/* * Microchip switch driver main logic * * Copyright (C) 2017 * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include "ksz_priv.h" static const struct { int index; char string[ETH_GSTRING_LEN]; } mib_names[TOTAL_SWITCH_COUNTER_NUM] = { { 0x00, "rx_hi" }, { 0x01, "rx_undersize" }, { 0x02, "rx_fragments" }, { 0x03, "rx_oversize" }, { 0x04, "rx_jabbers" }, { 0x05, "rx_symbol_err" }, { 0x06, "rx_crc_err" }, { 0x07, "rx_align_err" }, { 0x08, "rx_mac_ctrl" }, { 0x09, "rx_pause" }, { 0x0A, "rx_bcast" }, { 0x0B, "rx_mcast" }, { 0x0C, "rx_ucast" }, { 0x0D, "rx_64_or_less" }, { 0x0E, "rx_65_127" }, { 0x0F, "rx_128_255" }, { 0x10, "rx_256_511" }, { 0x11, "rx_512_1023" }, { 0x12, "rx_1024_1522" }, { 0x13, "rx_1523_2000" }, { 0x14, "rx_2001" }, { 0x15, "tx_hi" }, { 0x16, "tx_late_col" }, { 0x17, "tx_pause" }, { 0x18, "tx_bcast" }, { 0x19, "tx_mcast" }, { 0x1A, "tx_ucast" }, { 0x1B, "tx_deferred" }, { 0x1C, "tx_total_col" }, { 0x1D, "tx_exc_col" }, { 0x1E, "tx_single_col" }, { 0x1F, "tx_mult_col" }, { 0x80, "rx_total" }, { 0x81, "tx_total" }, { 0x82, "rx_discards" }, { 0x83, "tx_discards" }, }; static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set) { u8 data; ksz_read8(dev, addr, &data); if (set) data |= bits; else data &= ~bits; ksz_write8(dev, addr, data); } static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set) { u32 data; ksz_read32(dev, addr, &data); if (set) data |= bits; else data &= ~bits; ksz_write32(dev, addr, data); } static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits, bool set) { u32 addr; u8 data; addr = PORT_CTRL_ADDR(port, offset); ksz_read8(dev, addr, &data); if (set) data |= bits; else data &= ~bits; ksz_write8(dev, addr, data); } static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset, u32 bits, bool set) { u32 addr; u32 data; addr = PORT_CTRL_ADDR(port, offset); ksz_read32(dev, addr, &data); if (set) data |= bits; else data &= ~bits; ksz_write32(dev, addr, data); } static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout) { u8 data; do { ksz_read8(dev, REG_SW_VLAN_CTRL, &data); if (!(data & waiton)) break; usleep_range(1, 10); } while (timeout-- > 0); if (timeout <= 0) return -ETIMEDOUT; return 0; } static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table) { struct ksz_device *dev = ds->priv; int ret; mutex_lock(&dev->vlan_mutex); ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M); ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START); /* wait to be cleared */ ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000); if (ret < 0) { dev_dbg(dev->dev, "Failed to read vlan table\n"); goto exit; } ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]); ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]); ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]); ksz_write8(dev, REG_SW_VLAN_CTRL, 0); exit: mutex_unlock(&dev->vlan_mutex); return ret; } static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table) { struct ksz_device *dev = ds->priv; int ret; mutex_lock(&dev->vlan_mutex); ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]); ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]); ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]); ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M); ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE); /* wait to be cleared */ ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000); if (ret < 0) { dev_dbg(dev->dev, "Failed to write vlan table\n"); goto exit; } ksz_write8(dev, REG_SW_VLAN_CTRL, 0); /* update vlan cache table */ dev->vlan_cache[vid].table[0] = vlan_table[0]; dev->vlan_cache[vid].table[1] = vlan_table[1]; dev->vlan_cache[vid].table[2] = vlan_table[2]; exit: mutex_unlock(&dev->vlan_mutex); return ret; } static void read_table(struct dsa_switch *ds, u32 *table) { struct ksz_device *dev = ds->priv; ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]); ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]); ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]); ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]); } static void write_table(struct dsa_switch *ds, u32 *table) { struct ksz_device *dev = ds->priv; ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]); ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]); ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]); ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]); } static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout) { u32 data; do { ksz_read32(dev, REG_SW_ALU_CTRL__4, &data); if (!(data & waiton)) break; usleep_range(1, 10); } while (timeout-- > 0); if (timeout <= 0) return -ETIMEDOUT; return 0; } static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout) { u32 data; do { ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data); if (!(data & waiton)) break; usleep_range(1, 10); } while (timeout-- > 0); if (timeout <= 0) return -ETIMEDOUT; return 0; } static int ksz_reset_switch(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; u8 data8; u16 data16; u32 data32; /* reset switch */ ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true); /* turn off SPI DO Edge select */ ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8); data8 &= ~SPI_AUTO_EDGE_DETECTION; ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8); /* default configuration */ ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8); data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING | SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE; ksz_write8(dev, REG_SW_LUE_CTRL_1, data8); /* disable interrupts */ ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK); ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F); ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32); /* set broadcast storm protection 10% rate */ ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16); data16 &= ~BROADCAST_STORM_RATE; data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100; ksz_write16(dev, REG_SW_MAC_CTRL_2, data16); return 0; } static void port_setup(struct ksz_device *dev, int port, bool cpu_port) { u8 data8; u16 data16; /* enable tag tail for host port */ if (cpu_port) ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE, true); ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false); /* set back pressure */ ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true); /* set flow control */ ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true); /* enable broadcast storm limit */ ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true); /* disable DiffServ priority */ ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false); /* replace priority */ ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING, false); ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4, MTI_PVID_REPLACE, false); /* enable 802.1p priority */ ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true); /* configure MAC to 1G & RGMII mode */ ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8); data8 |= PORT_RGMII_ID_EG_ENABLE; data8 &= ~PORT_MII_NOT_1GBIT; data8 &= ~PORT_MII_SEL_M; data8 |= PORT_RGMII_SEL; ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8); /* clear pending interrupts */ ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16); } static void ksz_config_cpu_port(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; int i; ds->num_ports = dev->port_cnt; for (i = 0; i < ds->num_ports; i++) { if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) { dev->cpu_port = i; /* enable cpu port */ port_setup(dev, i, true); } } } static int ksz_setup(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; int ret = 0; dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table), dev->num_vlans, GFP_KERNEL); if (!dev->vlan_cache) return -ENOMEM; ret = ksz_reset_switch(ds); if (ret) { dev_err(ds->dev, "failed to reset switch\n"); return ret; } /* accept packet up to 2000bytes */ ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true); ksz_config_cpu_port(ds); ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true); /* queue based egress rate limit */ ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true); /* start switch */ ksz_cfg(dev, REG_SW_OPERATION, SW_START, true); return 0; } static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds, int port) { return DSA_TAG_PROTO_KSZ; } static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg) { struct ksz_device *dev = ds->priv; u16 val = 0; ksz_pread16(dev, addr, 0x100 + (reg << 1), &val); return val; } static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val) { struct ksz_device *dev = ds->priv; ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val); return 0; } static int ksz_enable_port(struct dsa_switch *ds, int port, struct phy_device *phy) { struct ksz_device *dev = ds->priv; /* setup slave port */ port_setup(dev, port, false); return 0; } static void ksz_disable_port(struct dsa_switch *ds, int port, struct phy_device *phy) { struct ksz_device *dev = ds->priv; /* there is no port disable */ ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true); } static int ksz_sset_count(struct dsa_switch *ds, int port, int sset) { if (sset != ETH_SS_STATS) return 0; return TOTAL_SWITCH_COUNTER_NUM; } static void ksz_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *buf) { int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) { memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string, ETH_GSTRING_LEN); } } static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *buf) { struct ksz_device *dev = ds->priv; int i; u32 data; int timeout; mutex_lock(&dev->stats_mutex); for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) { data = MIB_COUNTER_READ; data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S); ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data); timeout = 1000; do { ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4, &data); usleep_range(1, 10); if (!(data & MIB_COUNTER_READ)) break; } while (timeout-- > 0); /* failed to read MIB. get out of loop */ if (!timeout) { dev_dbg(dev->dev, "Failed to get MIB\n"); break; } /* count resets upon read */ ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data); dev->mib_value[i] += (uint64_t)data; buf[i] = dev->mib_value[i]; } mutex_unlock(&dev->stats_mutex); } static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct ksz_device *dev = ds->priv; u8 data; ksz_pread8(dev, port, P_STP_CTRL, &data); data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); switch (state) { case BR_STATE_DISABLED: data |= PORT_LEARN_DISABLE; break; case BR_STATE_LISTENING: data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE); break; case BR_STATE_LEARNING: data |= PORT_RX_ENABLE; break; case BR_STATE_FORWARDING: data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); break; case BR_STATE_BLOCKING: data |= PORT_LEARN_DISABLE; break; default: dev_err(ds->dev, "invalid STP state: %d\n", state); return; } ksz_pwrite8(dev, port, P_STP_CTRL, data); } static void ksz_port_fast_age(struct dsa_switch *ds, int port) { struct ksz_device *dev = ds->priv; u8 data8; ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8); data8 |= SW_FAST_AGING; ksz_write8(dev, REG_SW_LUE_CTRL_1, data8); data8 &= ~SW_FAST_AGING; ksz_write8(dev, REG_SW_LUE_CTRL_1, data8); } static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag) { struct ksz_device *dev = ds->priv; if (flag) { ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_VLAN_LOOKUP_VID_0, true); ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true); ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true); } else { ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false); ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false); ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_VLAN_LOOKUP_VID_0, false); } return 0; } static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { /* nothing needed */ return 0; } static void ksz_port_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct ksz_device *dev = ds->priv; u32 vlan_table[3]; u16 vid; bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) { if (get_vlan_table(ds, vid, vlan_table)) { dev_dbg(dev->dev, "Failed to get vlan table\n"); return; } vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M); if (untagged) vlan_table[1] |= BIT(port); else vlan_table[1] &= ~BIT(port); vlan_table[1] &= ~(BIT(dev->cpu_port)); vlan_table[2] |= BIT(port) | BIT(dev->cpu_port); if (set_vlan_table(ds, vid, vlan_table)) { dev_dbg(dev->dev, "Failed to set vlan table\n"); return; } /* change PVID */ if (vlan->flags & BRIDGE_VLAN_INFO_PVID) ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid); } } static int ksz_port_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct ksz_device *dev = ds->priv; bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; u32 vlan_table[3]; u16 vid; u16 pvid; ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid); pvid = pvid & 0xFFF; for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) { if (get_vlan_table(ds, vid, vlan_table)) { dev_dbg(dev->dev, "Failed to get vlan table\n"); return -ETIMEDOUT; } vlan_table[2] &= ~BIT(port); if (pvid == vid) pvid = 1; if (untagged) vlan_table[1] &= ~BIT(port); if (set_vlan_table(ds, vid, vlan_table)) { dev_dbg(dev->dev, "Failed to set vlan table\n"); return -ETIMEDOUT; } } ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid); return 0; } struct alu_struct { /* entry 1 */ u8 is_static:1; u8 is_src_filter:1; u8 is_dst_filter:1; u8 prio_age:3; u32 _reserv_0_1:23; u8 mstp:3; /* entry 2 */ u8 is_override:1; u8 is_use_fid:1; u32 _reserv_1_1:23; u8 port_forward:7; /* entry 3 & 4*/ u32 _reserv_2_1:9; u8 fid:7; u8 mac[ETH_ALEN]; }; static int ksz_port_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct ksz_device *dev = ds->priv; u32 alu_table[4]; u32 data; int ret = 0; mutex_lock(&dev->alu_mutex); /* find any entry with mac & vid */ data = vid << ALU_FID_INDEX_S; data |= ((addr[0] << 8) | addr[1]); ksz_write32(dev, REG_SW_ALU_INDEX_0, data); data = ((addr[2] << 24) | (addr[3] << 16)); data |= ((addr[4] << 8) | addr[5]); ksz_write32(dev, REG_SW_ALU_INDEX_1, data); /* start read operation */ ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START); /* wait to be finished */ ret = wait_alu_ready(dev, ALU_START, 1000); if (ret < 0) { dev_dbg(dev->dev, "Failed to read ALU\n"); goto exit; } /* read ALU entry */ read_table(ds, alu_table); /* update ALU entry */ alu_table[0] = ALU_V_STATIC_VALID; alu_table[1] |= BIT(port); if (vid) alu_table[1] |= ALU_V_USE_FID; alu_table[2] = (vid << ALU_V_FID_S); alu_table[2] |= ((addr[0] << 8) | addr[1]); alu_table[3] = ((addr[2] << 24) | (addr[3] << 16)); alu_table[3] |= ((addr[4] << 8) | addr[5]); write_table(ds, alu_table); ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START); /* wait to be finished */ ret = wait_alu_ready(dev, ALU_START, 1000); if (ret < 0) dev_dbg(dev->dev, "Failed to write ALU\n"); exit: mutex_unlock(&dev->alu_mutex); return ret; } static int ksz_port_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct ksz_device *dev = ds->priv; u32 alu_table[4]; u32 data; int ret = 0; mutex_lock(&dev->alu_mutex); /* read any entry with mac & vid */ data = vid << ALU_FID_INDEX_S; data |= ((addr[0] << 8) | addr[1]); ksz_write32(dev, REG_SW_ALU_INDEX_0, data); data = ((addr[2] << 24) | (addr[3] << 16)); data |= ((addr[4] << 8) | addr[5]); ksz_write32(dev, REG_SW_ALU_INDEX_1, data); /* start read operation */ ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START); /* wait to be finished */ ret = wait_alu_ready(dev, ALU_START, 1000); if (ret < 0) { dev_dbg(dev->dev, "Failed to read ALU\n"); goto exit; } ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]); if (alu_table[0] & ALU_V_STATIC_VALID) { ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]); ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]); ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]); /* clear forwarding port */ alu_table[2] &= ~BIT(port); /* if there is no port to forward, clear table */ if ((alu_table[2] & ALU_V_PORT_MAP) == 0) { alu_table[0] = 0; alu_table[1] = 0; alu_table[2] = 0; alu_table[3] = 0; } } else { alu_table[0] = 0; alu_table[1] = 0; alu_table[2] = 0; alu_table[3] = 0; } write_table(ds, alu_table); ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START); /* wait to be finished */ ret = wait_alu_ready(dev, ALU_START, 1000); if (ret < 0) dev_dbg(dev->dev, "Failed to write ALU\n"); exit: mutex_unlock(&dev->alu_mutex); return ret; } static void convert_alu(struct alu_struct *alu, u32 *alu_table) { alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID); alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER); alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER); alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) & ALU_V_PRIO_AGE_CNT_M; alu->mstp = alu_table[0] & ALU_V_MSTP_M; alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE); alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID); alu->port_forward = alu_table[1] & ALU_V_PORT_MAP; alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M; alu->mac[0] = (alu_table[2] >> 8) & 0xFF; alu->mac[1] = alu_table[2] & 0xFF; alu->mac[2] = (alu_table[3] >> 24) & 0xFF; alu->mac[3] = (alu_table[3] >> 16) & 0xFF; alu->mac[4] = (alu_table[3] >> 8) & 0xFF; alu->mac[5] = alu_table[3] & 0xFF; } static int ksz_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb, void *data) { struct ksz_device *dev = ds->priv; int ret = 0; u32 ksz_data; u32 alu_table[4]; struct alu_struct alu; int timeout; mutex_lock(&dev->alu_mutex); /* start ALU search */ ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH); do { timeout = 1000; do { ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data); if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START)) break; usleep_range(1, 10); } while (timeout-- > 0); if (!timeout) { dev_dbg(dev->dev, "Failed to search ALU\n"); ret = -ETIMEDOUT; goto exit; } /* read ALU table */ read_table(ds, alu_table); convert_alu(&alu, alu_table); if (alu.port_forward & BIT(port)) { ret = cb(alu.mac, alu.fid, alu.is_static, data); if (ret) goto exit; } } while (ksz_data & ALU_START); exit: /* stop ALU search */ ksz_write32(dev, REG_SW_ALU_CTRL__4, 0); mutex_unlock(&dev->alu_mutex); return ret; } static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb) { /* nothing to do */ return 0; } static void ksz_port_mdb_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb) { struct ksz_device *dev = ds->priv; u32 static_table[4]; u32 data; int index; u32 mac_hi, mac_lo; mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]); mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16)); mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]); mutex_lock(&dev->alu_mutex); for (index = 0; index < dev->num_statics; index++) { /* find empty slot first */ data = (index << ALU_STAT_INDEX_S) | ALU_STAT_READ | ALU_STAT_START; ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); /* wait to be finished */ if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) { dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); goto exit; } /* read ALU static table */ read_table(ds, static_table); if (static_table[0] & ALU_V_STATIC_VALID) { /* check this has same vid & mac address */ if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) && ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) && (static_table[3] == mac_lo)) { /* found matching one */ break; } } else { /* found empty one */ break; } } /* no available entry */ if (index == dev->num_statics) goto exit; /* add entry */ static_table[0] = ALU_V_STATIC_VALID; static_table[1] |= BIT(port); if (mdb->vid) static_table[1] |= ALU_V_USE_FID; static_table[2] = (mdb->vid << ALU_V_FID_S); static_table[2] |= mac_hi; static_table[3] = mac_lo; write_table(ds, static_table); data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START; ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); /* wait to be finished */ if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); exit: mutex_unlock(&dev->alu_mutex); } static int ksz_port_mdb_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb) { struct ksz_device *dev = ds->priv; u32 static_table[4]; u32 data; int index; int ret = 0; u32 mac_hi, mac_lo; mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]); mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16)); mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]); mutex_lock(&dev->alu_mutex); for (index = 0; index < dev->num_statics; index++) { /* find empty slot first */ data = (index << ALU_STAT_INDEX_S) | ALU_STAT_READ | ALU_STAT_START; ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); /* wait to be finished */ ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000); if (ret < 0) { dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); goto exit; } /* read ALU static table */ read_table(ds, static_table); if (static_table[0] & ALU_V_STATIC_VALID) { /* check this has same vid & mac address */ if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) && ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) && (static_table[3] == mac_lo)) { /* found matching one */ break; } } } /* no available entry */ if (index == dev->num_statics) { ret = -EINVAL; goto exit; } /* clear port */ static_table[1] &= ~BIT(port); if ((static_table[1] & ALU_V_PORT_MAP) == 0) { /* delete entry */ static_table[0] = 0; static_table[1] = 0; static_table[2] = 0; static_table[3] = 0; } write_table(ds, static_table); data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START; ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); /* wait to be finished */ ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000); if (ret < 0) dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); exit: mutex_unlock(&dev->alu_mutex); return ret; } static int ksz_port_mirror_add(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror, bool ingress) { struct ksz_device *dev = ds->priv; if (ingress) ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true); else ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true); ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false); /* configure mirror port */ ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, true); ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false); return 0; } static void ksz_port_mirror_del(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror) { struct ksz_device *dev = ds->priv; u8 data; if (mirror->ingress) ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false); else ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false); ksz_pread8(dev, port, P_MIRROR_CTRL, &data); if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false); } static const struct dsa_switch_ops ksz_switch_ops = { .get_tag_protocol = ksz_get_tag_protocol, .setup = ksz_setup, .phy_read = ksz_phy_read16, .phy_write = ksz_phy_write16, .port_enable = ksz_enable_port, .port_disable = ksz_disable_port, .get_strings = ksz_get_strings, .get_ethtool_stats = ksz_get_ethtool_stats, .get_sset_count = ksz_sset_count, .port_stp_state_set = ksz_port_stp_state_set, .port_fast_age = ksz_port_fast_age, .port_vlan_filtering = ksz_port_vlan_filtering, .port_vlan_prepare = ksz_port_vlan_prepare, .port_vlan_add = ksz_port_vlan_add, .port_vlan_del = ksz_port_vlan_del, .port_fdb_dump = ksz_port_fdb_dump, .port_fdb_add = ksz_port_fdb_add, .port_fdb_del = ksz_port_fdb_del, .port_mdb_prepare = ksz_port_mdb_prepare, .port_mdb_add = ksz_port_mdb_add, .port_mdb_del = ksz_port_mdb_del, .port_mirror_add = ksz_port_mirror_add, .port_mirror_del = ksz_port_mirror_del, }; struct ksz_chip_data { u32 chip_id; const char *dev_name; int num_vlans; int num_alus; int num_statics; int cpu_ports; int port_cnt; }; static const struct ksz_chip_data ksz_switch_chips[] = { { .chip_id = 0x00947700, .dev_name = "KSZ9477", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x7F, /* can be configured as cpu port */ .port_cnt = 7, /* total physical port count */ }, { .chip_id = 0x00989700, .dev_name = "KSZ9897", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x7F, /* can be configured as cpu port */ .port_cnt = 7, /* total physical port count */ }, }; static int ksz_switch_init(struct ksz_device *dev) { int i; mutex_init(&dev->reg_mutex); mutex_init(&dev->stats_mutex); mutex_init(&dev->alu_mutex); mutex_init(&dev->vlan_mutex); dev->ds->ops = &ksz_switch_ops; for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) { const struct ksz_chip_data *chip = &ksz_switch_chips[i]; if (dev->chip_id == chip->chip_id) { dev->name = chip->dev_name; dev->num_vlans = chip->num_vlans; dev->num_alus = chip->num_alus; dev->num_statics = chip->num_statics; dev->port_cnt = chip->port_cnt; dev->cpu_ports = chip->cpu_ports; break; } } /* no switch found */ if (!dev->port_cnt) return -ENODEV; return 0; } struct ksz_device *ksz_switch_alloc(struct device *base, const struct ksz_io_ops *ops, void *priv) { struct dsa_switch *ds; struct ksz_device *swdev; ds = dsa_switch_alloc(base, DSA_MAX_PORTS); if (!ds) return NULL; swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL); if (!swdev) return NULL; ds->priv = swdev; swdev->dev = base; swdev->ds = ds; swdev->priv = priv; swdev->ops = ops; return swdev; } EXPORT_SYMBOL(ksz_switch_alloc); int ksz_switch_detect(struct ksz_device *dev) { u8 data8; u32 id32; int ret; /* turn off SPI DO Edge select */ ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8); if (ret) return ret; data8 &= ~SPI_AUTO_EDGE_DETECTION; ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8); if (ret) return ret; /* read chip id */ ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32); if (ret) return ret; dev->chip_id = id32; return 0; } EXPORT_SYMBOL(ksz_switch_detect); int ksz_switch_register(struct ksz_device *dev) { int ret; if (dev->pdata) dev->chip_id = dev->pdata->chip_id; if (ksz_switch_detect(dev)) return -EINVAL; ret = ksz_switch_init(dev); if (ret) return ret; return dsa_register_switch(dev->ds); } EXPORT_SYMBOL(ksz_switch_register); void ksz_switch_remove(struct ksz_device *dev) { dsa_unregister_switch(dev->ds); } EXPORT_SYMBOL(ksz_switch_remove); MODULE_AUTHOR("Woojung Huh "); MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver"); MODULE_LICENSE("GPL");