/* * Copyright (C) 2003 Rick Bronson * * Derived from drivers/mtd/nand/autcpu12.c * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) * * Derived from drivers/mtd/spia.c * Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com) * * * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright (C) 2007 * * Derived from Das U-Boot source code * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MTD_NAND_ATMEL_ECC_HW #define hard_ecc 1 #else #define hard_ecc 0 #endif #ifdef CONFIG_MTD_NAND_ATMEL_ECC_NONE #define no_ecc 1 #else #define no_ecc 0 #endif static int use_dma = 1; module_param(use_dma, int, 0); static int on_flash_bbt = 0; module_param(on_flash_bbt, int, 0); /* Register access macros */ #define ecc_readl(add, reg) \ __raw_readl(add + ATMEL_ECC_##reg) #define ecc_writel(add, reg, value) \ __raw_writel((value), add + ATMEL_ECC_##reg) #include "atmel_nand_ecc.h" /* Hardware ECC registers */ /* oob layout for large page size * bad block info is on bytes 0 and 1 * the bytes have to be consecutives to avoid * several NAND_CMD_RNDOUT during read */ static struct nand_ecclayout atmel_oobinfo_large = { .eccbytes = 4, .eccpos = {60, 61, 62, 63}, .oobfree = { {2, 58} }, }; /* oob layout for small page size * bad block info is on bytes 4 and 5 * the bytes have to be consecutives to avoid * several NAND_CMD_RNDOUT during read */ static struct nand_ecclayout atmel_oobinfo_small = { .eccbytes = 4, .eccpos = {0, 1, 2, 3}, .oobfree = { {6, 10} }, }; struct atmel_nand_host { struct nand_chip nand_chip; struct mtd_info mtd; void __iomem *io_base; dma_addr_t io_phys; struct atmel_nand_data *board; struct device *dev; void __iomem *ecc; struct completion comp; struct dma_chan *dma_chan; }; static int cpu_has_dma(void) { return cpu_is_at91sam9rl() || cpu_is_at91sam9g45(); } /* * Enable NAND. */ static void atmel_nand_enable(struct atmel_nand_host *host) { if (host->board->enable_pin) gpio_set_value(host->board->enable_pin, 0); } /* * Disable NAND. */ static void atmel_nand_disable(struct atmel_nand_host *host) { if (host->board->enable_pin) gpio_set_value(host->board->enable_pin, 1); } /* * Hardware specific access to control-lines */ static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; if (ctrl & NAND_CTRL_CHANGE) { if (ctrl & NAND_NCE) atmel_nand_enable(host); else atmel_nand_disable(host); } if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) writeb(cmd, host->io_base + (1 << host->board->cle)); else writeb(cmd, host->io_base + (1 << host->board->ale)); } /* * Read the Device Ready pin. */ static int atmel_nand_device_ready(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; return gpio_get_value(host->board->rdy_pin) ^ !!host->board->rdy_pin_active_low; } /* * Minimal-overhead PIO for data access. */ static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; __raw_readsb(nand_chip->IO_ADDR_R, buf, len); } static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2); } static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; __raw_writesb(nand_chip->IO_ADDR_W, buf, len); } static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2); } static void dma_complete_func(void *completion) { complete(completion); } static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len, int is_read) { struct dma_device *dma_dev; enum dma_ctrl_flags flags; dma_addr_t dma_src_addr, dma_dst_addr, phys_addr; struct dma_async_tx_descriptor *tx = NULL; dma_cookie_t cookie; struct nand_chip *chip = mtd->priv; struct atmel_nand_host *host = chip->priv; void *p = buf; int err = -EIO; enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; if (buf >= high_memory) goto err_buf; dma_dev = host->dma_chan->device; flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP | DMA_COMPL_SKIP_DEST_UNMAP; phys_addr = dma_map_single(dma_dev->dev, p, len, dir); if (dma_mapping_error(dma_dev->dev, phys_addr)) { dev_err(host->dev, "Failed to dma_map_single\n"); goto err_buf; } if (is_read) { dma_src_addr = host->io_phys; dma_dst_addr = phys_addr; } else { dma_src_addr = phys_addr; dma_dst_addr = host->io_phys; } tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr, dma_src_addr, len, flags); if (!tx) { dev_err(host->dev, "Failed to prepare DMA memcpy\n"); goto err_dma; } init_completion(&host->comp); tx->callback = dma_complete_func; tx->callback_param = &host->comp; cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { dev_err(host->dev, "Failed to do DMA tx_submit\n"); goto err_dma; } dma_async_issue_pending(host->dma_chan); wait_for_completion(&host->comp); err = 0; err_dma: dma_unmap_single(dma_dev->dev, phys_addr, len, dir); err_buf: if (err != 0) dev_warn(host->dev, "Fall back to CPU I/O\n"); return err; } static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *chip = mtd->priv; struct atmel_nand_host *host = chip->priv; if (use_dma && len > mtd->oobsize) /* only use DMA for bigger than oob size: better performances */ if (atmel_nand_dma_op(mtd, buf, len, 1) == 0) return; if (host->board->bus_width_16) atmel_read_buf16(mtd, buf, len); else atmel_read_buf8(mtd, buf, len); } static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *chip = mtd->priv; struct atmel_nand_host *host = chip->priv; if (use_dma && len > mtd->oobsize) /* only use DMA for bigger than oob size: better performances */ if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0) return; if (host->board->bus_width_16) atmel_write_buf16(mtd, buf, len); else atmel_write_buf8(mtd, buf, len); } /* * Calculate HW ECC * * function called after a write * * mtd: MTD block structure * dat: raw data (unused) * ecc_code: buffer for ECC */ static int atmel_nand_calculate(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; unsigned int ecc_value; /* get the first 2 ECC bytes */ ecc_value = ecc_readl(host->ecc, PR); ecc_code[0] = ecc_value & 0xFF; ecc_code[1] = (ecc_value >> 8) & 0xFF; /* get the last 2 ECC bytes */ ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY; ecc_code[2] = ecc_value & 0xFF; ecc_code[3] = (ecc_value >> 8) & 0xFF; return 0; } /* * HW ECC read page function * * mtd: mtd info structure * chip: nand chip info structure * buf: buffer to store read data */ static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; uint32_t *eccpos = chip->ecc.layout->eccpos; uint8_t *p = buf; uint8_t *oob = chip->oob_poi; uint8_t *ecc_pos; int stat; /* * Errata: ALE is incorrectly wired up to the ECC controller * on the AP7000, so it will include the address cycles in the * ECC calculation. * * Workaround: Reset the parity registers before reading the * actual data. */ if (cpu_is_at32ap7000()) { struct atmel_nand_host *host = chip->priv; ecc_writel(host->ecc, CR, ATMEL_ECC_RST); } /* read the page */ chip->read_buf(mtd, p, eccsize); /* move to ECC position if needed */ if (eccpos[0] != 0) { /* This only works on large pages * because the ECC controller waits for * NAND_CMD_RNDOUTSTART after the * NAND_CMD_RNDOUT. * anyway, for small pages, the eccpos[0] == 0 */ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + eccpos[0], -1); } /* the ECC controller needs to read the ECC just after the data */ ecc_pos = oob + eccpos[0]; chip->read_buf(mtd, ecc_pos, eccbytes); /* check if there's an error */ stat = chip->ecc.correct(mtd, p, oob, NULL); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; /* get back to oob start (end of page) */ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); /* read the oob */ chip->read_buf(mtd, oob, mtd->oobsize); return 0; } /* * HW ECC Correction * * function called after a read * * mtd: MTD block structure * dat: raw data read from the chip * read_ecc: ECC from the chip (unused) * isnull: unused * * Detect and correct a 1 bit error for a page */ static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *isnull) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; unsigned int ecc_status; unsigned int ecc_word, ecc_bit; /* get the status from the Status Register */ ecc_status = ecc_readl(host->ecc, SR); /* if there's no error */ if (likely(!(ecc_status & ATMEL_ECC_RECERR))) return 0; /* get error bit offset (4 bits) */ ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR; /* get word address (12 bits) */ ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR; ecc_word >>= 4; /* if there are multiple errors */ if (ecc_status & ATMEL_ECC_MULERR) { /* check if it is a freshly erased block * (filled with 0xff) */ if ((ecc_bit == ATMEL_ECC_BITADDR) && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) { /* the block has just been erased, return OK */ return 0; } /* it doesn't seems to be a freshly * erased block. * We can't correct so many errors */ dev_dbg(host->dev, "atmel_nand : multiple errors detected." " Unable to correct.\n"); return -EIO; } /* if there's a single bit error : we can correct it */ if (ecc_status & ATMEL_ECC_ECCERR) { /* there's nothing much to do here. * the bit error is on the ECC itself. */ dev_dbg(host->dev, "atmel_nand : one bit error on ECC code." " Nothing to correct\n"); return 0; } dev_dbg(host->dev, "atmel_nand : one bit error on data." " (word offset in the page :" " 0x%x bit offset : 0x%x)\n", ecc_word, ecc_bit); /* correct the error */ if (nand_chip->options & NAND_BUSWIDTH_16) { /* 16 bits words */ ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit); } else { /* 8 bits words */ dat[ecc_word] ^= (1 << ecc_bit); } dev_dbg(host->dev, "atmel_nand : error corrected\n"); return 1; } /* * Enable HW ECC : unused on most chips */ static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) { if (cpu_is_at32ap7000()) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; ecc_writel(host->ecc, CR, ATMEL_ECC_RST); } } /* * Probe for the NAND device. */ static int __init atmel_nand_probe(struct platform_device *pdev) { struct atmel_nand_host *host; struct mtd_info *mtd; struct nand_chip *nand_chip; struct resource *regs; struct resource *mem; int res; struct mtd_partition *partitions = NULL; int num_partitions = 0; mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) { printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n"); return -ENXIO; } /* Allocate memory for the device structure (and zero it) */ host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL); if (!host) { printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n"); return -ENOMEM; } host->io_phys = (dma_addr_t)mem->start; host->io_base = ioremap(mem->start, resource_size(mem)); if (host->io_base == NULL) { printk(KERN_ERR "atmel_nand: ioremap failed\n"); res = -EIO; goto err_nand_ioremap; } mtd = &host->mtd; nand_chip = &host->nand_chip; host->board = pdev->dev.platform_data; host->dev = &pdev->dev; nand_chip->priv = host; /* link the private data structures */ mtd->priv = nand_chip; mtd->owner = THIS_MODULE; /* Set address of NAND IO lines */ nand_chip->IO_ADDR_R = host->io_base; nand_chip->IO_ADDR_W = host->io_base; nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl; if (host->board->rdy_pin) nand_chip->dev_ready = atmel_nand_device_ready; regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!regs && hard_ecc) { printk(KERN_ERR "atmel_nand: can't get I/O resource " "regs\nFalling back on software ECC\n"); } nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */ if (no_ecc) nand_chip->ecc.mode = NAND_ECC_NONE; if (hard_ecc && regs) { host->ecc = ioremap(regs->start, resource_size(regs)); if (host->ecc == NULL) { printk(KERN_ERR "atmel_nand: ioremap failed\n"); res = -EIO; goto err_ecc_ioremap; } nand_chip->ecc.mode = NAND_ECC_HW; nand_chip->ecc.calculate = atmel_nand_calculate; nand_chip->ecc.correct = atmel_nand_correct; nand_chip->ecc.hwctl = atmel_nand_hwctl; nand_chip->ecc.read_page = atmel_nand_read_page; nand_chip->ecc.bytes = 4; } nand_chip->chip_delay = 20; /* 20us command delay time */ if (host->board->bus_width_16) /* 16-bit bus width */ nand_chip->options |= NAND_BUSWIDTH_16; nand_chip->read_buf = atmel_read_buf; nand_chip->write_buf = atmel_write_buf; platform_set_drvdata(pdev, host); atmel_nand_enable(host); if (host->board->det_pin) { if (gpio_get_value(host->board->det_pin)) { printk(KERN_INFO "No SmartMedia card inserted.\n"); res = -ENXIO; goto err_no_card; } } if (on_flash_bbt) { printk(KERN_INFO "atmel_nand: Use On Flash BBT\n"); nand_chip->bbt_options |= NAND_BBT_USE_FLASH; } if (!cpu_has_dma()) use_dma = 0; if (use_dma) { dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); host->dma_chan = dma_request_channel(mask, 0, NULL); if (!host->dma_chan) { dev_err(host->dev, "Failed to request DMA channel\n"); use_dma = 0; } } if (use_dma) dev_info(host->dev, "Using %s for DMA transfers.\n", dma_chan_name(host->dma_chan)); else dev_info(host->dev, "No DMA support for NAND access.\n"); /* first scan to find the device and get the page size */ if (nand_scan_ident(mtd, 1, NULL)) { res = -ENXIO; goto err_scan_ident; } if (nand_chip->ecc.mode == NAND_ECC_HW) { /* ECC is calculated for the whole page (1 step) */ nand_chip->ecc.size = mtd->writesize; /* set ECC page size and oob layout */ switch (mtd->writesize) { case 512: nand_chip->ecc.layout = &atmel_oobinfo_small; ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); break; case 1024: nand_chip->ecc.layout = &atmel_oobinfo_large; ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056); break; case 2048: nand_chip->ecc.layout = &atmel_oobinfo_large; ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112); break; case 4096: nand_chip->ecc.layout = &atmel_oobinfo_large; ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224); break; default: /* page size not handled by HW ECC */ /* switching back to soft ECC */ nand_chip->ecc.mode = NAND_ECC_SOFT; nand_chip->ecc.calculate = NULL; nand_chip->ecc.correct = NULL; nand_chip->ecc.hwctl = NULL; nand_chip->ecc.read_page = NULL; nand_chip->ecc.postpad = 0; nand_chip->ecc.prepad = 0; nand_chip->ecc.bytes = 0; break; } } /* second phase scan */ if (nand_scan_tail(mtd)) { res = -ENXIO; goto err_scan_tail; } mtd->name = "atmel_nand"; num_partitions = parse_mtd_partitions(mtd, NULL, &partitions, 0); if (num_partitions <= 0 && host->board->parts) { partitions = host->board->parts; num_partitions = host->board->num_parts; } if ((!partitions) || (num_partitions == 0)) { printk(KERN_ERR "atmel_nand: No partitions defined, or unsupported device.\n"); res = -ENXIO; goto err_no_partitions; } res = mtd_device_register(mtd, partitions, num_partitions); if (!res) return res; err_no_partitions: nand_release(mtd); err_scan_tail: err_scan_ident: err_no_card: atmel_nand_disable(host); platform_set_drvdata(pdev, NULL); if (host->dma_chan) dma_release_channel(host->dma_chan); if (host->ecc) iounmap(host->ecc); err_ecc_ioremap: iounmap(host->io_base); err_nand_ioremap: kfree(host); return res; } /* * Remove a NAND device. */ static int __exit atmel_nand_remove(struct platform_device *pdev) { struct atmel_nand_host *host = platform_get_drvdata(pdev); struct mtd_info *mtd = &host->mtd; nand_release(mtd); atmel_nand_disable(host); if (host->ecc) iounmap(host->ecc); if (host->dma_chan) dma_release_channel(host->dma_chan); iounmap(host->io_base); kfree(host); return 0; } static struct platform_driver atmel_nand_driver = { .remove = __exit_p(atmel_nand_remove), .driver = { .name = "atmel_nand", .owner = THIS_MODULE, }, }; static int __init atmel_nand_init(void) { return platform_driver_probe(&atmel_nand_driver, atmel_nand_probe); } static void __exit atmel_nand_exit(void) { platform_driver_unregister(&atmel_nand_driver); } module_init(atmel_nand_init); module_exit(atmel_nand_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Rick Bronson"); MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32"); MODULE_ALIAS("platform:atmel_nand");