/* * Broadcom Starfighter 2 DSA switch CFP support * * Copyright (C) 2016, Broadcom * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include "bcm_sf2.h" #include "bcm_sf2_regs.h" struct cfp_udf_slice_layout { u8 slices[UDFS_PER_SLICE]; u32 mask_value; u32 base_offset; }; struct cfp_udf_layout { struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES]; }; static const u8 zero_slice[UDFS_PER_SLICE] = { }; /* UDF slices layout for a TCPv4/UDPv4 specification */ static const struct cfp_udf_layout udf_tcpip4_layout = { .udfs = { [1] = { .slices = { /* End of L2, byte offset 12, src IP[0:15] */ CFG_UDF_EOL2 | 6, /* End of L2, byte offset 14, src IP[16:31] */ CFG_UDF_EOL2 | 7, /* End of L2, byte offset 16, dst IP[0:15] */ CFG_UDF_EOL2 | 8, /* End of L2, byte offset 18, dst IP[16:31] */ CFG_UDF_EOL2 | 9, /* End of L3, byte offset 0, src port */ CFG_UDF_EOL3 | 0, /* End of L3, byte offset 2, dst port */ CFG_UDF_EOL3 | 1, 0, 0, 0 }, .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET, }, }, }; /* UDF slices layout for a TCPv6/UDPv6 specification */ static const struct cfp_udf_layout udf_tcpip6_layout = { .udfs = { [0] = { .slices = { /* End of L2, byte offset 8, src IP[0:15] */ CFG_UDF_EOL2 | 4, /* End of L2, byte offset 10, src IP[16:31] */ CFG_UDF_EOL2 | 5, /* End of L2, byte offset 12, src IP[32:47] */ CFG_UDF_EOL2 | 6, /* End of L2, byte offset 14, src IP[48:63] */ CFG_UDF_EOL2 | 7, /* End of L2, byte offset 16, src IP[64:79] */ CFG_UDF_EOL2 | 8, /* End of L2, byte offset 18, src IP[80:95] */ CFG_UDF_EOL2 | 9, /* End of L2, byte offset 20, src IP[96:111] */ CFG_UDF_EOL2 | 10, /* End of L2, byte offset 22, src IP[112:127] */ CFG_UDF_EOL2 | 11, /* End of L3, byte offset 0, src port */ CFG_UDF_EOL3 | 0, }, .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, .base_offset = CORE_UDF_0_B_0_8_PORT_0, }, [3] = { .slices = { /* End of L2, byte offset 24, dst IP[0:15] */ CFG_UDF_EOL2 | 12, /* End of L2, byte offset 26, dst IP[16:31] */ CFG_UDF_EOL2 | 13, /* End of L2, byte offset 28, dst IP[32:47] */ CFG_UDF_EOL2 | 14, /* End of L2, byte offset 30, dst IP[48:63] */ CFG_UDF_EOL2 | 15, /* End of L2, byte offset 32, dst IP[64:79] */ CFG_UDF_EOL2 | 16, /* End of L2, byte offset 34, dst IP[80:95] */ CFG_UDF_EOL2 | 17, /* End of L2, byte offset 36, dst IP[96:111] */ CFG_UDF_EOL2 | 18, /* End of L2, byte offset 38, dst IP[112:127] */ CFG_UDF_EOL2 | 19, /* End of L3, byte offset 2, dst port */ CFG_UDF_EOL3 | 1, }, .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, .base_offset = CORE_UDF_0_D_0_11_PORT_0, }, }, }; static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout) { unsigned int i, count = 0; for (i = 0; i < UDFS_PER_SLICE; i++) { if (layout[i] != 0) count++; } return count; } static inline u32 udf_upper_bits(unsigned int num_udf) { return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1); } static inline u32 udf_lower_bits(unsigned int num_udf) { return (u8)GENMASK(num_udf - 1, 0); } static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l, unsigned int start) { const struct cfp_udf_slice_layout *slice_layout; unsigned int slice_idx; for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) { slice_layout = &l->udfs[slice_idx]; if (memcmp(slice_layout->slices, zero_slice, sizeof(zero_slice))) break; } return slice_idx; } static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv, const struct cfp_udf_layout *layout, unsigned int slice_num) { u32 offset = layout->udfs[slice_num].base_offset; unsigned int i; for (i = 0; i < UDFS_PER_SLICE; i++) core_writel(priv, layout->udfs[slice_num].slices[i], offset + i * 4); } static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op) { unsigned int timeout = 1000; u32 reg; reg = core_readl(priv, CORE_CFP_ACC); reg &= ~(OP_SEL_MASK | RAM_SEL_MASK); reg |= OP_STR_DONE | op; core_writel(priv, reg, CORE_CFP_ACC); do { reg = core_readl(priv, CORE_CFP_ACC); if (!(reg & OP_STR_DONE)) break; cpu_relax(); } while (timeout--); if (!timeout) return -ETIMEDOUT; return 0; } static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv, unsigned int addr) { u32 reg; WARN_ON(addr >= priv->num_cfp_rules); reg = core_readl(priv, CORE_CFP_ACC); reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT); reg |= addr << XCESS_ADDR_SHIFT; core_writel(priv, reg, CORE_CFP_ACC); } static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv) { /* Entry #0 is reserved */ return priv->num_cfp_rules - 1; } static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv, unsigned int rule_index, unsigned int port_num, unsigned int queue_num, bool fwd_map_change) { int ret; u32 reg; /* Replace ARL derived destination with DST_MAP derived, define * which port and queue this should be forwarded to. */ if (fwd_map_change) reg = CHANGE_FWRD_MAP_IB_REP_ARL | BIT(port_num + DST_MAP_IB_SHIFT) | CHANGE_TC | queue_num << NEW_TC_SHIFT; else reg = 0; core_writel(priv, reg, CORE_ACT_POL_DATA0); /* Set classification ID that needs to be put in Broadcom tag */ core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1); core_writel(priv, 0, CORE_ACT_POL_DATA2); /* Configure policer RAM now */ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM); if (ret) { pr_err("Policer entry at %d failed\n", rule_index); return ret; } /* Disable the policer */ core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0); /* Now the rate meter */ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM); if (ret) { pr_err("Meter entry at %d failed\n", rule_index); return ret; } return 0; } static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv, struct ethtool_tcpip4_spec *v4_spec, unsigned int slice_num, bool mask) { u32 reg, offset; /* C-Tag [31:24] * UDF_n_A8 [23:8] * UDF_n_A7 [7:0] */ reg = 0; if (mask) offset = CORE_CFP_MASK_PORT(4); else offset = CORE_CFP_DATA_PORT(4); core_writel(priv, reg, offset); /* UDF_n_A7 [31:24] * UDF_n_A6 [23:8] * UDF_n_A5 [7:0] */ reg = be16_to_cpu(v4_spec->pdst) >> 8; if (mask) offset = CORE_CFP_MASK_PORT(3); else offset = CORE_CFP_DATA_PORT(3); core_writel(priv, reg, offset); /* UDF_n_A5 [31:24] * UDF_n_A4 [23:8] * UDF_n_A3 [7:0] */ reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 | (u32)be16_to_cpu(v4_spec->psrc) << 8 | (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8; if (mask) offset = CORE_CFP_MASK_PORT(2); else offset = CORE_CFP_DATA_PORT(2); core_writel(priv, reg, offset); /* UDF_n_A3 [31:24] * UDF_n_A2 [23:8] * UDF_n_A1 [7:0] */ reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 | (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 | (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8; if (mask) offset = CORE_CFP_MASK_PORT(1); else offset = CORE_CFP_DATA_PORT(1); core_writel(priv, reg, offset); /* UDF_n_A1 [31:24] * UDF_n_A0 [23:8] * Reserved [7:4] * Slice ID [3:2] * Slice valid [1:0] */ reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 | (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 | SLICE_NUM(slice_num) | SLICE_VALID; if (mask) offset = CORE_CFP_MASK_PORT(0); else offset = CORE_CFP_DATA_PORT(0); core_writel(priv, reg, offset); } static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port, unsigned int port_num, unsigned int queue_num, struct ethtool_rx_flow_spec *fs) { struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec; const struct cfp_udf_layout *layout; unsigned int slice_num, rule_index; u8 ip_proto, ip_frag; u8 num_udf; u32 reg; int ret; switch (fs->flow_type & ~FLOW_EXT) { case TCP_V4_FLOW: ip_proto = IPPROTO_TCP; v4_spec = &fs->h_u.tcp_ip4_spec; v4_m_spec = &fs->m_u.tcp_ip4_spec; break; case UDP_V4_FLOW: ip_proto = IPPROTO_UDP; v4_spec = &fs->h_u.udp_ip4_spec; v4_m_spec = &fs->m_u.udp_ip4_spec; break; default: return -EINVAL; } ip_frag = be32_to_cpu(fs->m_ext.data[0]); /* Locate the first rule available */ if (fs->location == RX_CLS_LOC_ANY) rule_index = find_first_zero_bit(priv->cfp.used, priv->num_cfp_rules); else rule_index = fs->location; if (rule_index > bcm_sf2_cfp_rule_size(priv)) return -ENOSPC; layout = &udf_tcpip4_layout; /* We only use one UDF slice for now */ slice_num = bcm_sf2_get_slice_number(layout, 0); if (slice_num == UDF_NUM_SLICES) return -EINVAL; num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); /* Apply the UDF layout for this filter */ bcm_sf2_cfp_udf_set(priv, layout, slice_num); /* Apply to all packets received through this port */ core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); /* Source port map match */ core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); /* S-Tag status [31:30] * C-Tag status [29:28] * L2 framing [27:26] * L3 framing [25:24] * IP ToS [23:16] * IP proto [15:08] * IP Fragm [7] * Non 1st frag [6] * IP Authen [5] * TTL range [4:3] * PPPoE session [2] * Reserved [1] * UDF_Valid[8] [0] */ core_writel(priv, v4_spec->tos << IPTOS_SHIFT | ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf), CORE_CFP_DATA_PORT(6)); /* Mask with the specific layout for IPv4 packets */ core_writel(priv, layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6)); /* UDF_Valid[7:0] [31:24] * S-Tag [23:8] * C-Tag [7:0] */ core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5)); /* Mask all but valid UDFs */ core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5)); /* Program the match and the mask */ bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false); bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true); /* Insert into TCAM now */ bcm_sf2_cfp_rule_addr_set(priv, rule_index); ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); if (ret) { pr_err("TCAM entry at addr %d failed\n", rule_index); return ret; } /* Insert into Action and policer RAMs now */ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num, queue_num, true); if (ret) return ret; /* Turn on CFP for this rule now */ reg = core_readl(priv, CORE_CFP_CTL_REG); reg |= BIT(port); core_writel(priv, reg, CORE_CFP_CTL_REG); /* Flag the rule as being used and return it */ set_bit(rule_index, priv->cfp.used); set_bit(rule_index, priv->cfp.unique); fs->location = rule_index; return 0; } static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv, const __be32 *ip6_addr, const __be16 port, unsigned int slice_num, bool mask) { u32 reg, tmp, val, offset; /* C-Tag [31:24] * UDF_n_B8 [23:8] (port) * UDF_n_B7 (upper) [7:0] (addr[15:8]) */ reg = be32_to_cpu(ip6_addr[3]); val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff); if (mask) offset = CORE_CFP_MASK_PORT(4); else offset = CORE_CFP_DATA_PORT(4); core_writel(priv, val, offset); /* UDF_n_B7 (lower) [31:24] (addr[7:0]) * UDF_n_B6 [23:8] (addr[31:16]) * UDF_n_B5 (upper) [7:0] (addr[47:40]) */ tmp = be32_to_cpu(ip6_addr[2]); val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | ((tmp >> 8) & 0xff); if (mask) offset = CORE_CFP_MASK_PORT(3); else offset = CORE_CFP_DATA_PORT(3); core_writel(priv, val, offset); /* UDF_n_B5 (lower) [31:24] (addr[39:32]) * UDF_n_B4 [23:8] (addr[63:48]) * UDF_n_B3 (upper) [7:0] (addr[79:72]) */ reg = be32_to_cpu(ip6_addr[1]); val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | ((reg >> 8) & 0xff); if (mask) offset = CORE_CFP_MASK_PORT(2); else offset = CORE_CFP_DATA_PORT(2); core_writel(priv, val, offset); /* UDF_n_B3 (lower) [31:24] (addr[71:64]) * UDF_n_B2 [23:8] (addr[95:80]) * UDF_n_B1 (upper) [7:0] (addr[111:104]) */ tmp = be32_to_cpu(ip6_addr[0]); val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | ((tmp >> 8) & 0xff); if (mask) offset = CORE_CFP_MASK_PORT(1); else offset = CORE_CFP_DATA_PORT(1); core_writel(priv, val, offset); /* UDF_n_B1 (lower) [31:24] (addr[103:96]) * UDF_n_B0 [23:8] (addr[127:112]) * Reserved [7:4] * Slice ID [3:2] * Slice valid [1:0] */ reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | SLICE_NUM(slice_num) | SLICE_VALID; if (mask) offset = CORE_CFP_MASK_PORT(0); else offset = CORE_CFP_DATA_PORT(0); core_writel(priv, reg, offset); } static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port, unsigned int port_num, unsigned int queue_num, struct ethtool_rx_flow_spec *fs) { struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec; unsigned int slice_num, rule_index[2]; const struct cfp_udf_layout *layout; u8 ip_proto, ip_frag; int ret = 0; u8 num_udf; u32 reg; switch (fs->flow_type & ~FLOW_EXT) { case TCP_V6_FLOW: ip_proto = IPPROTO_TCP; v6_spec = &fs->h_u.tcp_ip6_spec; v6_m_spec = &fs->m_u.tcp_ip6_spec; break; case UDP_V6_FLOW: ip_proto = IPPROTO_UDP; v6_spec = &fs->h_u.udp_ip6_spec; v6_m_spec = &fs->m_u.udp_ip6_spec; break; default: return -EINVAL; } ip_frag = be32_to_cpu(fs->m_ext.data[0]); layout = &udf_tcpip6_layout; slice_num = bcm_sf2_get_slice_number(layout, 0); if (slice_num == UDF_NUM_SLICES) return -EINVAL; num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); /* Negotiate two indexes, one for the second half which we are chained * from, which is what we will return to user-space, and a second one * which is used to store its first half. That first half does not * allow any choice of placement, so it just needs to find the next * available bit. We return the second half as fs->location because * that helps with the rule lookup later on since the second half is * chained from its first half, we can easily identify IPv6 CFP rules * by looking whether they carry a CHAIN_ID. * * We also want the second half to have a lower rule_index than its * first half because the HW search is by incrementing addresses. */ if (fs->location == RX_CLS_LOC_ANY) rule_index[1] = find_first_zero_bit(priv->cfp.used, priv->num_cfp_rules); else rule_index[1] = fs->location; if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) return -ENOSPC; /* Flag it as used (cleared on error path) such that we can immediately * obtain a second one to chain from. */ set_bit(rule_index[1], priv->cfp.used); rule_index[0] = find_first_zero_bit(priv->cfp.used, priv->num_cfp_rules); if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) { ret = -ENOSPC; goto out_err; } /* Apply the UDF layout for this filter */ bcm_sf2_cfp_udf_set(priv, layout, slice_num); /* Apply to all packets received through this port */ core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); /* Source port map match */ core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); /* S-Tag status [31:30] * C-Tag status [29:28] * L2 framing [27:26] * L3 framing [25:24] * IP ToS [23:16] * IP proto [15:08] * IP Fragm [7] * Non 1st frag [6] * IP Authen [5] * TTL range [4:3] * PPPoE session [2] * Reserved [1] * UDF_Valid[8] [0] */ reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf); core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); /* Mask with the specific layout for IPv6 packets including * UDF_Valid[8] */ reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf); core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); /* UDF_Valid[7:0] [31:24] * S-Tag [23:8] * C-Tag [7:0] */ core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5)); /* Mask all but valid UDFs */ core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5)); /* Slice the IPv6 source address and port */ bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc, slice_num, false); bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc, SLICE_NUM_MASK, true); /* Insert into TCAM now because we need to insert a second rule */ bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]); ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); if (ret) { pr_err("TCAM entry at addr %d failed\n", rule_index[0]); goto out_err; } /* Insert into Action and policer RAMs now */ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num, queue_num, false); if (ret) goto out_err; /* Now deal with the second slice to chain this rule */ slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1); if (slice_num == UDF_NUM_SLICES) { ret = -EINVAL; goto out_err; } num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); /* Apply the UDF layout for this filter */ bcm_sf2_cfp_udf_set(priv, layout, slice_num); /* Chained rule, source port match is coming from the rule we are * chained from. */ core_writel(priv, 0, CORE_CFP_DATA_PORT(7)); core_writel(priv, 0, CORE_CFP_MASK_PORT(7)); /* * CHAIN ID [31:24] chain to previous slice * Reserved [23:20] * UDF_Valid[11:8] [19:16] * UDF_Valid[7:0] [15:8] * UDF_n_D11 [7:0] */ reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 | udf_lower_bits(num_udf) << 8; core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */ reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 | udf_lower_bits(num_udf) << 8; core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); /* Don't care */ core_writel(priv, 0, CORE_CFP_DATA_PORT(5)); /* Mask all */ core_writel(priv, 0, CORE_CFP_MASK_PORT(5)); bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num, false); bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst, SLICE_NUM_MASK, true); /* Insert into TCAM now */ bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]); ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); if (ret) { pr_err("TCAM entry at addr %d failed\n", rule_index[1]); goto out_err; } /* Insert into Action and policer RAMs now, set chain ID to * the one we are chained to */ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num, queue_num, true); if (ret) goto out_err; /* Turn on CFP for this rule now */ reg = core_readl(priv, CORE_CFP_CTL_REG); reg |= BIT(port); core_writel(priv, reg, CORE_CFP_CTL_REG); /* Flag the second half rule as being used now, return it as the * location, and flag it as unique while dumping rules */ set_bit(rule_index[0], priv->cfp.used); set_bit(rule_index[1], priv->cfp.unique); fs->location = rule_index[1]; return ret; out_err: clear_bit(rule_index[1], priv->cfp.used); return ret; } static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port, struct ethtool_rx_flow_spec *fs) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); unsigned int queue_num, port_num; int ret = -EINVAL; /* Check for unsupported extensions */ if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype || fs->m_ext.data[1])) return -EINVAL; if (fs->location != RX_CLS_LOC_ANY && test_bit(fs->location, priv->cfp.used)) return -EBUSY; if (fs->location != RX_CLS_LOC_ANY && fs->location > bcm_sf2_cfp_rule_size(priv)) return -EINVAL; /* We do not support discarding packets, check that the * destination port is enabled and that we are within the * number of ports supported by the switch */ port_num = fs->ring_cookie / SF2_NUM_EGRESS_QUEUES; if (fs->ring_cookie == RX_CLS_FLOW_DISC || !(dsa_is_user_port(ds, port_num) || dsa_is_cpu_port(ds, port_num)) || port_num >= priv->hw_params.num_ports) return -EINVAL; /* * We have a small oddity where Port 6 just does not have a * valid bit here (so we substract by one). */ queue_num = fs->ring_cookie % SF2_NUM_EGRESS_QUEUES; if (port_num >= 7) port_num -= 1; switch (fs->flow_type & ~FLOW_EXT) { case TCP_V4_FLOW: case UDP_V4_FLOW: ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, queue_num, fs); break; case TCP_V6_FLOW: case UDP_V6_FLOW: ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num, queue_num, fs); break; default: break; } return ret; } static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port, u32 loc, u32 *next_loc) { int ret; u32 reg; /* Indicate which rule we want to read */ bcm_sf2_cfp_rule_addr_set(priv, loc); ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL); if (ret) return ret; /* Check if this is possibly an IPv6 rule that would * indicate we need to delete its companion rule * as well */ reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); if (next_loc) *next_loc = (reg >> 24) & CHAIN_ID_MASK; /* Clear its valid bits */ reg = core_readl(priv, CORE_CFP_DATA_PORT(0)); reg &= ~SLICE_VALID; core_writel(priv, reg, CORE_CFP_DATA_PORT(0)); /* Write back this entry into the TCAM now */ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); if (ret) return ret; clear_bit(loc, priv->cfp.used); clear_bit(loc, priv->cfp.unique); return 0; } static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc) { u32 next_loc = 0; int ret; /* Refuse deleting unused rules, and those that are not unique since * that could leave IPv6 rules with one of the chained rule in the * table. */ if (!test_bit(loc, priv->cfp.unique) || loc == 0) return -EINVAL; ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc); if (ret) return ret; /* If this was an IPv6 rule, delete is companion rule too */ if (next_loc) ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL); return ret; } static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow) { unsigned int i; for (i = 0; i < sizeof(flow->m_u); i++) flow->m_u.hdata[i] ^= 0xff; flow->m_ext.vlan_etype ^= cpu_to_be16(~0); flow->m_ext.vlan_tci ^= cpu_to_be16(~0); flow->m_ext.data[0] ^= cpu_to_be32(~0); flow->m_ext.data[1] ^= cpu_to_be32(~0); } static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv, struct ethtool_tcpip4_spec *v4_spec, bool mask) { u32 reg, offset, ipv4; u16 src_dst_port; if (mask) offset = CORE_CFP_MASK_PORT(3); else offset = CORE_CFP_DATA_PORT(3); reg = core_readl(priv, offset); /* src port [15:8] */ src_dst_port = reg << 8; if (mask) offset = CORE_CFP_MASK_PORT(2); else offset = CORE_CFP_DATA_PORT(2); reg = core_readl(priv, offset); /* src port [7:0] */ src_dst_port |= (reg >> 24); v4_spec->pdst = cpu_to_be16(src_dst_port); v4_spec->psrc = cpu_to_be16((u16)(reg >> 8)); /* IPv4 dst [15:8] */ ipv4 = (reg & 0xff) << 8; if (mask) offset = CORE_CFP_MASK_PORT(1); else offset = CORE_CFP_DATA_PORT(1); reg = core_readl(priv, offset); /* IPv4 dst [31:16] */ ipv4 |= ((reg >> 8) & 0xffff) << 16; /* IPv4 dst [7:0] */ ipv4 |= (reg >> 24) & 0xff; v4_spec->ip4dst = cpu_to_be32(ipv4); /* IPv4 src [15:8] */ ipv4 = (reg & 0xff) << 8; if (mask) offset = CORE_CFP_MASK_PORT(0); else offset = CORE_CFP_DATA_PORT(0); reg = core_readl(priv, offset); /* Once the TCAM is programmed, the mask reflects the slice number * being matched, don't bother checking it when reading back the * mask spec */ if (!mask && !(reg & SLICE_VALID)) return -EINVAL; /* IPv4 src [7:0] */ ipv4 |= (reg >> 24) & 0xff; /* IPv4 src [31:16] */ ipv4 |= ((reg >> 8) & 0xffff) << 16; v4_spec->ip4src = cpu_to_be32(ipv4); return 0; } static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port, struct ethtool_rx_flow_spec *fs) { struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL; u32 reg; int ret; reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) { case IPPROTO_TCP: fs->flow_type = TCP_V4_FLOW; v4_spec = &fs->h_u.tcp_ip4_spec; v4_m_spec = &fs->m_u.tcp_ip4_spec; break; case IPPROTO_UDP: fs->flow_type = UDP_V4_FLOW; v4_spec = &fs->h_u.udp_ip4_spec; v4_m_spec = &fs->m_u.udp_ip4_spec; break; default: return -EINVAL; } fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1); v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK; ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false); if (ret) return ret; return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true); } static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv, __be32 *ip6_addr, __be16 *port, bool mask) { u32 reg, tmp, offset; /* C-Tag [31:24] * UDF_n_B8 [23:8] (port) * UDF_n_B7 (upper) [7:0] (addr[15:8]) */ if (mask) offset = CORE_CFP_MASK_PORT(4); else offset = CORE_CFP_DATA_PORT(4); reg = core_readl(priv, offset); *port = cpu_to_be32(reg) >> 8; tmp = (u32)(reg & 0xff) << 8; /* UDF_n_B7 (lower) [31:24] (addr[7:0]) * UDF_n_B6 [23:8] (addr[31:16]) * UDF_n_B5 (upper) [7:0] (addr[47:40]) */ if (mask) offset = CORE_CFP_MASK_PORT(3); else offset = CORE_CFP_DATA_PORT(3); reg = core_readl(priv, offset); tmp |= (reg >> 24) & 0xff; tmp |= (u32)((reg >> 8) << 16); ip6_addr[3] = cpu_to_be32(tmp); tmp = (u32)(reg & 0xff) << 8; /* UDF_n_B5 (lower) [31:24] (addr[39:32]) * UDF_n_B4 [23:8] (addr[63:48]) * UDF_n_B3 (upper) [7:0] (addr[79:72]) */ if (mask) offset = CORE_CFP_MASK_PORT(2); else offset = CORE_CFP_DATA_PORT(2); reg = core_readl(priv, offset); tmp |= (reg >> 24) & 0xff; tmp |= (u32)((reg >> 8) << 16); ip6_addr[2] = cpu_to_be32(tmp); tmp = (u32)(reg & 0xff) << 8; /* UDF_n_B3 (lower) [31:24] (addr[71:64]) * UDF_n_B2 [23:8] (addr[95:80]) * UDF_n_B1 (upper) [7:0] (addr[111:104]) */ if (mask) offset = CORE_CFP_MASK_PORT(1); else offset = CORE_CFP_DATA_PORT(1); reg = core_readl(priv, offset); tmp |= (reg >> 24) & 0xff; tmp |= (u32)((reg >> 8) << 16); ip6_addr[1] = cpu_to_be32(tmp); tmp = (u32)(reg & 0xff) << 8; /* UDF_n_B1 (lower) [31:24] (addr[103:96]) * UDF_n_B0 [23:8] (addr[127:112]) * Reserved [7:4] * Slice ID [3:2] * Slice valid [1:0] */ if (mask) offset = CORE_CFP_MASK_PORT(0); else offset = CORE_CFP_DATA_PORT(0); reg = core_readl(priv, offset); tmp |= (reg >> 24) & 0xff; tmp |= (u32)((reg >> 8) << 16); ip6_addr[0] = cpu_to_be32(tmp); if (!mask && !(reg & SLICE_VALID)) return -EINVAL; return 0; } static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port, struct ethtool_rx_flow_spec *fs, u32 next_loc) { struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL; u32 reg; int ret; /* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine * assuming tcp_ip6_spec here being an union. */ v6_spec = &fs->h_u.tcp_ip6_spec; v6_m_spec = &fs->m_u.tcp_ip6_spec; /* Read the second half first */ ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst, false); if (ret) return ret; ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst, &v6_m_spec->pdst, true); if (ret) return ret; /* Read last to avoid next entry clobbering the results during search * operations. We would not have the port enabled for this rule, so * don't bother checking it. */ (void)core_readl(priv, CORE_CFP_DATA_PORT(7)); /* The slice number is valid, so read the rule we are chained from now * which is our first half. */ bcm_sf2_cfp_rule_addr_set(priv, next_loc); ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL); if (ret) return ret; reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) { case IPPROTO_TCP: fs->flow_type = TCP_V6_FLOW; break; case IPPROTO_UDP: fs->flow_type = UDP_V6_FLOW; break; default: return -EINVAL; } ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc, false); if (ret) return ret; return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src, &v6_m_spec->psrc, true); } static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port, struct ethtool_rxnfc *nfc) { u32 reg, ipv4_or_chain_id; unsigned int queue_num; int ret; bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location); ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM); if (ret) return ret; reg = core_readl(priv, CORE_ACT_POL_DATA0); ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL); if (ret) return ret; /* Extract the destination port */ nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) & DST_MAP_IB_MASK) - 1; /* There is no Port 6, so we compensate for that here */ if (nfc->fs.ring_cookie >= 6) nfc->fs.ring_cookie++; nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES; /* Extract the destination queue */ queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK; nfc->fs.ring_cookie += queue_num; /* Extract the L3_FRAMING or CHAIN_ID */ reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); /* With IPv6 rules this would contain a non-zero chain ID since * we reserve entry 0 and it cannot be used. So if we read 0 here * this means an IPv4 rule. */ ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff; if (ipv4_or_chain_id == 0) ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs); else ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs, ipv4_or_chain_id); if (ret) return ret; /* Read last to avoid next entry clobbering the results during search * operations */ reg = core_readl(priv, CORE_CFP_DATA_PORT(7)); if (!(reg & 1 << port)) return -EINVAL; bcm_sf2_invert_masks(&nfc->fs); /* Put the TCAM size here */ nfc->data = bcm_sf2_cfp_rule_size(priv); return 0; } /* We implement the search doing a TCAM search operation */ static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv, int port, struct ethtool_rxnfc *nfc, u32 *rule_locs) { unsigned int index = 1, rules_cnt = 0; for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) { rule_locs[rules_cnt] = index; rules_cnt++; } /* Put the TCAM size here */ nfc->data = bcm_sf2_cfp_rule_size(priv); nfc->rule_cnt = rules_cnt; return 0; } int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port, struct ethtool_rxnfc *nfc, u32 *rule_locs) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); int ret = 0; mutex_lock(&priv->cfp.lock); switch (nfc->cmd) { case ETHTOOL_GRXCLSRLCNT: /* Subtract the default, unusable rule */ nfc->rule_cnt = bitmap_weight(priv->cfp.unique, priv->num_cfp_rules) - 1; /* We support specifying rule locations */ nfc->data |= RX_CLS_LOC_SPECIAL; break; case ETHTOOL_GRXCLSRULE: ret = bcm_sf2_cfp_rule_get(priv, port, nfc); break; case ETHTOOL_GRXCLSRLALL: ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs); break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&priv->cfp.lock); return ret; } int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port, struct ethtool_rxnfc *nfc) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); int ret = 0; mutex_lock(&priv->cfp.lock); switch (nfc->cmd) { case ETHTOOL_SRXCLSRLINS: ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs); break; case ETHTOOL_SRXCLSRLDEL: ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&priv->cfp.lock); return ret; } int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv) { unsigned int timeout = 1000; u32 reg; reg = core_readl(priv, CORE_CFP_ACC); reg |= TCAM_RESET; core_writel(priv, reg, CORE_CFP_ACC); do { reg = core_readl(priv, CORE_CFP_ACC); if (!(reg & TCAM_RESET)) break; cpu_relax(); } while (timeout--); if (!timeout) return -ETIMEDOUT; return 0; }