/* Frontend/Card driver for TwinHan DST Frontend Copyright (C) 2003 Jamie Honan Copyright (C) 2004, 2005 Manu Abraham (manu@kromtek.com) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include "dst_priv.h" #include "dst_common.h" static unsigned int verbose; module_param(verbose, int, 0644); MODULE_PARM_DESC(verbose, "verbosity level (0 to 3)"); static unsigned int dst_addons; module_param(dst_addons, int, 0644); MODULE_PARM_DESC(dst_addons, "CA daughterboard, default is 0 (No addons)"); static unsigned int dst_algo; module_param(dst_algo, int, 0644); MODULE_PARM_DESC(dst_algo, "tuning algo: default is 0=(SW), 1=(HW)"); #define HAS_LOCK 1 #define ATTEMPT_TUNE 2 #define HAS_POWER 4 #define dprintk(level, fmt, arg...) do { \ if (level >= verbose) \ printk(KERN_DEBUG pr_fmt("%s: " fmt), \ __func__, ##arg); \ } while(0) static int dst_command(struct dst_state *state, u8 *data, u8 len); static void dst_packsize(struct dst_state *state, int psize) { union dst_gpio_packet bits; bits.psize = psize; bt878_device_control(state->bt, DST_IG_TS, &bits); } static int dst_gpio_outb(struct dst_state *state, u32 mask, u32 enbb, u32 outhigh, int delay) { union dst_gpio_packet enb; union dst_gpio_packet bits; int err; enb.enb.mask = mask; enb.enb.enable = enbb; dprintk(2, "mask=[%04x], enbb=[%04x], outhigh=[%04x]\n", mask, enbb, outhigh); if ((err = bt878_device_control(state->bt, DST_IG_ENABLE, &enb)) < 0) { dprintk(2, "dst_gpio_enb error (err == %i, mask == %02x, enb == %02x)\n", err, mask, enbb); return -EREMOTEIO; } udelay(1000); /* because complete disabling means no output, no need to do output packet */ if (enbb == 0) return 0; if (delay) msleep(10); bits.outp.mask = enbb; bits.outp.highvals = outhigh; if ((err = bt878_device_control(state->bt, DST_IG_WRITE, &bits)) < 0) { dprintk(2, "dst_gpio_outb error (err == %i, enbb == %02x, outhigh == %02x)\n", err, enbb, outhigh); return -EREMOTEIO; } return 0; } static int dst_gpio_inb(struct dst_state *state, u8 *result) { union dst_gpio_packet rd_packet; int err; *result = 0; if ((err = bt878_device_control(state->bt, DST_IG_READ, &rd_packet)) < 0) { pr_err("dst_gpio_inb error (err == %i)\n", err); return -EREMOTEIO; } *result = (u8) rd_packet.rd.value; return 0; } int rdc_reset_state(struct dst_state *state) { dprintk(2, "Resetting state machine\n"); if (dst_gpio_outb(state, RDC_8820_INT, RDC_8820_INT, 0, NO_DELAY) < 0) { pr_err("dst_gpio_outb ERROR !\n"); return -1; } msleep(10); if (dst_gpio_outb(state, RDC_8820_INT, RDC_8820_INT, RDC_8820_INT, NO_DELAY) < 0) { pr_err("dst_gpio_outb ERROR !\n"); msleep(10); return -1; } return 0; } EXPORT_SYMBOL(rdc_reset_state); static int rdc_8820_reset(struct dst_state *state) { dprintk(3, "Resetting DST\n"); if (dst_gpio_outb(state, RDC_8820_RESET, RDC_8820_RESET, 0, NO_DELAY) < 0) { pr_err("dst_gpio_outb ERROR !\n"); return -1; } udelay(1000); if (dst_gpio_outb(state, RDC_8820_RESET, RDC_8820_RESET, RDC_8820_RESET, DELAY) < 0) { pr_err("dst_gpio_outb ERROR !\n"); return -1; } return 0; } static int dst_pio_enable(struct dst_state *state) { if (dst_gpio_outb(state, ~0, RDC_8820_PIO_0_ENABLE, 0, NO_DELAY) < 0) { pr_err("dst_gpio_outb ERROR !\n"); return -1; } udelay(1000); return 0; } int dst_pio_disable(struct dst_state *state) { if (dst_gpio_outb(state, ~0, RDC_8820_PIO_0_DISABLE, RDC_8820_PIO_0_DISABLE, NO_DELAY) < 0) { pr_err("dst_gpio_outb ERROR !\n"); return -1; } if (state->type_flags & DST_TYPE_HAS_FW_1) udelay(1000); return 0; } EXPORT_SYMBOL(dst_pio_disable); int dst_wait_dst_ready(struct dst_state *state, u8 delay_mode) { u8 reply; int i; for (i = 0; i < 200; i++) { if (dst_gpio_inb(state, &reply) < 0) { pr_err("dst_gpio_inb ERROR !\n"); return -1; } if ((reply & RDC_8820_PIO_0_ENABLE) == 0) { dprintk(2, "dst wait ready after %d\n", i); return 1; } msleep(10); } dprintk(1, "dst wait NOT ready after %d\n", i); return 0; } EXPORT_SYMBOL(dst_wait_dst_ready); int dst_error_recovery(struct dst_state *state) { dprintk(1, "Trying to return from previous errors.\n"); dst_pio_disable(state); msleep(10); dst_pio_enable(state); msleep(10); return 0; } EXPORT_SYMBOL(dst_error_recovery); int dst_error_bailout(struct dst_state *state) { dprintk(2, "Trying to bailout from previous error.\n"); rdc_8820_reset(state); dst_pio_disable(state); msleep(10); return 0; } EXPORT_SYMBOL(dst_error_bailout); int dst_comm_init(struct dst_state *state) { dprintk(2, "Initializing DST.\n"); if ((dst_pio_enable(state)) < 0) { pr_err("PIO Enable Failed\n"); return -1; } if ((rdc_reset_state(state)) < 0) { pr_err("RDC 8820 State RESET Failed.\n"); return -1; } if (state->type_flags & DST_TYPE_HAS_FW_1) msleep(100); else msleep(5); return 0; } EXPORT_SYMBOL(dst_comm_init); int write_dst(struct dst_state *state, u8 *data, u8 len) { struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = data, .len = len }; int err; u8 cnt; dprintk(1, "writing [ %*ph ]\n", len, data); for (cnt = 0; cnt < 2; cnt++) { if ((err = i2c_transfer(state->i2c, &msg, 1)) < 0) { dprintk(2, "_write_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", err, len, data[0]); dst_error_recovery(state); continue; } else break; } if (cnt >= 2) { dprintk(2, "RDC 8820 RESET\n"); dst_error_bailout(state); return -1; } return 0; } EXPORT_SYMBOL(write_dst); int read_dst(struct dst_state *state, u8 *ret, u8 len) { struct i2c_msg msg = { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = ret, .len = len }; int err; int cnt; for (cnt = 0; cnt < 2; cnt++) { if ((err = i2c_transfer(state->i2c, &msg, 1)) < 0) { dprintk(2, "read_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", err, len, ret[0]); dst_error_recovery(state); continue; } else break; } if (cnt >= 2) { dprintk(2, "RDC 8820 RESET\n"); dst_error_bailout(state); return -1; } dprintk(3, "reply is %*ph\n", len, ret); return 0; } EXPORT_SYMBOL(read_dst); static int dst_set_polarization(struct dst_state *state) { switch (state->voltage) { case SEC_VOLTAGE_13: /* Vertical */ dprintk(2, "Polarization=[Vertical]\n"); state->tx_tuna[8] &= ~0x40; break; case SEC_VOLTAGE_18: /* Horizontal */ dprintk(2, "Polarization=[Horizontal]\n"); state->tx_tuna[8] |= 0x40; break; case SEC_VOLTAGE_OFF: break; } return 0; } static int dst_set_freq(struct dst_state *state, u32 freq) { state->frequency = freq; dprintk(2, "set Frequency %u\n", freq); if (state->dst_type == DST_TYPE_IS_SAT) { freq = freq / 1000; if (freq < 950 || freq > 2150) return -EINVAL; state->tx_tuna[2] = (freq >> 8); state->tx_tuna[3] = (u8) freq; state->tx_tuna[4] = 0x01; state->tx_tuna[8] &= ~0x04; if (state->type_flags & DST_TYPE_HAS_OBS_REGS) { if (freq < 1531) state->tx_tuna[8] |= 0x04; } } else if (state->dst_type == DST_TYPE_IS_TERR) { freq = freq / 1000; if (freq < 137000 || freq > 858000) return -EINVAL; state->tx_tuna[2] = (freq >> 16) & 0xff; state->tx_tuna[3] = (freq >> 8) & 0xff; state->tx_tuna[4] = (u8) freq; } else if (state->dst_type == DST_TYPE_IS_CABLE) { freq = freq / 1000; state->tx_tuna[2] = (freq >> 16) & 0xff; state->tx_tuna[3] = (freq >> 8) & 0xff; state->tx_tuna[4] = (u8) freq; } else if (state->dst_type == DST_TYPE_IS_ATSC) { freq = freq / 1000; if (freq < 51000 || freq > 858000) return -EINVAL; state->tx_tuna[2] = (freq >> 16) & 0xff; state->tx_tuna[3] = (freq >> 8) & 0xff; state->tx_tuna[4] = (u8) freq; state->tx_tuna[5] = 0x00; /* ATSC */ state->tx_tuna[6] = 0x00; if (state->dst_hw_cap & DST_TYPE_HAS_ANALOG) state->tx_tuna[7] = 0x00; /* Digital */ } else return -EINVAL; return 0; } static int dst_set_bandwidth(struct dst_state *state, u32 bandwidth) { state->bandwidth = bandwidth; if (state->dst_type != DST_TYPE_IS_TERR) return -EOPNOTSUPP; switch (bandwidth) { case 6000000: if (state->dst_hw_cap & DST_TYPE_HAS_CA) state->tx_tuna[7] = 0x06; else { state->tx_tuna[6] = 0x06; state->tx_tuna[7] = 0x00; } break; case 7000000: if (state->dst_hw_cap & DST_TYPE_HAS_CA) state->tx_tuna[7] = 0x07; else { state->tx_tuna[6] = 0x07; state->tx_tuna[7] = 0x00; } break; case 8000000: if (state->dst_hw_cap & DST_TYPE_HAS_CA) state->tx_tuna[7] = 0x08; else { state->tx_tuna[6] = 0x08; state->tx_tuna[7] = 0x00; } break; default: return -EINVAL; } return 0; } static int dst_set_inversion(struct dst_state *state, enum fe_spectral_inversion inversion) { state->inversion = inversion; switch (inversion) { case INVERSION_OFF: /* Inversion = Normal */ state->tx_tuna[8] &= ~0x80; break; case INVERSION_ON: state->tx_tuna[8] |= 0x80; break; default: return -EINVAL; } return 0; } static int dst_set_fec(struct dst_state *state, enum fe_code_rate fec) { state->fec = fec; return 0; } static enum fe_code_rate dst_get_fec(struct dst_state *state) { return state->fec; } static int dst_set_symbolrate(struct dst_state *state, u32 srate) { u32 symcalc; u64 sval; state->symbol_rate = srate; if (state->dst_type == DST_TYPE_IS_TERR) { return -EOPNOTSUPP; } dprintk(2, "set symrate %u\n", srate); srate /= 1000; if (state->dst_type == DST_TYPE_IS_SAT) { if (state->type_flags & DST_TYPE_HAS_SYMDIV) { sval = srate; sval <<= 20; do_div(sval, 88000); symcalc = (u32) sval; dprintk(2, "set symcalc %u\n", symcalc); state->tx_tuna[5] = (u8) (symcalc >> 12); state->tx_tuna[6] = (u8) (symcalc >> 4); state->tx_tuna[7] = (u8) (symcalc << 4); } else { state->tx_tuna[5] = (u8) (srate >> 16) & 0x7f; state->tx_tuna[6] = (u8) (srate >> 8); state->tx_tuna[7] = (u8) srate; } state->tx_tuna[8] &= ~0x20; if (state->type_flags & DST_TYPE_HAS_OBS_REGS) { if (srate > 8000) state->tx_tuna[8] |= 0x20; } } else if (state->dst_type == DST_TYPE_IS_CABLE) { dprintk(3, "%s\n", state->fw_name); if (!strncmp(state->fw_name, "DCTNEW", 6)) { state->tx_tuna[5] = (u8) (srate >> 8); state->tx_tuna[6] = (u8) srate; state->tx_tuna[7] = 0x00; } else if (!strncmp(state->fw_name, "DCT-CI", 6)) { state->tx_tuna[5] = 0x00; state->tx_tuna[6] = (u8) (srate >> 8); state->tx_tuna[7] = (u8) srate; } } return 0; } static int dst_set_modulation(struct dst_state *state, enum fe_modulation modulation) { if (state->dst_type != DST_TYPE_IS_CABLE) return -EOPNOTSUPP; state->modulation = modulation; switch (modulation) { case QAM_16: state->tx_tuna[8] = 0x10; break; case QAM_32: state->tx_tuna[8] = 0x20; break; case QAM_64: state->tx_tuna[8] = 0x40; break; case QAM_128: state->tx_tuna[8] = 0x80; break; case QAM_256: if (!strncmp(state->fw_name, "DCTNEW", 6)) state->tx_tuna[8] = 0xff; else if (!strncmp(state->fw_name, "DCT-CI", 6)) state->tx_tuna[8] = 0x00; break; case QPSK: case QAM_AUTO: case VSB_8: case VSB_16: default: return -EINVAL; } return 0; } static enum fe_modulation dst_get_modulation(struct dst_state *state) { return state->modulation; } u8 dst_check_sum(u8 *buf, u32 len) { u32 i; u8 val = 0; if (!len) return 0; for (i = 0; i < len; i++) { val += buf[i]; } return ((~val) + 1); } EXPORT_SYMBOL(dst_check_sum); static void dst_type_flags_print(struct dst_state *state) { u32 type_flags = state->type_flags; pr_err("DST type flags :\n"); if (type_flags & DST_TYPE_HAS_TS188) pr_err(" 0x%x newtuner\n", DST_TYPE_HAS_TS188); if (type_flags & DST_TYPE_HAS_NEWTUNE_2) pr_err(" 0x%x newtuner 2\n", DST_TYPE_HAS_NEWTUNE_2); if (type_flags & DST_TYPE_HAS_TS204) pr_err(" 0x%x ts204\n", DST_TYPE_HAS_TS204); if (type_flags & DST_TYPE_HAS_VLF) pr_err(" 0x%x VLF\n", DST_TYPE_HAS_VLF); if (type_flags & DST_TYPE_HAS_SYMDIV) pr_err(" 0x%x symdiv\n", DST_TYPE_HAS_SYMDIV); if (type_flags & DST_TYPE_HAS_FW_1) pr_err(" 0x%x firmware version = 1\n", DST_TYPE_HAS_FW_1); if (type_flags & DST_TYPE_HAS_FW_2) pr_err(" 0x%x firmware version = 2\n", DST_TYPE_HAS_FW_2); if (type_flags & DST_TYPE_HAS_FW_3) pr_err(" 0x%x firmware version = 3\n", DST_TYPE_HAS_FW_3); pr_err("\n"); } static int dst_type_print(struct dst_state *state, u8 type) { char *otype; switch (type) { case DST_TYPE_IS_SAT: otype = "satellite"; break; case DST_TYPE_IS_TERR: otype = "terrestrial"; break; case DST_TYPE_IS_CABLE: otype = "cable"; break; case DST_TYPE_IS_ATSC: otype = "atsc"; break; default: dprintk(2, "invalid dst type %d\n", type); return -EINVAL; } dprintk(2, "DST type: %s\n", otype); return 0; } static struct tuner_types tuner_list[] = { { .tuner_type = TUNER_TYPE_L64724, .tuner_name = "L 64724", .board_name = "UNKNOWN", .fw_name = "UNKNOWN" }, { .tuner_type = TUNER_TYPE_STV0299, .tuner_name = "STV 0299", .board_name = "VP1020", .fw_name = "DST-MOT" }, { .tuner_type = TUNER_TYPE_STV0299, .tuner_name = "STV 0299", .board_name = "VP1020", .fw_name = "DST-03T" }, { .tuner_type = TUNER_TYPE_MB86A15, .tuner_name = "MB 86A15", .board_name = "VP1022", .fw_name = "DST-03T" }, { .tuner_type = TUNER_TYPE_MB86A15, .tuner_name = "MB 86A15", .board_name = "VP1025", .fw_name = "DST-03T" }, { .tuner_type = TUNER_TYPE_STV0299, .tuner_name = "STV 0299", .board_name = "VP1030", .fw_name = "DST-CI" }, { .tuner_type = TUNER_TYPE_STV0299, .tuner_name = "STV 0299", .board_name = "VP1030", .fw_name = "DSTMCI" }, { .tuner_type = TUNER_TYPE_UNKNOWN, .tuner_name = "UNKNOWN", .board_name = "VP2021", .fw_name = "DCTNEW" }, { .tuner_type = TUNER_TYPE_UNKNOWN, .tuner_name = "UNKNOWN", .board_name = "VP2030", .fw_name = "DCT-CI" }, { .tuner_type = TUNER_TYPE_UNKNOWN, .tuner_name = "UNKNOWN", .board_name = "VP2031", .fw_name = "DCT-CI" }, { .tuner_type = TUNER_TYPE_UNKNOWN, .tuner_name = "UNKNOWN", .board_name = "VP2040", .fw_name = "DCT-CI" }, { .tuner_type = TUNER_TYPE_UNKNOWN, .tuner_name = "UNKNOWN", .board_name = "VP3020", .fw_name = "DTTFTA" }, { .tuner_type = TUNER_TYPE_UNKNOWN, .tuner_name = "UNKNOWN", .board_name = "VP3021", .fw_name = "DTTFTA" }, { .tuner_type = TUNER_TYPE_TDA10046, .tuner_name = "TDA10046", .board_name = "VP3040", .fw_name = "DTT-CI" }, { .tuner_type = TUNER_TYPE_UNKNOWN, .tuner_name = "UNKNOWN", .board_name = "VP3051", .fw_name = "DTTNXT" }, { .tuner_type = TUNER_TYPE_NXT200x, .tuner_name = "NXT200x", .board_name = "VP3220", .fw_name = "ATSCDI" }, { .tuner_type = TUNER_TYPE_NXT200x, .tuner_name = "NXT200x", .board_name = "VP3250", .fw_name = "ATSCAD" }, }; /* Known cards list Satellite ------------------- 200103A VP-1020 DST-MOT LG(old), TS=188 VP-1020 DST-03T LG(new), TS=204 VP-1022 DST-03T LG(new), TS=204 VP-1025 DST-03T LG(new), TS=204 VP-1030 DSTMCI, LG(new), TS=188 VP-1032 DSTMCI, LG(new), TS=188 Cable ------------------- VP-2030 DCT-CI, Samsung, TS=204 VP-2021 DCT-CI, Unknown, TS=204 VP-2031 DCT-CI, Philips, TS=188 VP-2040 DCT-CI, Philips, TS=188, with CA daughter board VP-2040 DCT-CI, Philips, TS=204, without CA daughter board Terrestrial ------------------- VP-3050 DTTNXT TS=188 VP-3040 DTT-CI, Philips, TS=188 VP-3040 DTT-CI, Philips, TS=204 ATSC ------------------- VP-3220 ATSCDI, TS=188 VP-3250 ATSCAD, TS=188 */ static struct dst_types dst_tlist[] = { { .device_id = "200103A", .offset = 0, .dst_type = DST_TYPE_IS_SAT, .type_flags = DST_TYPE_HAS_SYMDIV | DST_TYPE_HAS_FW_1 | DST_TYPE_HAS_OBS_REGS, .dst_feature = 0, .tuner_type = 0 }, /* obsolete */ { .device_id = "DST-020", .offset = 0, .dst_type = DST_TYPE_IS_SAT, .type_flags = DST_TYPE_HAS_SYMDIV | DST_TYPE_HAS_FW_1, .dst_feature = 0, .tuner_type = 0 }, /* obsolete */ { .device_id = "DST-030", .offset = 0, .dst_type = DST_TYPE_IS_SAT, .type_flags = DST_TYPE_HAS_TS204 | DST_TYPE_HAS_TS188 | DST_TYPE_HAS_FW_1, .dst_feature = 0, .tuner_type = 0 }, /* obsolete */ { .device_id = "DST-03T", .offset = 0, .dst_type = DST_TYPE_IS_SAT, .type_flags = DST_TYPE_HAS_SYMDIV | DST_TYPE_HAS_TS204 | DST_TYPE_HAS_FW_2, .dst_feature = DST_TYPE_HAS_DISEQC3 | DST_TYPE_HAS_DISEQC4 | DST_TYPE_HAS_DISEQC5 | DST_TYPE_HAS_MAC | DST_TYPE_HAS_MOTO, .tuner_type = TUNER_TYPE_MULTI }, { .device_id = "DST-MOT", .offset = 0, .dst_type = DST_TYPE_IS_SAT, .type_flags = DST_TYPE_HAS_SYMDIV | DST_TYPE_HAS_FW_1, .dst_feature = 0, .tuner_type = 0 }, /* obsolete */ { .device_id = "DST-CI", .offset = 1, .dst_type = DST_TYPE_IS_SAT, .type_flags = DST_TYPE_HAS_TS204 | DST_TYPE_HAS_FW_1, .dst_feature = DST_TYPE_HAS_CA, .tuner_type = 0 }, /* An OEM board */ { .device_id = "DSTMCI", .offset = 1, .dst_type = DST_TYPE_IS_SAT, .type_flags = DST_TYPE_HAS_TS188 | DST_TYPE_HAS_FW_2 | DST_TYPE_HAS_FW_BUILD | DST_TYPE_HAS_INC_COUNT | DST_TYPE_HAS_VLF, .dst_feature = DST_TYPE_HAS_CA | DST_TYPE_HAS_DISEQC3 | DST_TYPE_HAS_DISEQC4 | DST_TYPE_HAS_MOTO | DST_TYPE_HAS_MAC, .tuner_type = TUNER_TYPE_MULTI }, { .device_id = "DSTFCI", .offset = 1, .dst_type = DST_TYPE_IS_SAT, .type_flags = DST_TYPE_HAS_TS188 | DST_TYPE_HAS_FW_1, .dst_feature = 0, .tuner_type = 0 }, /* unknown to vendor */ { .device_id = "DCT-CI", .offset = 1, .dst_type = DST_TYPE_IS_CABLE, .type_flags = DST_TYPE_HAS_MULTI_FE | DST_TYPE_HAS_FW_1 | DST_TYPE_HAS_FW_2 | DST_TYPE_HAS_VLF, .dst_feature = DST_TYPE_HAS_CA, .tuner_type = 0 }, { .device_id = "DCTNEW", .offset = 1, .dst_type = DST_TYPE_IS_CABLE, .type_flags = DST_TYPE_HAS_TS188 | DST_TYPE_HAS_FW_3 | DST_TYPE_HAS_FW_BUILD | DST_TYPE_HAS_MULTI_FE, .dst_feature = 0, .tuner_type = 0 }, { .device_id = "DTT-CI", .offset = 1, .dst_type = DST_TYPE_IS_TERR, .type_flags = DST_TYPE_HAS_FW_2 | DST_TYPE_HAS_MULTI_FE | DST_TYPE_HAS_VLF, .dst_feature = DST_TYPE_HAS_CA, .tuner_type = 0 }, { .device_id = "DTTDIG", .offset = 1, .dst_type = DST_TYPE_IS_TERR, .type_flags = DST_TYPE_HAS_FW_2, .dst_feature = 0, .tuner_type = 0 }, { .device_id = "DTTNXT", .offset = 1, .dst_type = DST_TYPE_IS_TERR, .type_flags = DST_TYPE_HAS_FW_2, .dst_feature = DST_TYPE_HAS_ANALOG, .tuner_type = 0 }, { .device_id = "ATSCDI", .offset = 1, .dst_type = DST_TYPE_IS_ATSC, .type_flags = DST_TYPE_HAS_FW_2, .dst_feature = 0, .tuner_type = 0 }, { .device_id = "ATSCAD", .offset = 1, .dst_type = DST_TYPE_IS_ATSC, .type_flags = DST_TYPE_HAS_MULTI_FE | DST_TYPE_HAS_FW_2 | DST_TYPE_HAS_FW_BUILD, .dst_feature = DST_TYPE_HAS_MAC | DST_TYPE_HAS_ANALOG, .tuner_type = 0 }, { } }; static int dst_get_mac(struct dst_state *state) { u8 get_mac[] = { 0x00, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; get_mac[7] = dst_check_sum(get_mac, 7); if (dst_command(state, get_mac, 8) < 0) { dprintk(2, "Unsupported Command\n"); return -1; } memset(&state->mac_address, '\0', 8); memcpy(&state->mac_address, &state->rxbuffer, 6); pr_err("MAC Address=[%pM]\n", state->mac_address); return 0; } static int dst_fw_ver(struct dst_state *state) { u8 get_ver[] = { 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; get_ver[7] = dst_check_sum(get_ver, 7); if (dst_command(state, get_ver, 8) < 0) { dprintk(2, "Unsupported Command\n"); return -1; } memcpy(&state->fw_version, &state->rxbuffer, 8); pr_err("Firmware Ver = %x.%x Build = %02x, on %x:%x, %x-%x-20%02x\n", state->fw_version[0] >> 4, state->fw_version[0] & 0x0f, state->fw_version[1], state->fw_version[5], state->fw_version[6], state->fw_version[4], state->fw_version[3], state->fw_version[2]); return 0; } static int dst_card_type(struct dst_state *state) { int j; struct tuner_types *p_tuner_list = NULL; u8 get_type[] = { 0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; get_type[7] = dst_check_sum(get_type, 7); if (dst_command(state, get_type, 8) < 0) { dprintk(2, "Unsupported Command\n"); return -1; } memset(&state->card_info, '\0', 8); memcpy(&state->card_info, &state->rxbuffer, 7); pr_err("Device Model=[%s]\n", &state->card_info[0]); for (j = 0, p_tuner_list = tuner_list; j < ARRAY_SIZE(tuner_list); j++, p_tuner_list++) { if (!strcmp(&state->card_info[0], p_tuner_list->board_name)) { state->tuner_type = p_tuner_list->tuner_type; pr_err("DST has [%s] tuner, tuner type=[%d]\n", p_tuner_list->tuner_name, p_tuner_list->tuner_type); } } return 0; } static int dst_get_vendor(struct dst_state *state) { u8 get_vendor[] = { 0x00, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; get_vendor[7] = dst_check_sum(get_vendor, 7); if (dst_command(state, get_vendor, 8) < 0) { dprintk(2, "Unsupported Command\n"); return -1; } memset(&state->vendor, '\0', 8); memcpy(&state->vendor, &state->rxbuffer, 7); pr_err("Vendor=[%s]\n", &state->vendor[0]); return 0; } static void debug_dst_buffer(struct dst_state *state) { dprintk(3, "%s: [ %*ph ]\n", __func__, 8, state->rxbuffer); } static int dst_check_stv0299(struct dst_state *state) { u8 check_stv0299[] = { 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; check_stv0299[7] = dst_check_sum(check_stv0299, 7); if (dst_command(state, check_stv0299, 8) < 0) { pr_err("Cmd=[0x04] failed\n"); return -1; } debug_dst_buffer(state); if (memcmp(&check_stv0299, &state->rxbuffer, 8)) { pr_err("Found a STV0299 NIM\n"); state->tuner_type = TUNER_TYPE_STV0299; return 0; } return -1; } static int dst_check_mb86a15(struct dst_state *state) { u8 check_mb86a15[] = { 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; check_mb86a15[7] = dst_check_sum(check_mb86a15, 7); if (dst_command(state, check_mb86a15, 8) < 0) { pr_err("Cmd=[0x10], failed\n"); return -1; } debug_dst_buffer(state); if (memcmp(&check_mb86a15, &state->rxbuffer, 8) < 0) { pr_err("Found a MB86A15 NIM\n"); state->tuner_type = TUNER_TYPE_MB86A15; return 0; } return -1; } static int dst_get_tuner_info(struct dst_state *state) { u8 get_tuner_1[] = { 0x00, 0x13, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; u8 get_tuner_2[] = { 0x00, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; get_tuner_1[7] = dst_check_sum(get_tuner_1, 7); get_tuner_2[7] = dst_check_sum(get_tuner_2, 7); pr_err("DST TYpe = MULTI FE\n"); if (state->type_flags & DST_TYPE_HAS_MULTI_FE) { if (dst_command(state, get_tuner_1, 8) < 0) { dprintk(2, "Cmd=[0x13], Unsupported\n"); goto force; } } else { if (dst_command(state, get_tuner_2, 8) < 0) { dprintk(2, "Cmd=[0xb], Unsupported\n"); goto force; } } memcpy(&state->board_info, &state->rxbuffer, 8); if (state->type_flags & DST_TYPE_HAS_MULTI_FE) { pr_err("DST type has TS=188\n"); } if (state->board_info[0] == 0xbc) { if (state->dst_type != DST_TYPE_IS_ATSC) state->type_flags |= DST_TYPE_HAS_TS188; else state->type_flags |= DST_TYPE_HAS_NEWTUNE_2; if (state->board_info[1] == 0x01) { state->dst_hw_cap |= DST_TYPE_HAS_DBOARD; pr_err("DST has Daughterboard\n"); } } return 0; force: if (!strncmp(state->fw_name, "DCT-CI", 6)) { state->type_flags |= DST_TYPE_HAS_TS204; pr_err("Forcing [%s] to TS188\n", state->fw_name); } return -1; } static int dst_get_device_id(struct dst_state *state) { u8 reply; int i, j; struct dst_types *p_dst_type = NULL; struct tuner_types *p_tuner_list = NULL; u8 use_dst_type = 0; u32 use_type_flags = 0; static u8 device_type[8] = {0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff}; state->tuner_type = 0; device_type[7] = dst_check_sum(device_type, 7); if (write_dst(state, device_type, FIXED_COMM)) return -1; /* Write failed */ if ((dst_pio_disable(state)) < 0) return -1; if (read_dst(state, &reply, GET_ACK)) return -1; /* Read failure */ if (reply != ACK) { dprintk(2, "Write not Acknowledged! [Reply=0x%02x]\n", reply); return -1; /* Unack'd write */ } if (!dst_wait_dst_ready(state, DEVICE_INIT)) return -1; /* DST not ready yet */ if (read_dst(state, state->rxbuffer, FIXED_COMM)) return -1; dst_pio_disable(state); if (state->rxbuffer[7] != dst_check_sum(state->rxbuffer, 7)) { dprintk(2, "Checksum failure!\n"); return -1; /* Checksum failure */ } state->rxbuffer[7] = '\0'; for (i = 0, p_dst_type = dst_tlist; i < ARRAY_SIZE(dst_tlist); i++, p_dst_type++) { if (!strncmp (&state->rxbuffer[p_dst_type->offset], p_dst_type->device_id, strlen (p_dst_type->device_id))) { use_type_flags = p_dst_type->type_flags; use_dst_type = p_dst_type->dst_type; /* Card capabilities */ state->dst_hw_cap = p_dst_type->dst_feature; pr_err("Recognise [%s]\n", p_dst_type->device_id); strncpy(&state->fw_name[0], p_dst_type->device_id, 6); /* Multiple tuners */ if (p_dst_type->tuner_type & TUNER_TYPE_MULTI) { switch (use_dst_type) { case DST_TYPE_IS_SAT: /* STV0299 check */ if (dst_check_stv0299(state) < 0) { pr_err("Unsupported\n"); state->tuner_type = TUNER_TYPE_MB86A15; } break; default: break; } if (dst_check_mb86a15(state) < 0) pr_err("Unsupported\n"); /* Single tuner */ } else { state->tuner_type = p_dst_type->tuner_type; } for (j = 0, p_tuner_list = tuner_list; j < ARRAY_SIZE(tuner_list); j++, p_tuner_list++) { if (!(strncmp(p_dst_type->device_id, p_tuner_list->fw_name, 7)) && p_tuner_list->tuner_type == state->tuner_type) { pr_err("[%s] has a [%s]\n", p_dst_type->device_id, p_tuner_list->tuner_name); } } break; } } if (i >= ARRAY_SIZE(dst_tlist)) { pr_err("Unable to recognize %s or %s\n", &state->rxbuffer[0], &state->rxbuffer[1]); pr_err("please email linux-dvb@linuxtv.org with this type in"); use_dst_type = DST_TYPE_IS_SAT; use_type_flags = DST_TYPE_HAS_SYMDIV; } dst_type_print(state, use_dst_type); state->type_flags = use_type_flags; state->dst_type = use_dst_type; dst_type_flags_print(state); return 0; } static int dst_probe(struct dst_state *state) { mutex_init(&state->dst_mutex); if (dst_addons & DST_TYPE_HAS_CA) { if ((rdc_8820_reset(state)) < 0) { pr_err("RDC 8820 RESET Failed.\n"); return -1; } msleep(4000); } else { msleep(100); } if ((dst_comm_init(state)) < 0) { pr_err("DST Initialization Failed.\n"); return -1; } msleep(100); if (dst_get_device_id(state) < 0) { pr_err("unknown device.\n"); return -1; } if (dst_get_mac(state) < 0) { dprintk(2, "MAC: Unsupported command\n"); } if ((state->type_flags & DST_TYPE_HAS_MULTI_FE) || (state->type_flags & DST_TYPE_HAS_FW_BUILD)) { if (dst_get_tuner_info(state) < 0) dprintk(2, "Tuner: Unsupported command\n"); } if (state->type_flags & DST_TYPE_HAS_TS204) { dst_packsize(state, 204); } if (state->type_flags & DST_TYPE_HAS_FW_BUILD) { if (dst_fw_ver(state) < 0) { dprintk(2, "FW: Unsupported command\n"); return 0; } if (dst_card_type(state) < 0) { dprintk(2, "Card: Unsupported command\n"); return 0; } if (dst_get_vendor(state) < 0) { dprintk(2, "Vendor: Unsupported command\n"); return 0; } } return 0; } static int dst_command(struct dst_state *state, u8 *data, u8 len) { u8 reply; mutex_lock(&state->dst_mutex); if ((dst_comm_init(state)) < 0) { dprintk(1, "DST Communication Initialization Failed.\n"); goto error; } if (write_dst(state, data, len)) { dprintk(2, "Trying to recover..\n"); if ((dst_error_recovery(state)) < 0) { pr_err("Recovery Failed.\n"); goto error; } goto error; } if ((dst_pio_disable(state)) < 0) { pr_err("PIO Disable Failed.\n"); goto error; } if (state->type_flags & DST_TYPE_HAS_FW_1) mdelay(3); if (read_dst(state, &reply, GET_ACK)) { dprintk(3, "Trying to recover..\n"); if ((dst_error_recovery(state)) < 0) { dprintk(2, "Recovery Failed.\n"); goto error; } goto error; } if (reply != ACK) { dprintk(2, "write not acknowledged 0x%02x\n", reply); goto error; } if (len >= 2 && data[0] == 0 && (data[1] == 1 || data[1] == 3)) goto error; if (state->type_flags & DST_TYPE_HAS_FW_1) mdelay(3); else udelay(2000); if (!dst_wait_dst_ready(state, NO_DELAY)) goto error; if (read_dst(state, state->rxbuffer, FIXED_COMM)) { dprintk(3, "Trying to recover..\n"); if ((dst_error_recovery(state)) < 0) { dprintk(2, "Recovery failed.\n"); goto error; } goto error; } if (state->rxbuffer[7] != dst_check_sum(state->rxbuffer, 7)) { dprintk(2, "checksum failure\n"); goto error; } mutex_unlock(&state->dst_mutex); return 0; error: mutex_unlock(&state->dst_mutex); return -EIO; } static int dst_get_signal(struct dst_state *state) { int retval; u8 get_signal[] = { 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfb }; //dprintk("%s: Getting Signal strength and other parameters\n", __func__); if ((state->diseq_flags & ATTEMPT_TUNE) == 0) { state->decode_lock = state->decode_strength = state->decode_snr = 0; return 0; } if (0 == (state->diseq_flags & HAS_LOCK)) { state->decode_lock = state->decode_strength = state->decode_snr = 0; return 0; } if (time_after_eq(jiffies, state->cur_jiff + (HZ / 5))) { retval = dst_command(state, get_signal, 8); if (retval < 0) return retval; if (state->dst_type == DST_TYPE_IS_SAT) { state->decode_lock = ((state->rxbuffer[6] & 0x10) == 0) ? 1 : 0; state->decode_strength = state->rxbuffer[5] << 8; state->decode_snr = state->rxbuffer[2] << 8 | state->rxbuffer[3]; } else if ((state->dst_type == DST_TYPE_IS_TERR) || (state->dst_type == DST_TYPE_IS_CABLE)) { state->decode_lock = (state->rxbuffer[1]) ? 1 : 0; state->decode_strength = state->rxbuffer[4] << 8; state->decode_snr = state->rxbuffer[3] << 8; } else if (state->dst_type == DST_TYPE_IS_ATSC) { state->decode_lock = (state->rxbuffer[6] == 0x00) ? 1 : 0; state->decode_strength = state->rxbuffer[4] << 8; state->decode_snr = state->rxbuffer[2] << 8 | state->rxbuffer[3]; } state->cur_jiff = jiffies; } return 0; } static int dst_tone_power_cmd(struct dst_state *state) { u8 paket[8] = { 0x00, 0x09, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00 }; if (state->dst_type != DST_TYPE_IS_SAT) return -EOPNOTSUPP; paket[4] = state->tx_tuna[4]; paket[2] = state->tx_tuna[2]; paket[3] = state->tx_tuna[3]; paket[7] = dst_check_sum (paket, 7); return dst_command(state, paket, 8); } static int dst_get_tuna(struct dst_state *state) { int retval; if ((state->diseq_flags & ATTEMPT_TUNE) == 0) return 0; state->diseq_flags &= ~(HAS_LOCK); if (!dst_wait_dst_ready(state, NO_DELAY)) return -EIO; if ((state->type_flags & DST_TYPE_HAS_VLF) && !(state->dst_type == DST_TYPE_IS_ATSC)) retval = read_dst(state, state->rx_tuna, 10); else retval = read_dst(state, &state->rx_tuna[2], FIXED_COMM); if (retval < 0) { dprintk(3, "read not successful\n"); return retval; } if ((state->type_flags & DST_TYPE_HAS_VLF) && !(state->dst_type == DST_TYPE_IS_ATSC)) { if (state->rx_tuna[9] != dst_check_sum(&state->rx_tuna[0], 9)) { dprintk(2, "checksum failure ?\n"); return -EIO; } } else { if (state->rx_tuna[9] != dst_check_sum(&state->rx_tuna[2], 7)) { dprintk(2, "checksum failure?\n"); return -EIO; } } if (state->rx_tuna[2] == 0 && state->rx_tuna[3] == 0) return 0; if (state->dst_type == DST_TYPE_IS_SAT) { state->decode_freq = ((state->rx_tuna[2] & 0x7f) << 8) + state->rx_tuna[3]; } else { state->decode_freq = ((state->rx_tuna[2] & 0x7f) << 16) + (state->rx_tuna[3] << 8) + state->rx_tuna[4]; } state->decode_freq = state->decode_freq * 1000; state->decode_lock = 1; state->diseq_flags |= HAS_LOCK; return 1; } static int dst_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage voltage); static int dst_write_tuna(struct dvb_frontend *fe) { struct dst_state *state = fe->demodulator_priv; int retval; u8 reply; dprintk(2, "type_flags 0x%x\n", state->type_flags); state->decode_freq = 0; state->decode_lock = state->decode_strength = state->decode_snr = 0; if (state->dst_type == DST_TYPE_IS_SAT) { if (!(state->diseq_flags & HAS_POWER)) dst_set_voltage(fe, SEC_VOLTAGE_13); } state->diseq_flags &= ~(HAS_LOCK | ATTEMPT_TUNE); mutex_lock(&state->dst_mutex); if ((dst_comm_init(state)) < 0) { dprintk(3, "DST Communication initialization failed.\n"); goto error; } // if (state->type_flags & DST_TYPE_HAS_NEWTUNE) { if ((state->type_flags & DST_TYPE_HAS_VLF) && (!(state->dst_type == DST_TYPE_IS_ATSC))) { state->tx_tuna[9] = dst_check_sum(&state->tx_tuna[0], 9); retval = write_dst(state, &state->tx_tuna[0], 10); } else { state->tx_tuna[9] = dst_check_sum(&state->tx_tuna[2], 7); retval = write_dst(state, &state->tx_tuna[2], FIXED_COMM); } if (retval < 0) { dst_pio_disable(state); dprintk(3, "write not successful\n"); goto werr; } if ((dst_pio_disable(state)) < 0) { dprintk(3, "DST PIO disable failed !\n"); goto error; } if ((read_dst(state, &reply, GET_ACK) < 0)) { dprintk(3, "read verify not successful.\n"); goto error; } if (reply != ACK) { dprintk(3, "write not acknowledged 0x%02x\n", reply); goto error; } state->diseq_flags |= ATTEMPT_TUNE; retval = dst_get_tuna(state); werr: mutex_unlock(&state->dst_mutex); return retval; error: mutex_unlock(&state->dst_mutex); return -EIO; } /* * line22k0 0x00, 0x09, 0x00, 0xff, 0x01, 0x00, 0x00, 0x00 * line22k1 0x00, 0x09, 0x01, 0xff, 0x01, 0x00, 0x00, 0x00 * line22k2 0x00, 0x09, 0x02, 0xff, 0x01, 0x00, 0x00, 0x00 * tone 0x00, 0x09, 0xff, 0x00, 0x01, 0x00, 0x00, 0x00 * data 0x00, 0x09, 0xff, 0x01, 0x01, 0x00, 0x00, 0x00 * power_off 0x00, 0x09, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 * power_on 0x00, 0x09, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00 * Diseqc 1 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf0, 0xec * Diseqc 2 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf4, 0xe8 * Diseqc 3 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf8, 0xe4 * Diseqc 4 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xfc, 0xe0 */ static int dst_set_diseqc(struct dvb_frontend *fe, struct dvb_diseqc_master_cmd *cmd) { struct dst_state *state = fe->demodulator_priv; u8 paket[8] = { 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf0, 0xec }; if (state->dst_type != DST_TYPE_IS_SAT) return -EOPNOTSUPP; if (cmd->msg_len > 0 && cmd->msg_len < 5) memcpy(&paket[3], cmd->msg, cmd->msg_len); else if (cmd->msg_len == 5 && state->dst_hw_cap & DST_TYPE_HAS_DISEQC5) memcpy(&paket[2], cmd->msg, cmd->msg_len); else return -EINVAL; paket[7] = dst_check_sum(&paket[0], 7); return dst_command(state, paket, 8); } static int dst_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage voltage) { int need_cmd, retval = 0; struct dst_state *state = fe->demodulator_priv; state->voltage = voltage; if (state->dst_type != DST_TYPE_IS_SAT) return -EOPNOTSUPP; need_cmd = 0; switch (voltage) { case SEC_VOLTAGE_13: case SEC_VOLTAGE_18: if ((state->diseq_flags & HAS_POWER) == 0) need_cmd = 1; state->diseq_flags |= HAS_POWER; state->tx_tuna[4] = 0x01; break; case SEC_VOLTAGE_OFF: need_cmd = 1; state->diseq_flags &= ~(HAS_POWER | HAS_LOCK | ATTEMPT_TUNE); state->tx_tuna[4] = 0x00; break; default: return -EINVAL; } if (need_cmd) retval = dst_tone_power_cmd(state); return retval; } static int dst_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone) { struct dst_state *state = fe->demodulator_priv; state->tone = tone; if (state->dst_type != DST_TYPE_IS_SAT) return -EOPNOTSUPP; switch (tone) { case SEC_TONE_OFF: if (state->type_flags & DST_TYPE_HAS_OBS_REGS) state->tx_tuna[2] = 0x00; else state->tx_tuna[2] = 0xff; break; case SEC_TONE_ON: state->tx_tuna[2] = 0x02; break; default: return -EINVAL; } return dst_tone_power_cmd(state); } static int dst_send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd minicmd) { struct dst_state *state = fe->demodulator_priv; if (state->dst_type != DST_TYPE_IS_SAT) return -EOPNOTSUPP; state->minicmd = minicmd; switch (minicmd) { case SEC_MINI_A: state->tx_tuna[3] = 0x02; break; case SEC_MINI_B: state->tx_tuna[3] = 0xff; break; } return dst_tone_power_cmd(state); } static int bt8xx_dst_init(struct dvb_frontend *fe) { struct dst_state *state = fe->demodulator_priv; static u8 sat_tuna_188[] = { 0x09, 0x00, 0x03, 0xb6, 0x01, 0x00, 0x73, 0x21, 0x00, 0x00 }; static u8 sat_tuna_204[] = { 0x00, 0x00, 0x03, 0xb6, 0x01, 0x55, 0xbd, 0x50, 0x00, 0x00 }; static u8 ter_tuna_188[] = { 0x09, 0x00, 0x03, 0xb6, 0x01, 0x07, 0x00, 0x00, 0x00, 0x00 }; static u8 ter_tuna_204[] = { 0x00, 0x00, 0x03, 0xb6, 0x01, 0x07, 0x00, 0x00, 0x00, 0x00 }; static u8 cab_tuna_188[] = { 0x09, 0x00, 0x03, 0xb6, 0x01, 0x07, 0x00, 0x00, 0x00, 0x00 }; static u8 cab_tuna_204[] = { 0x00, 0x00, 0x03, 0xb6, 0x01, 0x07, 0x00, 0x00, 0x00, 0x00 }; static u8 atsc_tuner[] = { 0x00, 0x00, 0x03, 0xb6, 0x01, 0x07, 0x00, 0x00, 0x00, 0x00 }; state->inversion = INVERSION_OFF; state->voltage = SEC_VOLTAGE_13; state->tone = SEC_TONE_OFF; state->diseq_flags = 0; state->k22 = 0x02; state->bandwidth = 7000000; state->cur_jiff = jiffies; if (state->dst_type == DST_TYPE_IS_SAT) memcpy(state->tx_tuna, ((state->type_flags & DST_TYPE_HAS_VLF) ? sat_tuna_188 : sat_tuna_204), sizeof (sat_tuna_204)); else if (state->dst_type == DST_TYPE_IS_TERR) memcpy(state->tx_tuna, ((state->type_flags & DST_TYPE_HAS_VLF) ? ter_tuna_188 : ter_tuna_204), sizeof (ter_tuna_204)); else if (state->dst_type == DST_TYPE_IS_CABLE) memcpy(state->tx_tuna, ((state->type_flags & DST_TYPE_HAS_VLF) ? cab_tuna_188 : cab_tuna_204), sizeof (cab_tuna_204)); else if (state->dst_type == DST_TYPE_IS_ATSC) memcpy(state->tx_tuna, atsc_tuner, sizeof (atsc_tuner)); return 0; } static int dst_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct dst_state *state = fe->demodulator_priv; *status = 0; if (state->diseq_flags & HAS_LOCK) { // dst_get_signal(state); // don't require(?) to ask MCU if (state->decode_lock) *status |= FE_HAS_LOCK | FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_SYNC | FE_HAS_VITERBI; } return 0; } static int dst_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct dst_state *state = fe->demodulator_priv; int retval = dst_get_signal(state); *strength = state->decode_strength; return retval; } static int dst_read_snr(struct dvb_frontend *fe, u16 *snr) { struct dst_state *state = fe->demodulator_priv; int retval = dst_get_signal(state); *snr = state->decode_snr; return retval; } static int dst_set_frontend(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; int retval = -EINVAL; struct dst_state *state = fe->demodulator_priv; if (p != NULL) { retval = dst_set_freq(state, p->frequency); if(retval != 0) return retval; dprintk(3, "Set Frequency=[%d]\n", p->frequency); if (state->dst_type == DST_TYPE_IS_SAT) { if (state->type_flags & DST_TYPE_HAS_OBS_REGS) dst_set_inversion(state, p->inversion); dst_set_fec(state, p->fec_inner); dst_set_symbolrate(state, p->symbol_rate); dst_set_polarization(state); dprintk(3, "Set Symbolrate=[%d]\n", p->symbol_rate); } else if (state->dst_type == DST_TYPE_IS_TERR) dst_set_bandwidth(state, p->bandwidth_hz); else if (state->dst_type == DST_TYPE_IS_CABLE) { dst_set_fec(state, p->fec_inner); dst_set_symbolrate(state, p->symbol_rate); dst_set_modulation(state, p->modulation); } retval = dst_write_tuna(fe); } return retval; } static int dst_tune_frontend(struct dvb_frontend* fe, bool re_tune, unsigned int mode_flags, unsigned int *delay, enum fe_status *status) { struct dst_state *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; if (re_tune) { dst_set_freq(state, p->frequency); dprintk(3, "Set Frequency=[%d]\n", p->frequency); if (state->dst_type == DST_TYPE_IS_SAT) { if (state->type_flags & DST_TYPE_HAS_OBS_REGS) dst_set_inversion(state, p->inversion); dst_set_fec(state, p->fec_inner); dst_set_symbolrate(state, p->symbol_rate); dst_set_polarization(state); dprintk(3, "Set Symbolrate=[%d]\n", p->symbol_rate); } else if (state->dst_type == DST_TYPE_IS_TERR) dst_set_bandwidth(state, p->bandwidth_hz); else if (state->dst_type == DST_TYPE_IS_CABLE) { dst_set_fec(state, p->fec_inner); dst_set_symbolrate(state, p->symbol_rate); dst_set_modulation(state, p->modulation); } dst_write_tuna(fe); } if (!(mode_flags & FE_TUNE_MODE_ONESHOT)) dst_read_status(fe, status); *delay = HZ/10; return 0; } static enum dvbfe_algo dst_get_tuning_algo(struct dvb_frontend *fe) { return dst_algo ? DVBFE_ALGO_HW : DVBFE_ALGO_SW; } static int dst_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *p) { struct dst_state *state = fe->demodulator_priv; p->frequency = state->decode_freq; if (state->dst_type == DST_TYPE_IS_SAT) { if (state->type_flags & DST_TYPE_HAS_OBS_REGS) p->inversion = state->inversion; p->symbol_rate = state->symbol_rate; p->fec_inner = dst_get_fec(state); } else if (state->dst_type == DST_TYPE_IS_TERR) { p->bandwidth_hz = state->bandwidth; } else if (state->dst_type == DST_TYPE_IS_CABLE) { p->symbol_rate = state->symbol_rate; p->fec_inner = dst_get_fec(state); p->modulation = dst_get_modulation(state); } return 0; } static void bt8xx_dst_release(struct dvb_frontend *fe) { struct dst_state *state = fe->demodulator_priv; if (state->dst_ca) { dvb_unregister_device(state->dst_ca); #ifdef CONFIG_MEDIA_ATTACH symbol_put(dst_ca_attach); #endif } kfree(state); } static const struct dvb_frontend_ops dst_dvbt_ops; static const struct dvb_frontend_ops dst_dvbs_ops; static const struct dvb_frontend_ops dst_dvbc_ops; static const struct dvb_frontend_ops dst_atsc_ops; struct dst_state *dst_attach(struct dst_state *state, struct dvb_adapter *dvb_adapter) { /* check if the ASIC is there */ if (dst_probe(state) < 0) { kfree(state); return NULL; } /* determine settings based on type */ /* create dvb_frontend */ switch (state->dst_type) { case DST_TYPE_IS_TERR: memcpy(&state->frontend.ops, &dst_dvbt_ops, sizeof(struct dvb_frontend_ops)); break; case DST_TYPE_IS_CABLE: memcpy(&state->frontend.ops, &dst_dvbc_ops, sizeof(struct dvb_frontend_ops)); break; case DST_TYPE_IS_SAT: memcpy(&state->frontend.ops, &dst_dvbs_ops, sizeof(struct dvb_frontend_ops)); break; case DST_TYPE_IS_ATSC: memcpy(&state->frontend.ops, &dst_atsc_ops, sizeof(struct dvb_frontend_ops)); break; default: pr_err("unknown DST type. please report to the LinuxTV.org DVB mailinglist.\n"); kfree(state); return NULL; } state->frontend.demodulator_priv = state; return state; /* Manu (DST is a card not a frontend) */ } EXPORT_SYMBOL(dst_attach); static const struct dvb_frontend_ops dst_dvbt_ops = { .delsys = { SYS_DVBT }, .info = { .name = "DST DVB-T", .frequency_min = 137000000, .frequency_max = 858000000, .frequency_stepsize = 166667, .caps = FE_CAN_FEC_AUTO | FE_CAN_QAM_AUTO | FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 | FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO }, .release = bt8xx_dst_release, .init = bt8xx_dst_init, .tune = dst_tune_frontend, .set_frontend = dst_set_frontend, .get_frontend = dst_get_frontend, .get_frontend_algo = dst_get_tuning_algo, .read_status = dst_read_status, .read_signal_strength = dst_read_signal_strength, .read_snr = dst_read_snr, }; static const struct dvb_frontend_ops dst_dvbs_ops = { .delsys = { SYS_DVBS }, .info = { .name = "DST DVB-S", .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = 1000, /* kHz for QPSK frontends */ .frequency_tolerance = 29500, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, /* . symbol_rate_tolerance = ???,*/ .caps = FE_CAN_FEC_AUTO | FE_CAN_QPSK }, .release = bt8xx_dst_release, .init = bt8xx_dst_init, .tune = dst_tune_frontend, .set_frontend = dst_set_frontend, .get_frontend = dst_get_frontend, .get_frontend_algo = dst_get_tuning_algo, .read_status = dst_read_status, .read_signal_strength = dst_read_signal_strength, .read_snr = dst_read_snr, .diseqc_send_burst = dst_send_burst, .diseqc_send_master_cmd = dst_set_diseqc, .set_voltage = dst_set_voltage, .set_tone = dst_set_tone, }; static const struct dvb_frontend_ops dst_dvbc_ops = { .delsys = { SYS_DVBC_ANNEX_A }, .info = { .name = "DST DVB-C", .frequency_stepsize = 62500, .frequency_min = 51000000, .frequency_max = 858000000, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .caps = FE_CAN_FEC_AUTO | FE_CAN_QAM_AUTO | FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 | FE_CAN_QAM_128 | FE_CAN_QAM_256 }, .release = bt8xx_dst_release, .init = bt8xx_dst_init, .tune = dst_tune_frontend, .set_frontend = dst_set_frontend, .get_frontend = dst_get_frontend, .get_frontend_algo = dst_get_tuning_algo, .read_status = dst_read_status, .read_signal_strength = dst_read_signal_strength, .read_snr = dst_read_snr, }; static const struct dvb_frontend_ops dst_atsc_ops = { .delsys = { SYS_ATSC }, .info = { .name = "DST ATSC", .frequency_stepsize = 62500, .frequency_min = 510000000, .frequency_max = 858000000, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .caps = FE_CAN_FEC_AUTO | FE_CAN_QAM_AUTO | FE_CAN_QAM_64 | FE_CAN_QAM_256 | FE_CAN_8VSB }, .release = bt8xx_dst_release, .init = bt8xx_dst_init, .tune = dst_tune_frontend, .set_frontend = dst_set_frontend, .get_frontend = dst_get_frontend, .get_frontend_algo = dst_get_tuning_algo, .read_status = dst_read_status, .read_signal_strength = dst_read_signal_strength, .read_snr = dst_read_snr, }; MODULE_DESCRIPTION("DST DVB-S/T/C/ATSC Combo Frontend driver"); MODULE_AUTHOR("Jamie Honan, Manu Abraham"); MODULE_LICENSE("GPL");