match_device(fec_dt_ids, &pdev->dev); if (of_id) pdev->id_entry = of_id->data; fep->quirks = pdev->id_entry->driver_data; fep->netdev = ndev; fep->num_rx_queues = num_rx_qs; fep->num_tx_queues = num_tx_qs; #if !defined(CONFIG_M5272) /* default enable pause frame auto negotiation */ if (fep->quirks & FEC_QUIRK_HAS_GBIT) fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; #endif /* Select default pin state */ pinctrl_pm_select_default_state(&pdev->dev); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); fep->hwp = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(fep->hwp)) { ret = PTR_ERR(fep->hwp); goto failed_ioremap; } fep->pdev = pdev; fep->dev_id = dev_id++; platform_set_drvdata(pdev, ndev); if (of_get_property(np, "fsl,magic-packet", NULL)) fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; phy_node = of_parse_phandle(np, "phy-handle", 0); if (!phy_node && of_phy_is_fixed_link(np)) { ret = of_phy_register_fixed_link(np); if (ret < 0) { dev_err(&pdev->dev, "broken fixed-link specification\n"); goto failed_phy; } phy_node = of_node_get(np); } fep->phy_node = phy_node; ret = of_get_phy_mode(pdev->dev.of_node); if (ret < 0) { pdata = dev_get_platdata(&pdev->dev); if (pdata) fep->phy_interface = pdata->phy; else fep->phy_interface = PHY_INTERFACE_MODE_MII; } else { fep->phy_interface = ret; } fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); if (IS_ERR(fep->clk_ipg)) { ret = PTR_ERR(fep->clk_ipg); goto failed_clk; } fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); if (IS_ERR(fep->clk_ahb)) { ret = PTR_ERR(fep->clk_ahb); goto failed_clk; } fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); /* enet_out is optional, depends on board */ fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); if (IS_ERR(fep->clk_enet_out)) fep->clk_enet_out = NULL; fep->ptp_clk_on = false; mutex_init(&fep->ptp_clk_mutex); /* clk_ref is optional, depends on board */ fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); if (IS_ERR(fep->clk_ref)) fep->clk_ref = NULL; fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); if (IS_ERR(fep->clk_ptp)) { fep->clk_ptp = NULL; fep->bufdesc_ex = false; } ret = fec_enet_clk_enable(ndev, true); if (ret) goto failed_clk; ret = clk_prepare_enable(fep->clk_ipg); if (ret) goto failed_clk_ipg; fep->reg_phy = devm_regulator_get(&pdev->dev, "phy"); if (!IS_ERR(fep->reg_phy)) { ret = regulator_enable(fep->reg_phy); if (ret) { dev_err(&pdev->dev, "Failed to enable phy regulator: %d\n", ret); goto failed_regulator; } } else { fep->reg_phy = NULL; } pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_get_noresume(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); fec_reset_phy(pdev); if (fep->bufdesc_ex) fec_ptp_init(pdev); ret = fec_enet_init(ndev); if (ret) goto failed_init; for (i = 0; i < FEC_IRQ_NUM; i++) { irq = platform_get_irq(pdev, i); if (irq < 0) { if (i) break; ret = irq; goto failed_irq; } ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 0, pdev->name, ndev); if (ret) goto failed_irq; fep->irq[i] = irq; } init_completion(&fep->mdio_done); ret = fec_enet_mii_init(pdev); if (ret) goto failed_mii_init; /* Carrier starts down, phylib will bring it up */ netif_carrier_off(ndev); fec_enet_clk_enable(ndev, false); pinctrl_pm_select_sleep_state(&pdev->dev); ret = register_netdev(ndev); if (ret) goto failed_register; device_init_wakeup(&ndev->dev, fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET); if (fep->bufdesc_ex && fep->ptp_clock) netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); fep->rx_copybreak = COPYBREAK_DEFAULT; INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); return 0; failed_register: fec_enet_mii_remove(fep); failed_mii_init: failed_irq: failed_init: fec_ptp_stop(pdev); if (fep->reg_phy) regulator_disable(fep->reg_phy); failed_regulator: clk_disable_unprepare(fep->clk_ipg); failed_clk_ipg: fec_enet_clk_enable(ndev, false); failed_clk: failed_phy: of_node_put(phy_node); failed_ioremap: free_netdev(ndev); return ret; } static int fec_drv_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct fec_enet_private *fep = netdev_priv(ndev); cancel_work_sync(&fep->tx_timeout_work); fec_ptp_stop(pdev); unregister_netdev(ndev); fec_enet_mii_remove(fep); if (fep->reg_phy) regulator_disable(fep->reg_phy); of_node_put(fep->phy_node); free_netdev(ndev); return 0; } static int __maybe_unused fec_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct fec_enet_private *fep = netdev_priv(ndev); rtnl_lock(); if (netif_running(ndev)) { if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; phy_stop(fep->phy_dev); napi_disable(&fep->napi); netif_tx_lock_bh(ndev); netif_device_detach(ndev); netif_tx_unlock_bh(ndev); fec_stop(ndev); fec_enet_clk_enable(ndev, false); if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) pinctrl_pm_select_sleep_state(&fep->pdev->dev); } rtnl_unlock(); if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) regulator_disable(fep->reg_phy); /* SOC supply clock to phy, when clock is disabled, phy link down * SOC control phy regulator, when regulator is disabled, phy link down */ if (fep->clk_enet_out || fep->reg_phy) fep->link = 0; return 0; } static int __maybe_unused fec_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct fec_enet_private *fep = netdev_priv(ndev); struct fec_platform_data *pdata = fep->pdev->dev.platform_data; int ret; int val; if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { ret = regulator_enable(fep->reg_phy); if (ret) return ret; } rtnl_lock(); if (netif_running(ndev)) { ret = fec_enet_clk_enable(ndev, true); if (ret) { rtnl_unlock(); goto failed_clk; } if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { if (pdata && pdata->sleep_mode_enable) pdata->sleep_mode_enable(false); val = readl(fep->hwp + FEC_ECNTRL); val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); writel(val, fep->hwp + FEC_ECNTRL); fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; } else { pinctrl_pm_select_default_state(&fep->pdev->dev); } fec_restart(ndev); netif_tx_lock_bh(ndev); netif_device_attach(ndev); netif_tx_unlock_bh(ndev); napi_enable(&fep->napi); phy_start(fep->phy_dev); } rtnl_unlock(); return 0; failed_clk: if (fep->reg_phy) regulator_disable(fep->reg_phy); return ret; } static int __maybe_unused fec_runtime_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct fec_enet_private *fep = netdev_priv(ndev); clk_disable_unprepare(fep->clk_ipg); return 0; } static int __maybe_unused fec_runtime_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct fec_enet_private *fep = netdev_priv(ndev); return clk_prepare_enable(fep->clk_ipg); } static const struct dev_pm_ops fec_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) }; static struct platform_driver fec_driver = { .driver = { .name = DRIVER_NAME, .pm = &fec_pm_ops, .of_match_table = fec_dt_ids, }, .id_table = fec_devtype, .probe = fec_probe, .remove = fec_drv_remove, }; module_platform_driver(fec_driver); MODULE_ALIAS("platform:"DRIVER_NAME); MODULE_LICENSE("GPL");