/* * NAND Flash Controller Device Driver * Copyright © 2009-2010, Intel Corporation and its suppliers. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include "denali.h" MODULE_LICENSE("GPL"); #define DENALI_NAND_NAME "denali-nand" /* for Indexed Addressing */ #define DENALI_INDEXED_CTRL 0x00 #define DENALI_INDEXED_DATA 0x10 #define DENALI_MAP00 (0 << 26) /* direct access to buffer */ #define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */ #define DENALI_MAP10 (2 << 26) /* high-level control plane */ #define DENALI_MAP11 (3 << 26) /* direct controller access */ /* MAP11 access cycle type */ #define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */ #define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */ #define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */ /* MAP10 commands */ #define DENALI_ERASE 0x01 #define DENALI_BANK(denali) ((denali)->active_bank << 24) #define DENALI_INVALID_BANK -1 #define DENALI_NR_BANKS 4 static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd) { return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand); } /* * Direct Addressing - the slave address forms the control information (command * type, bank, block, and page address). The slave data is the actual data to * be transferred. This mode requires 28 bits of address region allocated. */ static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr) { return ioread32(denali->host + addr); } static void denali_direct_write(struct denali_nand_info *denali, u32 addr, u32 data) { iowrite32(data, denali->host + addr); } /* * Indexed Addressing - address translation module intervenes in passing the * control information. This mode reduces the required address range. The * control information and transferred data are latched by the registers in * the translation module. */ static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr) { iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); return ioread32(denali->host + DENALI_INDEXED_DATA); } static void denali_indexed_write(struct denali_nand_info *denali, u32 addr, u32 data) { iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); iowrite32(data, denali->host + DENALI_INDEXED_DATA); } /* * Use the configuration feature register to determine the maximum number of * banks that the hardware supports. */ static void denali_detect_max_banks(struct denali_nand_info *denali) { uint32_t features = ioread32(denali->reg + FEATURES); denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features); /* the encoding changed from rev 5.0 to 5.1 */ if (denali->revision < 0x0501) denali->max_banks <<= 1; } static void denali_enable_irq(struct denali_nand_info *denali) { int i; for (i = 0; i < DENALI_NR_BANKS; i++) iowrite32(U32_MAX, denali->reg + INTR_EN(i)); iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE); } static void denali_disable_irq(struct denali_nand_info *denali) { int i; for (i = 0; i < DENALI_NR_BANKS; i++) iowrite32(0, denali->reg + INTR_EN(i)); iowrite32(0, denali->reg + GLOBAL_INT_ENABLE); } static void denali_clear_irq(struct denali_nand_info *denali, int bank, uint32_t irq_status) { /* write one to clear bits */ iowrite32(irq_status, denali->reg + INTR_STATUS(bank)); } static void denali_clear_irq_all(struct denali_nand_info *denali) { int i; for (i = 0; i < DENALI_NR_BANKS; i++) denali_clear_irq(denali, i, U32_MAX); } static irqreturn_t denali_isr(int irq, void *dev_id) { struct denali_nand_info *denali = dev_id; irqreturn_t ret = IRQ_NONE; uint32_t irq_status; int i; spin_lock(&denali->irq_lock); for (i = 0; i < DENALI_NR_BANKS; i++) { irq_status = ioread32(denali->reg + INTR_STATUS(i)); if (irq_status) ret = IRQ_HANDLED; denali_clear_irq(denali, i, irq_status); if (i != denali->active_bank) continue; denali->irq_status |= irq_status; if (denali->irq_status & denali->irq_mask) complete(&denali->complete); } spin_unlock(&denali->irq_lock); return ret; } static void denali_reset_irq(struct denali_nand_info *denali) { unsigned long flags; spin_lock_irqsave(&denali->irq_lock, flags); denali->irq_status = 0; denali->irq_mask = 0; spin_unlock_irqrestore(&denali->irq_lock, flags); } static uint32_t denali_wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) { unsigned long time_left, flags; uint32_t irq_status; spin_lock_irqsave(&denali->irq_lock, flags); irq_status = denali->irq_status; if (irq_mask & irq_status) { /* return immediately if the IRQ has already happened. */ spin_unlock_irqrestore(&denali->irq_lock, flags); return irq_status; } denali->irq_mask = irq_mask; reinit_completion(&denali->complete); spin_unlock_irqrestore(&denali->irq_lock, flags); time_left = wait_for_completion_timeout(&denali->complete, msecs_to_jiffies(1000)); if (!time_left) { dev_err(denali->dev, "timeout while waiting for irq 0x%x\n", irq_mask); return 0; } return denali->irq_status; } static uint32_t denali_check_irq(struct denali_nand_info *denali) { unsigned long flags; uint32_t irq_status; spin_lock_irqsave(&denali->irq_lock, flags); irq_status = denali->irq_status; spin_unlock_irqrestore(&denali->irq_lock, flags); return irq_status; } static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct denali_nand_info *denali = mtd_to_denali(mtd); u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali); int i; for (i = 0; i < len; i++) buf[i] = denali->host_read(denali, addr); } static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct denali_nand_info *denali = mtd_to_denali(mtd); u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali); int i; for (i = 0; i < len; i++) denali->host_write(denali, addr, buf[i]); } static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) { struct denali_nand_info *denali = mtd_to_denali(mtd); u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali); uint16_t *buf16 = (uint16_t *)buf; int i; for (i = 0; i < len / 2; i++) buf16[i] = denali->host_read(denali, addr); } static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) { struct denali_nand_info *denali = mtd_to_denali(mtd); u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali); const uint16_t *buf16 = (const uint16_t *)buf; int i; for (i = 0; i < len / 2; i++) denali->host_write(denali, addr, buf16[i]); } static uint8_t denali_read_byte(struct mtd_info *mtd) { uint8_t byte; denali_read_buf(mtd, &byte, 1); return byte; } static void denali_write_byte(struct mtd_info *mtd, uint8_t byte) { denali_write_buf(mtd, &byte, 1); } static uint16_t denali_read_word(struct mtd_info *mtd) { uint16_t word; denali_read_buf16(mtd, (uint8_t *)&word, 2); return word; } static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t type; if (ctrl & NAND_CLE) type = DENALI_MAP11_CMD; else if (ctrl & NAND_ALE) type = DENALI_MAP11_ADDR; else return; /* * Some commands are followed by chip->dev_ready or chip->waitfunc. * irq_status must be cleared here to catch the R/B# interrupt later. */ if (ctrl & NAND_CTRL_CHANGE) denali_reset_irq(denali); denali->host_write(denali, DENALI_BANK(denali) | type, dat); } static int denali_dev_ready(struct mtd_info *mtd) { struct denali_nand_info *denali = mtd_to_denali(mtd); return !!(denali_check_irq(denali) & INTR__INT_ACT); } static int denali_check_erased_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, unsigned long uncor_ecc_flags, unsigned int max_bitflips) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint8_t *ecc_code = chip->oob_poi + denali->oob_skip_bytes; int ecc_steps = chip->ecc.steps; int ecc_size = chip->ecc.size; int ecc_bytes = chip->ecc.bytes; int i, stat; for (i = 0; i < ecc_steps; i++) { if (!(uncor_ecc_flags & BIT(i))) continue; stat = nand_check_erased_ecc_chunk(buf, ecc_size, ecc_code, ecc_bytes, NULL, 0, chip->ecc.strength); if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } buf += ecc_size; ecc_code += ecc_bytes; } return max_bitflips; } static int denali_hw_ecc_fixup(struct mtd_info *mtd, struct denali_nand_info *denali, unsigned long *uncor_ecc_flags) { struct nand_chip *chip = mtd_to_nand(mtd); int bank = denali->active_bank; uint32_t ecc_cor; unsigned int max_bitflips; ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank)); ecc_cor >>= ECC_COR_INFO__SHIFT(bank); if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) { /* * This flag is set when uncorrectable error occurs at least in * one ECC sector. We can not know "how many sectors", or * "which sector(s)". We need erase-page check for all sectors. */ *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0); return 0; } max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor); /* * The register holds the maximum of per-sector corrected bitflips. * This is suitable for the return value of the ->read_page() callback. * Unfortunately, we can not know the total number of corrected bits in * the page. Increase the stats by max_bitflips. (compromised solution) */ mtd->ecc_stats.corrected += max_bitflips; return max_bitflips; } static int denali_sw_ecc_fixup(struct mtd_info *mtd, struct denali_nand_info *denali, unsigned long *uncor_ecc_flags, uint8_t *buf) { unsigned int ecc_size = denali->nand.ecc.size; unsigned int bitflips = 0; unsigned int max_bitflips = 0; uint32_t err_addr, err_cor_info; unsigned int err_byte, err_sector, err_device; uint8_t err_cor_value; unsigned int prev_sector = 0; uint32_t irq_status; denali_reset_irq(denali); do { err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS); err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr); err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr); err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO); err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE, err_cor_info); err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE, err_cor_info); /* reset the bitflip counter when crossing ECC sector */ if (err_sector != prev_sector) bitflips = 0; if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) { /* * Check later if this is a real ECC error, or * an erased sector. */ *uncor_ecc_flags |= BIT(err_sector); } else if (err_byte < ecc_size) { /* * If err_byte is larger than ecc_size, means error * happened in OOB, so we ignore it. It's no need for * us to correct it err_device is represented the NAND * error bits are happened in if there are more than * one NAND connected. */ int offset; unsigned int flips_in_byte; offset = (err_sector * ecc_size + err_byte) * denali->devs_per_cs + err_device; /* correct the ECC error */ flips_in_byte = hweight8(buf[offset] ^ err_cor_value); buf[offset] ^= err_cor_value; mtd->ecc_stats.corrected += flips_in_byte; bitflips += flips_in_byte; max_bitflips = max(max_bitflips, bitflips); } prev_sector = err_sector; } while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR)); /* * Once handle all ECC errors, controller will trigger an * ECC_TRANSACTION_DONE interrupt. */ irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE); if (!(irq_status & INTR__ECC_TRANSACTION_DONE)) return -EIO; return max_bitflips; } static void denali_setup_dma64(struct denali_nand_info *denali, dma_addr_t dma_addr, int page, int write) { uint32_t mode; const int page_count = 1; mode = DENALI_MAP10 | DENALI_BANK(denali) | page; /* DMA is a three step process */ /* * 1. setup transfer type, interrupt when complete, * burst len = 64 bytes, the number of pages */ denali->host_write(denali, mode, 0x01002000 | (64 << 16) | (write << 8) | page_count); /* 2. set memory low address */ denali->host_write(denali, mode, lower_32_bits(dma_addr)); /* 3. set memory high address */ denali->host_write(denali, mode, upper_32_bits(dma_addr)); } static void denali_setup_dma32(struct denali_nand_info *denali, dma_addr_t dma_addr, int page, int write) { uint32_t mode; const int page_count = 1; mode = DENALI_MAP10 | DENALI_BANK(denali); /* DMA is a four step process */ /* 1. setup transfer type and # of pages */ denali->host_write(denali, mode | page, 0x2000 | (write << 8) | page_count); /* 2. set memory high address bits 23:8 */ denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200); /* 3. set memory low address bits 23:8 */ denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300); /* 4. interrupt when complete, burst len = 64 bytes */ denali->host_write(denali, mode | 0x14000, 0x2400); } static int denali_pio_read(struct denali_nand_info *denali, void *buf, size_t size, int page, int raw) { u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; uint32_t *buf32 = (uint32_t *)buf; uint32_t irq_status, ecc_err_mask; int i; if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) ecc_err_mask = INTR__ECC_UNCOR_ERR; else ecc_err_mask = INTR__ECC_ERR; denali_reset_irq(denali); for (i = 0; i < size / 4; i++) *buf32++ = denali->host_read(denali, addr); irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC); if (!(irq_status & INTR__PAGE_XFER_INC)) return -EIO; if (irq_status & INTR__ERASED_PAGE) memset(buf, 0xff, size); return irq_status & ecc_err_mask ? -EBADMSG : 0; } static int denali_pio_write(struct denali_nand_info *denali, const void *buf, size_t size, int page, int raw) { u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; const uint32_t *buf32 = (uint32_t *)buf; uint32_t irq_status; int i; denali_reset_irq(denali); for (i = 0; i < size / 4; i++) denali->host_write(denali, addr, *buf32++); irq_status = denali_wait_for_irq(denali, INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL); if (!(irq_status & INTR__PROGRAM_COMP)) return -EIO; return 0; } static int denali_pio_xfer(struct denali_nand_info *denali, void *buf, size_t size, int page, int raw, int write) { if (write) return denali_pio_write(denali, buf, size, page, raw); else return denali_pio_read(denali, buf, size, page, raw); } static int denali_dma_xfer(struct denali_nand_info *denali, void *buf, size_t size, int page, int raw, int write) { dma_addr_t dma_addr; uint32_t irq_mask, irq_status, ecc_err_mask; enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; int ret = 0; dma_addr = dma_map_single(denali->dev, buf, size, dir); if (dma_mapping_error(denali->dev, dma_addr)) { dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n"); return denali_pio_xfer(denali, buf, size, page, raw, write); } if (write) { /* * INTR__PROGRAM_COMP is never asserted for the DMA transfer. * We can use INTR__DMA_CMD_COMP instead. This flag is asserted * when the page program is completed. */ irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL; ecc_err_mask = 0; } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) { irq_mask = INTR__DMA_CMD_COMP; ecc_err_mask = INTR__ECC_UNCOR_ERR; } else { irq_mask = INTR__DMA_CMD_COMP; ecc_err_mask = INTR__ECC_ERR; } iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE); denali_reset_irq(denali); denali->setup_dma(denali, dma_addr, page, write); irq_status = denali_wait_for_irq(denali, irq_mask); if (!(irq_status & INTR__DMA_CMD_COMP)) ret = -EIO; else if (irq_status & ecc_err_mask) ret = -EBADMSG; iowrite32(0, denali->reg + DMA_ENABLE); dma_unmap_single(denali->dev, dma_addr, size, dir); if (irq_status & INTR__ERASED_PAGE) memset(buf, 0xff, size); return ret; } static int denali_data_xfer(struct denali_nand_info *denali, void *buf, size_t size, int page, int raw, int write) { iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE); iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0, denali->reg + TRANSFER_SPARE_REG); if (denali->dma_avail) return denali_dma_xfer(denali, buf, size, page, raw, write); else return denali_pio_xfer(denali, buf, size, page, raw, write); } static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip, int page, int write) { struct denali_nand_info *denali = mtd_to_denali(mtd); int writesize = mtd->writesize; int oobsize = mtd->oobsize; uint8_t *bufpoi = chip->oob_poi; int ecc_steps = chip->ecc.steps; int ecc_size = chip->ecc.size; int ecc_bytes = chip->ecc.bytes; int oob_skip = denali->oob_skip_bytes; size_t size = writesize + oobsize; int i, pos, len; /* BBM at the beginning of the OOB area */ if (write) nand_prog_page_begin_op(chip, page, writesize, bufpoi, oob_skip); else nand_read_page_op(chip, page, writesize, bufpoi, oob_skip); bufpoi += oob_skip; /* OOB ECC */ for (i = 0; i < ecc_steps; i++) { pos = ecc_size + i * (ecc_size + ecc_bytes); len = ecc_bytes; if (pos >= writesize) pos += oob_skip; else if (pos + len > writesize) len = writesize - pos; if (write) nand_change_write_column_op(chip, pos, bufpoi, len, false); else nand_change_read_column_op(chip, pos, bufpoi, len, false); bufpoi += len; if (len < ecc_bytes) { len = ecc_bytes - len; if (write) nand_change_write_column_op(chip, writesize + oob_skip, bufpoi, len, false); else nand_change_read_column_op(chip, writesize + oob_skip, bufpoi, len, false); bufpoi += len; } } /* OOB free */ len = oobsize - (bufpoi - chip->oob_poi); if (write) nand_change_write_column_op(chip, size - len, bufpoi, len, false); else nand_change_read_column_op(chip, size - len, bufpoi, len, false); } static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); int writesize = mtd->writesize; int oobsize = mtd->oobsize; int ecc_steps = chip->ecc.steps; int ecc_size = chip->ecc.size; int ecc_bytes = chip->ecc.bytes; void *tmp_buf = denali->buf; int oob_skip = denali->oob_skip_bytes; size_t size = writesize + oobsize; int ret, i, pos, len; ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0); if (ret) return ret; /* Arrange the buffer for syndrome payload/ecc layout */ if (buf) { for (i = 0; i < ecc_steps; i++) { pos = i * (ecc_size + ecc_bytes); len = ecc_size; if (pos >= writesize) pos += oob_skip; else if (pos + len > writesize) len = writesize - pos; memcpy(buf, tmp_buf + pos, len); buf += len; if (len < ecc_size) { len = ecc_size - len; memcpy(buf, tmp_buf + writesize + oob_skip, len); buf += len; } } } if (oob_required) { uint8_t *oob = chip->oob_poi; /* BBM at the beginning of the OOB area */ memcpy(oob, tmp_buf + writesize, oob_skip); oob += oob_skip; /* OOB ECC */ for (i = 0; i < ecc_steps; i++) { pos = ecc_size + i * (ecc_size + ecc_bytes); len = ecc_bytes; if (pos >= writesize) pos += oob_skip; else if (pos + len > writesize) len = writesize - pos; memcpy(oob, tmp_buf + pos, len); oob += len; if (len < ecc_bytes) { len = ecc_bytes - len; memcpy(oob, tmp_buf + writesize + oob_skip, len); oob += len; } } /* OOB free */ len = oobsize - (oob - chip->oob_poi); memcpy(oob, tmp_buf + size - len, len); } return 0; } static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { denali_oob_xfer(mtd, chip, page, 0); return 0; } static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); denali_reset_irq(denali); denali_oob_xfer(mtd, chip, page, 1); return nand_prog_page_end_op(chip); } static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); unsigned long uncor_ecc_flags = 0; int stat = 0; int ret; ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0); if (ret && ret != -EBADMSG) return ret; if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags); else if (ret == -EBADMSG) stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf); if (stat < 0) return stat; if (uncor_ecc_flags) { ret = denali_read_oob(mtd, chip, page); if (ret) return ret; stat = denali_check_erased_page(mtd, chip, buf, uncor_ecc_flags, stat); } return stat; } static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); int writesize = mtd->writesize; int oobsize = mtd->oobsize; int ecc_steps = chip->ecc.steps; int ecc_size = chip->ecc.size; int ecc_bytes = chip->ecc.bytes; void *tmp_buf = denali->buf; int oob_skip = denali->oob_skip_bytes; size_t size = writesize + oobsize; int i, pos, len; /* * Fill the buffer with 0xff first except the full page transfer. * This simplifies the logic. */ if (!buf || !oob_required) memset(tmp_buf, 0xff, size); /* Arrange the buffer for syndrome payload/ecc layout */ if (buf) { for (i = 0; i < ecc_steps; i++) { pos = i * (ecc_size + ecc_bytes); len = ecc_size; if (pos >= writesize) pos += oob_skip; else if (pos + len > writesize) len = writesize - pos; memcpy(tmp_buf + pos, buf, len); buf += len; if (len < ecc_size) { len = ecc_size - len; memcpy(tmp_buf + writesize + oob_skip, buf, len); buf += len; } } } if (oob_required) { const uint8_t *oob = chip->oob_poi; /* BBM at the beginning of the OOB area */ memcpy(tmp_buf + writesize, oob, oob_skip); oob += oob_skip; /* OOB ECC */ for (i = 0; i < ecc_steps; i++) { pos = ecc_size + i * (ecc_size + ecc_bytes); len = ecc_bytes; if (pos >= writesize) pos += oob_skip; else if (pos + len > writesize) len = writesize - pos; memcpy(tmp_buf + pos, oob, len); oob += len; if (len < ecc_bytes) { len = ecc_bytes - len; memcpy(tmp_buf + writesize + oob_skip, oob, len); oob += len; } } /* OOB free */ len = oobsize - (oob - chip->oob_poi); memcpy(tmp_buf + size - len, oob, len); } return denali_data_xfer(denali, tmp_buf, size, page, 1, 1); } static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); return denali_data_xfer(denali, (void *)buf, mtd->writesize, page, 0, 1); } static void denali_select_chip(struct mtd_info *mtd, int chip) { struct denali_nand_info *denali = mtd_to_denali(mtd); denali->active_bank = chip; } static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t irq_status; /* R/B# pin transitioned from low to high? */ irq_status = denali_wait_for_irq(denali, INTR__INT_ACT); return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL; } static int denali_erase(struct mtd_info *mtd, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t irq_status; denali_reset_irq(denali); denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page, DENALI_ERASE); /* wait for erase to complete or failure to occur */ irq_status = denali_wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL); return irq_status & INTR__ERASE_COMP ? 0 : -EIO; } static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr, const struct nand_data_interface *conf) { struct denali_nand_info *denali = mtd_to_denali(mtd); const struct nand_sdr_timings *timings; unsigned long t_x, mult_x; int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data; int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup; int addr_2_data_mask; uint32_t tmp; timings = nand_get_sdr_timings(conf); if (IS_ERR(timings)) return PTR_ERR(timings); /* clk_x period in picoseconds */ t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate); if (!t_x) return -EINVAL; /* * The bus interface clock, clk_x, is phase aligned with the core clock. * The clk_x is an integral multiple N of the core clk. The value N is * configured at IP delivery time, and its available value is 4, 5, 6. */ mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate); if (mult_x < 4 || mult_x > 6) return -EINVAL; if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) return 0; /* tREA -> ACC_CLKS */ acc_clks = DIV_ROUND_UP(timings->tREA_max, t_x); acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE); tmp = ioread32(denali->reg + ACC_CLKS); tmp &= ~ACC_CLKS__VALUE; tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks); iowrite32(tmp, denali->reg + ACC_CLKS); /* tRWH -> RE_2_WE */ re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x); re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE); tmp = ioread32(denali->reg + RE_2_WE); tmp &= ~RE_2_WE__VALUE; tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we); iowrite32(tmp, denali->reg + RE_2_WE); /* tRHZ -> RE_2_RE */ re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x); re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE); tmp = ioread32(denali->reg + RE_2_RE); tmp &= ~RE_2_RE__VALUE; tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re); iowrite32(tmp, denali->reg + RE_2_RE); /* * tCCS, tWHR -> WE_2_RE * * With WE_2_RE properly set, the Denali controller automatically takes * care of the delay; the driver need not set NAND_WAIT_TCCS. */ we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x); we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE); tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE); tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE; tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re); iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE); /* tADL -> ADDR_2_DATA */ /* for older versions, ADDR_2_DATA is only 6 bit wide */ addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; if (denali->revision < 0x0501) addr_2_data_mask >>= 1; addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x); addr_2_data = min_t(int, addr_2_data, addr_2_data_mask); tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA); tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data); iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA); /* tREH, tWH -> RDWR_EN_HI_CNT */ rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min), t_x); rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE); tmp = ioread32(denali->reg + RDWR_EN_HI_CNT); tmp &= ~RDWR_EN_HI_CNT__VALUE; tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi); iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT); /* tRP, tWP -> RDWR_EN_LO_CNT */ rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x); rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min), t_x); rdwr_en_lo_hi = max_t(int, rdwr_en_lo_hi, mult_x); rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi); rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE); tmp = ioread32(denali->reg + RDWR_EN_LO_CNT); tmp &= ~RDWR_EN_LO_CNT__VALUE; tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo); iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT); /* tCS, tCEA -> CS_SETUP_CNT */ cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo, (int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks, 0); cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE); tmp = ioread32(denali->reg + CS_SETUP_CNT); tmp &= ~CS_SETUP_CNT__VALUE; tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup); iowrite32(tmp, denali->reg + CS_SETUP_CNT); return 0; } static void denali_reset_banks(struct denali_nand_info *denali) { u32 irq_status; int i; for (i = 0; i < denali->max_banks; i++) { denali->active_bank = i; denali_reset_irq(denali); iowrite32(DEVICE_RESET__BANK(i), denali->reg + DEVICE_RESET); irq_status = denali_wait_for_irq(denali, INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT); if (!(irq_status & INTR__INT_ACT)) break; } dev_dbg(denali->dev, "%d chips connected\n", i); denali->max_banks = i; } static void denali_hw_init(struct denali_nand_info *denali) { /* * The REVISION register may not be reliable. Platforms are allowed to * override it. */ if (!denali->revision) denali->revision = swab16(ioread32(denali->reg + REVISION)); /* * tell driver how many bit controller will skip before * writing ECC code in OOB, this register may be already * set by firmware. So we read this value out. * if this value is 0, just let it be. */ denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES); denali_detect_max_banks(denali); iowrite32(0x0F, denali->reg + RB_PIN_ENABLED); iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE); iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER); } int denali_calc_ecc_bytes(int step_size, int strength) { /* BCH code. Denali requires ecc.bytes to be multiple of 2 */ return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2; } EXPORT_SYMBOL(denali_calc_ecc_bytes); static int denali_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct denali_nand_info *denali = mtd_to_denali(mtd); struct nand_chip *chip = mtd_to_nand(mtd); if (section) return -ERANGE; oobregion->offset = denali->oob_skip_bytes; oobregion->length = chip->ecc.total; return 0; } static int denali_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct denali_nand_info *denali = mtd_to_denali(mtd); struct nand_chip *chip = mtd_to_nand(mtd); if (section) return -ERANGE; oobregion->offset = chip->ecc.total + denali->oob_skip_bytes; oobregion->length = mtd->oobsize - oobregion->offset; return 0; } static const struct mtd_ooblayout_ops denali_ooblayout_ops = { .ecc = denali_ooblayout_ecc, .free = denali_ooblayout_free, }; static int denali_multidev_fixup(struct denali_nand_info *denali) { struct nand_chip *chip = &denali->nand; struct mtd_info *mtd = nand_to_mtd(chip); /* * Support for multi device: * When the IP configuration is x16 capable and two x8 chips are * connected in parallel, DEVICES_CONNECTED should be set to 2. * In this case, the core framework knows nothing about this fact, * so we should tell it the _logical_ pagesize and anything necessary. */ denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED); /* * On some SoCs, DEVICES_CONNECTED is not auto-detected. * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case. */ if (denali->devs_per_cs == 0) { denali->devs_per_cs = 1; iowrite32(1, denali->reg + DEVICES_CONNECTED); } if (denali->devs_per_cs == 1) return 0; if (denali->devs_per_cs != 2) { dev_err(denali->dev, "unsupported number of devices %d\n", denali->devs_per_cs); return -EINVAL; } /* 2 chips in parallel */ mtd->size <<= 1; mtd->erasesize <<= 1; mtd->writesize <<= 1; mtd->oobsize <<= 1; chip->chipsize <<= 1; chip->page_shift += 1; chip->phys_erase_shift += 1; chip->bbt_erase_shift += 1; chip->chip_shift += 1; chip->pagemask <<= 1; chip->ecc.size <<= 1; chip->ecc.bytes <<= 1; chip->ecc.strength <<= 1; denali->oob_skip_bytes <<= 1; return 0; } int denali_init(struct denali_nand_info *denali) { struct nand_chip *chip = &denali->nand; struct mtd_info *mtd = nand_to_mtd(chip); u32 features = ioread32(denali->reg + FEATURES); int ret; mtd->dev.parent = denali->dev; denali_hw_init(denali); init_completion(&denali->complete); spin_lock_init(&denali->irq_lock); denali_clear_irq_all(denali); ret = devm_request_irq(denali->dev, denali->irq, denali_isr, IRQF_SHARED, DENALI_NAND_NAME, denali); if (ret) { dev_err(denali->dev, "Unable to request IRQ\n"); return ret; } denali_enable_irq(denali); denali_reset_banks(denali); denali->active_bank = DENALI_INVALID_BANK; nand_set_flash_node(chip, denali->dev->of_node); /* Fallback to the default name if DT did not give "label" property */ if (!mtd->name) mtd->name = "denali-nand"; chip->select_chip = denali_select_chip; chip->read_byte = denali_read_byte; chip->write_byte = denali_write_byte; chip->read_word = denali_read_word; chip->cmd_ctrl = denali_cmd_ctrl; chip->dev_ready = denali_dev_ready; chip->waitfunc = denali_waitfunc; if (features & FEATURES__INDEX_ADDR) { denali->host_read = denali_indexed_read; denali->host_write = denali_indexed_write; } else { denali->host_read = denali_direct_read; denali->host_write = denali_direct_write; } /* clk rate info is needed for setup_data_interface */ if (denali->clk_rate && denali->clk_x_rate) chip->setup_data_interface = denali_setup_data_interface; ret = nand_scan_ident(mtd, denali->max_banks, NULL); if (ret) goto disable_irq; if (ioread32(denali->reg + FEATURES) & FEATURES__DMA) denali->dma_avail = 1; if (denali->dma_avail) { int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32; ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit)); if (ret) { dev_info(denali->dev, "Failed to set DMA mask. Disabling DMA.\n"); denali->dma_avail = 0; } } if (denali->dma_avail) { chip->options |= NAND_USE_BOUNCE_BUFFER; chip->buf_align = 16; if (denali->caps & DENALI_CAP_DMA_64BIT) denali->setup_dma = denali_setup_dma64; else denali->setup_dma = denali_setup_dma32; } chip->bbt_options |= NAND_BBT_USE_FLASH; chip->bbt_options |= NAND_BBT_NO_OOB; chip->ecc.mode = NAND_ECC_HW_SYNDROME; chip->options |= NAND_NO_SUBPAGE_WRITE; ret = nand_ecc_choose_conf(chip, denali->ecc_caps, mtd->oobsize - denali->oob_skip_bytes); if (ret) { dev_err(denali->dev, "Failed to setup ECC settings.\n"); goto disable_irq; } dev_dbg(denali->dev, "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) | FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength), denali->reg + ECC_CORRECTION); iowrite32(mtd->erasesize / mtd->writesize, denali->reg + PAGES_PER_BLOCK); iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0, denali->reg + DEVICE_WIDTH); iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG, denali->reg + TWO_ROW_ADDR_CYCLES); iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE); iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE); iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE); iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE); /* chip->ecc.steps is set by nand_scan_tail(); not available here */ iowrite32(mtd->writesize / chip->ecc.size, denali->reg + CFG_NUM_DATA_BLOCKS); mtd_set_ooblayout(mtd, &denali_ooblayout_ops); if (chip->options & NAND_BUSWIDTH_16) { chip->read_buf = denali_read_buf16; chip->write_buf = denali_write_buf16; } else { chip->read_buf = denali_read_buf; chip->write_buf = denali_write_buf; } chip->ecc.read_page = denali_read_page; chip->ecc.read_page_raw = denali_read_page_raw; chip->ecc.write_page = denali_write_page; chip->ecc.write_page_raw = denali_write_page_raw; chip->ecc.read_oob = denali_read_oob; chip->ecc.write_oob = denali_write_oob; chip->erase = denali_erase; ret = denali_multidev_fixup(denali); if (ret) goto disable_irq; /* * This buffer is DMA-mapped by denali_{read,write}_page_raw. Do not * use devm_kmalloc() because the memory allocated by devm_ does not * guarantee DMA-safe alignment. */ denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); if (!denali->buf) { ret = -ENOMEM; goto disable_irq; } ret = nand_scan_tail(mtd); if (ret) goto free_buf; ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(denali->dev, "Failed to register MTD: %d\n", ret); goto cleanup_nand; } return 0; cleanup_nand: nand_cleanup(chip); free_buf: kfree(denali->buf); disable_irq: denali_disable_irq(denali); return ret; } EXPORT_SYMBOL(denali_init); void denali_remove(struct denali_nand_info *denali) { struct mtd_info *mtd = nand_to_mtd(&denali->nand); nand_release(mtd); kfree(denali->buf); denali_disable_irq(denali); } EXPORT_SYMBOL(denali_remove);