// SPDX-License-Identifier: GPL-2.0-only /* * adv7604 - Analog Devices ADV7604 video decoder driver * * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved. * */ /* * References (c = chapter, p = page): * REF_01 - Analog devices, ADV7604, Register Settings Recommendations, * Revision 2.5, June 2010 * REF_02 - Analog devices, Register map documentation, Documentation of * the register maps, Software manual, Rev. F, June 2010 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "debug level (0-2)"); MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver"); MODULE_AUTHOR("Hans Verkuil "); MODULE_AUTHOR("Mats Randgaard "); MODULE_LICENSE("GPL"); /* ADV7604 system clock frequency */ #define ADV76XX_FSC (28636360) #define ADV76XX_RGB_OUT (1 << 1) #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0) #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0) #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0) #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5) #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5) #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5) #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5) #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5) #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5) #define ADV76XX_OP_CH_SEL_GBR (0 << 5) #define ADV76XX_OP_CH_SEL_GRB (1 << 5) #define ADV76XX_OP_CH_SEL_BGR (2 << 5) #define ADV76XX_OP_CH_SEL_RGB (3 << 5) #define ADV76XX_OP_CH_SEL_BRG (4 << 5) #define ADV76XX_OP_CH_SEL_RBG (5 << 5) #define ADV76XX_OP_SWAP_CB_CR (1 << 0) #define ADV76XX_MAX_ADDRS (3) enum adv76xx_type { ADV7604, ADV7611, ADV7612, }; struct adv76xx_reg_seq { unsigned int reg; u8 val; }; struct adv76xx_format_info { u32 code; u8 op_ch_sel; bool rgb_out; bool swap_cb_cr; u8 op_format_sel; }; struct adv76xx_cfg_read_infoframe { const char *desc; u8 present_mask; u8 head_addr; u8 payload_addr; }; struct adv76xx_chip_info { enum adv76xx_type type; bool has_afe; unsigned int max_port; unsigned int num_dv_ports; unsigned int edid_enable_reg; unsigned int edid_status_reg; unsigned int lcf_reg; unsigned int cable_det_mask; unsigned int tdms_lock_mask; unsigned int fmt_change_digital_mask; unsigned int cp_csc; const struct adv76xx_format_info *formats; unsigned int nformats; void (*set_termination)(struct v4l2_subdev *sd, bool enable); void (*setup_irqs)(struct v4l2_subdev *sd); unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd); unsigned int (*read_cable_det)(struct v4l2_subdev *sd); /* 0 = AFE, 1 = HDMI */ const struct adv76xx_reg_seq *recommended_settings[2]; unsigned int num_recommended_settings[2]; unsigned long page_mask; /* Masks for timings */ unsigned int linewidth_mask; unsigned int field0_height_mask; unsigned int field1_height_mask; unsigned int hfrontporch_mask; unsigned int hsync_mask; unsigned int hbackporch_mask; unsigned int field0_vfrontporch_mask; unsigned int field1_vfrontporch_mask; unsigned int field0_vsync_mask; unsigned int field1_vsync_mask; unsigned int field0_vbackporch_mask; unsigned int field1_vbackporch_mask; }; /* ********************************************************************** * * Arrays with configuration parameters for the ADV7604 * ********************************************************************** */ struct adv76xx_state { const struct adv76xx_chip_info *info; struct adv76xx_platform_data pdata; struct gpio_desc *hpd_gpio[4]; struct gpio_desc *reset_gpio; struct v4l2_subdev sd; struct media_pad pads[ADV76XX_PAD_MAX]; unsigned int source_pad; struct v4l2_ctrl_handler hdl; enum adv76xx_pad selected_input; struct v4l2_dv_timings timings; const struct adv76xx_format_info *format; struct { u8 edid[256]; u32 present; unsigned blocks; } edid; u16 spa_port_a[2]; struct v4l2_fract aspect_ratio; u32 rgb_quantization_range; struct delayed_work delayed_work_enable_hotplug; bool restart_stdi_once; /* CEC */ struct cec_adapter *cec_adap; u8 cec_addr[ADV76XX_MAX_ADDRS]; u8 cec_valid_addrs; bool cec_enabled_adap; /* i2c clients */ struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX]; /* Regmaps */ struct regmap *regmap[ADV76XX_PAGE_MAX]; /* controls */ struct v4l2_ctrl *detect_tx_5v_ctrl; struct v4l2_ctrl *analog_sampling_phase_ctrl; struct v4l2_ctrl *free_run_color_manual_ctrl; struct v4l2_ctrl *free_run_color_ctrl; struct v4l2_ctrl *rgb_quantization_range_ctrl; }; static bool adv76xx_has_afe(struct adv76xx_state *state) { return state->info->has_afe; } /* Unsupported timings. This device cannot support 720p30. */ static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = { V4L2_DV_BT_CEA_1280X720P30, { } }; static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl) { int i; for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++) if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false)) return false; return true; } struct adv76xx_video_standards { struct v4l2_dv_timings timings; u8 vid_std; u8 v_freq; }; /* sorted by number of lines */ static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = { /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */ { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 }, { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 }, { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, /* TODO add 1920x1080P60_RB (CVT timing) */ { }, }; /* sorted by number of lines */ static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = { { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 }, { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 }, { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 }, { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 }, { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */ /* TODO add 1600X1200P60_RB (not a DMT timing) */ { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 }, { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */ { }, }; /* sorted by number of lines */ static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = { { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 }, { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 }, { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, { }, }; /* sorted by number of lines */ static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = { { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, { }, }; static const struct v4l2_event adv76xx_ev_fmt = { .type = V4L2_EVENT_SOURCE_CHANGE, .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION, }; /* ----------------------------------------------------------------------- */ static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct adv76xx_state, sd); } static inline unsigned htotal(const struct v4l2_bt_timings *t) { return V4L2_DV_BT_FRAME_WIDTH(t); } static inline unsigned vtotal(const struct v4l2_bt_timings *t) { return V4L2_DV_BT_FRAME_HEIGHT(t); } /* ----------------------------------------------------------------------- */ static int adv76xx_read_check(struct adv76xx_state *state, int client_page, u8 reg) { struct i2c_client *client = state->i2c_clients[client_page]; int err; unsigned int val; err = regmap_read(state->regmap[client_page], reg, &val); if (err) { v4l_err(client, "error reading %02x, %02x\n", client->addr, reg); return err; } return val; } /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX * size to one or more registers. * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ static int adv76xx_write_block(struct adv76xx_state *state, int client_page, unsigned int init_reg, const void *val, size_t val_len) { struct regmap *regmap = state->regmap[client_page]; if (val_len > I2C_SMBUS_BLOCK_MAX) val_len = I2C_SMBUS_BLOCK_MAX; return regmap_raw_write(regmap, init_reg, val, val_len); } /* ----------------------------------------------------------------------- */ static inline int io_read(struct v4l2_subdev *sd, u8 reg) { struct adv76xx_state *state = to_state(sd); return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg); } static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv76xx_state *state = to_state(sd); return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val); } static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val); } static inline int avlink_read(struct v4l2_subdev *sd, u8 reg) { struct adv76xx_state *state = to_state(sd); return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg); } static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv76xx_state *state = to_state(sd); return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val); } static inline int cec_read(struct v4l2_subdev *sd, u8 reg) { struct adv76xx_state *state = to_state(sd); return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg); } static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv76xx_state *state = to_state(sd); return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val); } static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val); } static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg) { struct adv76xx_state *state = to_state(sd); return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg); } static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv76xx_state *state = to_state(sd); return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val); } static inline int afe_read(struct v4l2_subdev *sd, u8 reg) { struct adv76xx_state *state = to_state(sd); return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg); } static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv76xx_state *state = to_state(sd); return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val); } static inline int rep_read(struct v4l2_subdev *sd, u8 reg) { struct adv76xx_state *state = to_state(sd); return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg); } static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv76xx_state *state = to_state(sd); return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val); } static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val); } static inline int edid_read(struct v4l2_subdev *sd, u8 reg) { struct adv76xx_state *state = to_state(sd); return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg); } static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv76xx_state *state = to_state(sd); return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val); } static inline int edid_write_block(struct v4l2_subdev *sd, unsigned int total_len, const u8 *val) { struct adv76xx_state *state = to_state(sd); int err = 0; int i = 0; int len = 0; v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", __func__, total_len); while (!err && i < total_len) { len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ? I2C_SMBUS_BLOCK_MAX : (total_len - i); err = adv76xx_write_block(state, ADV76XX_PAGE_EDID, i, val + i, len); i += len; } return err; } static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd) { unsigned int i; for (i = 0; i < state->info->num_dv_ports; ++i) gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i)); v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd); } static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct adv76xx_state *state = container_of(dwork, struct adv76xx_state, delayed_work_enable_hotplug); struct v4l2_subdev *sd = &state->sd; v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__); adv76xx_set_hpd(state, state->edid.present); } static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg) { struct adv76xx_state *state = to_state(sd); return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg); } static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) { return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask; } static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv76xx_state *state = to_state(sd); return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val); } static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val); } static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv76xx_state *state = to_state(sd); return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val); } static inline int cp_read(struct v4l2_subdev *sd, u8 reg) { struct adv76xx_state *state = to_state(sd); return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg); } static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) { return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask; } static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv76xx_state *state = to_state(sd); return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val); } static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val); } static inline int vdp_read(struct v4l2_subdev *sd, u8 reg) { struct adv76xx_state *state = to_state(sd); return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg); } static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv76xx_state *state = to_state(sd); return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val); } #define ADV76XX_REG(page, offset) (((page) << 8) | (offset)) #define ADV76XX_REG_SEQ_TERM 0xffff #ifdef CONFIG_VIDEO_ADV_DEBUG static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg) { struct adv76xx_state *state = to_state(sd); unsigned int page = reg >> 8; unsigned int val; int err; if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask)) return -EINVAL; reg &= 0xff; err = regmap_read(state->regmap[page], reg, &val); return err ? err : val; } #endif static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val) { struct adv76xx_state *state = to_state(sd); unsigned int page = reg >> 8; if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask)) return -EINVAL; reg &= 0xff; return regmap_write(state->regmap[page], reg, val); } static void adv76xx_write_reg_seq(struct v4l2_subdev *sd, const struct adv76xx_reg_seq *reg_seq) { unsigned int i; for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++) adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val); } /* ----------------------------------------------------------------------------- * Format helpers */ static const struct adv76xx_format_info adv7604_formats[] = { { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false, ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true, ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, }; static const struct adv76xx_format_info adv7611_formats[] = { { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, }; static const struct adv76xx_format_info adv7612_formats[] = { { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, }; static const struct adv76xx_format_info * adv76xx_format_info(struct adv76xx_state *state, u32 code) { unsigned int i; for (i = 0; i < state->info->nformats; ++i) { if (state->info->formats[i].code == code) return &state->info->formats[i]; } return NULL; } /* ----------------------------------------------------------------------- */ static inline bool is_analog_input(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); return state->selected_input == ADV7604_PAD_VGA_RGB || state->selected_input == ADV7604_PAD_VGA_COMP; } static inline bool is_digital_input(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); return state->selected_input == ADV76XX_PAD_HDMI_PORT_A || state->selected_input == ADV7604_PAD_HDMI_PORT_B || state->selected_input == ADV7604_PAD_HDMI_PORT_C || state->selected_input == ADV7604_PAD_HDMI_PORT_D; } static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = { .type = V4L2_DV_BT_656_1120, /* keep this initialization for compatibility with GCC < 4.4.6 */ .reserved = { 0 }, V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000, V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM) }; static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = { .type = V4L2_DV_BT_656_1120, /* keep this initialization for compatibility with GCC < 4.4.6 */ .reserved = { 0 }, V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000, V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM) }; /* * Return the DV timings capabilities for the requested sink pad. As a special * case, pad value -1 returns the capabilities for the currently selected input. */ static const struct v4l2_dv_timings_cap * adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad) { if (pad == -1) { struct adv76xx_state *state = to_state(sd); pad = state->selected_input; } switch (pad) { case ADV76XX_PAD_HDMI_PORT_A: case ADV7604_PAD_HDMI_PORT_B: case ADV7604_PAD_HDMI_PORT_C: case ADV7604_PAD_HDMI_PORT_D: return &adv76xx_timings_cap_digital; case ADV7604_PAD_VGA_RGB: case ADV7604_PAD_VGA_COMP: default: return &adv7604_timings_cap_analog; } } /* ----------------------------------------------------------------------- */ #ifdef CONFIG_VIDEO_ADV_DEBUG static void adv76xx_inv_register(struct v4l2_subdev *sd) { v4l2_info(sd, "0x000-0x0ff: IO Map\n"); v4l2_info(sd, "0x100-0x1ff: AVLink Map\n"); v4l2_info(sd, "0x200-0x2ff: CEC Map\n"); v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n"); v4l2_info(sd, "0x400-0x4ff: ESDP Map\n"); v4l2_info(sd, "0x500-0x5ff: DPP Map\n"); v4l2_info(sd, "0x600-0x6ff: AFE Map\n"); v4l2_info(sd, "0x700-0x7ff: Repeater Map\n"); v4l2_info(sd, "0x800-0x8ff: EDID Map\n"); v4l2_info(sd, "0x900-0x9ff: HDMI Map\n"); v4l2_info(sd, "0xa00-0xaff: Test Map\n"); v4l2_info(sd, "0xb00-0xbff: CP Map\n"); v4l2_info(sd, "0xc00-0xcff: VDP Map\n"); } static int adv76xx_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { int ret; ret = adv76xx_read_reg(sd, reg->reg); if (ret < 0) { v4l2_info(sd, "Register %03llx not supported\n", reg->reg); adv76xx_inv_register(sd); return ret; } reg->size = 1; reg->val = ret; return 0; } static int adv76xx_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { int ret; ret = adv76xx_write_reg(sd, reg->reg, reg->val); if (ret < 0) { v4l2_info(sd, "Register %03llx not supported\n", reg->reg); adv76xx_inv_register(sd); return ret; } return 0; } #endif static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd) { u8 value = io_read(sd, 0x6f); return ((value & 0x10) >> 4) | ((value & 0x08) >> 2) | ((value & 0x04) << 0) | ((value & 0x02) << 2); } static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd) { u8 value = io_read(sd, 0x6f); return value & 1; } static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd) { /* Reads CABLE_DET_A_RAW. For input B support, need to * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW) */ u8 value = io_read(sd, 0x6f); return value & 1; } static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); const struct adv76xx_chip_info *info = state->info; u16 cable_det = info->read_cable_det(sd); return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det); } static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd, u8 prim_mode, const struct adv76xx_video_standards *predef_vid_timings, const struct v4l2_dv_timings *timings) { int i; for (i = 0; predef_vid_timings[i].timings.bt.width; i++) { if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings, is_digital_input(sd) ? 250000 : 1000000, false)) continue; io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */ io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) + prim_mode); /* v_freq and prim mode */ return 0; } return -1; } static int configure_predefined_video_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct adv76xx_state *state = to_state(sd); int err; v4l2_dbg(1, debug, sd, "%s", __func__); if (adv76xx_has_afe(state)) { /* reset to default values */ io_write(sd, 0x16, 0x43); io_write(sd, 0x17, 0x5a); } /* disable embedded syncs for auto graphics mode */ cp_write_clr_set(sd, 0x81, 0x10, 0x00); cp_write(sd, 0x8f, 0x00); cp_write(sd, 0x90, 0x00); cp_write(sd, 0xa2, 0x00); cp_write(sd, 0xa3, 0x00); cp_write(sd, 0xa4, 0x00); cp_write(sd, 0xa5, 0x00); cp_write(sd, 0xa6, 0x00); cp_write(sd, 0xa7, 0x00); cp_write(sd, 0xab, 0x00); cp_write(sd, 0xac, 0x00); if (is_analog_input(sd)) { err = find_and_set_predefined_video_timings(sd, 0x01, adv7604_prim_mode_comp, timings); if (err) err = find_and_set_predefined_video_timings(sd, 0x02, adv7604_prim_mode_gr, timings); } else if (is_digital_input(sd)) { err = find_and_set_predefined_video_timings(sd, 0x05, adv76xx_prim_mode_hdmi_comp, timings); if (err) err = find_and_set_predefined_video_timings(sd, 0x06, adv76xx_prim_mode_hdmi_gr, timings); } else { v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", __func__, state->selected_input); err = -1; } return err; } static void configure_custom_video_timings(struct v4l2_subdev *sd, const struct v4l2_bt_timings *bt) { struct adv76xx_state *state = to_state(sd); u32 width = htotal(bt); u32 height = vtotal(bt); u16 cp_start_sav = bt->hsync + bt->hbackporch - 4; u16 cp_start_eav = width - bt->hfrontporch; u16 cp_start_vbi = height - bt->vfrontporch; u16 cp_end_vbi = bt->vsync + bt->vbackporch; u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ? ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0; const u8 pll[2] = { 0xc0 | ((width >> 8) & 0x1f), width & 0xff }; v4l2_dbg(2, debug, sd, "%s\n", __func__); if (is_analog_input(sd)) { /* auto graphics */ io_write(sd, 0x00, 0x07); /* video std */ io_write(sd, 0x01, 0x02); /* prim mode */ /* enable embedded syncs for auto graphics mode */ cp_write_clr_set(sd, 0x81, 0x10, 0x10); /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */ /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */ /* IO-map reg. 0x16 and 0x17 should be written in sequence */ if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO], 0x16, pll, 2)) v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n"); /* active video - horizontal timing */ cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff); cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) | ((cp_start_eav >> 8) & 0x0f)); cp_write(sd, 0xa4, cp_start_eav & 0xff); /* active video - vertical timing */ cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff); cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) | ((cp_end_vbi >> 8) & 0xf)); cp_write(sd, 0xa7, cp_end_vbi & 0xff); } else if (is_digital_input(sd)) { /* set default prim_mode/vid_std for HDMI according to [REF_03, c. 4.2] */ io_write(sd, 0x00, 0x02); /* video std */ io_write(sd, 0x01, 0x06); /* prim mode */ } else { v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", __func__, state->selected_input); } cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7); cp_write(sd, 0x90, ch1_fr_ll & 0xff); cp_write(sd, 0xab, (height >> 4) & 0xff); cp_write(sd, 0xac, (height & 0x0f) << 4); } static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c) { struct adv76xx_state *state = to_state(sd); u8 offset_buf[4]; if (auto_offset) { offset_a = 0x3ff; offset_b = 0x3ff; offset_c = 0x3ff; } v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n", __func__, auto_offset ? "Auto" : "Manual", offset_a, offset_b, offset_c); offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4); offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6); offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8); offset_buf[3] = offset_c & 0x0ff; /* Registers must be written in this order with no i2c access in between */ if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 0x77, offset_buf, 4)) v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__); } static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c) { struct adv76xx_state *state = to_state(sd); u8 gain_buf[4]; u8 gain_man = 1; u8 agc_mode_man = 1; if (auto_gain) { gain_man = 0; agc_mode_man = 0; gain_a = 0x100; gain_b = 0x100; gain_c = 0x100; } v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n", __func__, auto_gain ? "Auto" : "Manual", gain_a, gain_b, gain_c); gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4)); gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6)); gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8)); gain_buf[3] = ((gain_c & 0x0ff)); /* Registers must be written in this order with no i2c access in between */ if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 0x73, gain_buf, 4)) v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__); } static void set_rgb_quantization_range(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); bool rgb_output = io_read(sd, 0x02) & 0x02; bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; u8 y = HDMI_COLORSPACE_RGB; if (hdmi_signal && (io_read(sd, 0x60) & 1)) y = infoframe_read(sd, 0x01) >> 5; v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n", __func__, state->rgb_quantization_range, rgb_output, hdmi_signal); adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0); adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0); io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4); switch (state->rgb_quantization_range) { case V4L2_DV_RGB_RANGE_AUTO: if (state->selected_input == ADV7604_PAD_VGA_RGB) { /* Receiving analog RGB signal * Set RGB full range (0-255) */ io_write_clr_set(sd, 0x02, 0xf0, 0x10); break; } if (state->selected_input == ADV7604_PAD_VGA_COMP) { /* Receiving analog YPbPr signal * Set automode */ io_write_clr_set(sd, 0x02, 0xf0, 0xf0); break; } if (hdmi_signal) { /* Receiving HDMI signal * Set automode */ io_write_clr_set(sd, 0x02, 0xf0, 0xf0); break; } /* Receiving DVI-D signal * ADV7604 selects RGB limited range regardless of * input format (CE/IT) in automatic mode */ if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) { /* RGB limited range (16-235) */ io_write_clr_set(sd, 0x02, 0xf0, 0x00); } else { /* RGB full range (0-255) */ io_write_clr_set(sd, 0x02, 0xf0, 0x10); if (is_digital_input(sd) && rgb_output) { adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); } else { adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); } } break; case V4L2_DV_RGB_RANGE_LIMITED: if (state->selected_input == ADV7604_PAD_VGA_COMP) { /* YCrCb limited range (16-235) */ io_write_clr_set(sd, 0x02, 0xf0, 0x20); break; } if (y != HDMI_COLORSPACE_RGB) break; /* RGB limited range (16-235) */ io_write_clr_set(sd, 0x02, 0xf0, 0x00); break; case V4L2_DV_RGB_RANGE_FULL: if (state->selected_input == ADV7604_PAD_VGA_COMP) { /* YCrCb full range (0-255) */ io_write_clr_set(sd, 0x02, 0xf0, 0x60); break; } if (y != HDMI_COLORSPACE_RGB) break; /* RGB full range (0-255) */ io_write_clr_set(sd, 0x02, 0xf0, 0x10); if (is_analog_input(sd) || hdmi_signal) break; /* Adjust gain/offset for DVI-D signals only */ if (rgb_output) { adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); } else { adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); } break; } } static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; struct adv76xx_state *state = to_state(sd); switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: cp_write(sd, 0x3c, ctrl->val); return 0; case V4L2_CID_CONTRAST: cp_write(sd, 0x3a, ctrl->val); return 0; case V4L2_CID_SATURATION: cp_write(sd, 0x3b, ctrl->val); return 0; case V4L2_CID_HUE: cp_write(sd, 0x3d, ctrl->val); return 0; case V4L2_CID_DV_RX_RGB_RANGE: state->rgb_quantization_range = ctrl->val; set_rgb_quantization_range(sd); return 0; case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE: if (!adv76xx_has_afe(state)) return -EINVAL; /* Set the analog sampling phase. This is needed to find the best sampling phase for analog video: an application or driver has to try a number of phases and analyze the picture quality before settling on the best performing phase. */ afe_write(sd, 0xc8, ctrl->val); return 0; case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL: /* Use the default blue color for free running mode, or supply your own. */ cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2); return 0; case V4L2_CID_ADV_RX_FREE_RUN_COLOR: cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16); cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8); cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff)); return 0; } return -EINVAL; } static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) { ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC; if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80)) ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3; return 0; } return -EINVAL; } /* ----------------------------------------------------------------------- */ static inline bool no_power(struct v4l2_subdev *sd) { /* Entire chip or CP powered off */ return io_read(sd, 0x0c) & 0x24; } static inline bool no_signal_tmds(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input)); } static inline bool no_lock_tmds(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); const struct adv76xx_chip_info *info = state->info; return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask; } static inline bool is_hdmi(struct v4l2_subdev *sd) { return hdmi_read(sd, 0x05) & 0x80; } static inline bool no_lock_sspd(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); /* * Chips without a AFE don't expose registers for the SSPD, so just assume * that we have a lock. */ if (adv76xx_has_afe(state)) return false; /* TODO channel 2 */ return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0); } static inline bool no_lock_stdi(struct v4l2_subdev *sd) { /* TODO channel 2 */ return !(cp_read(sd, 0xb1) & 0x80); } static inline bool no_signal(struct v4l2_subdev *sd) { bool ret; ret = no_power(sd); ret |= no_lock_stdi(sd); ret |= no_lock_sspd(sd); if (is_digital_input(sd)) { ret |= no_lock_tmds(sd); ret |= no_signal_tmds(sd); } return ret; } static inline bool no_lock_cp(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); if (!adv76xx_has_afe(state)) return false; /* CP has detected a non standard number of lines on the incoming video compared to what it is configured to receive by s_dv_timings */ return io_read(sd, 0x12) & 0x01; } static inline bool in_free_run(struct v4l2_subdev *sd) { return cp_read(sd, 0xff) & 0x10; } static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status) { *status = 0; *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0; *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0; if (!in_free_run(sd) && no_lock_cp(sd)) *status |= is_digital_input(sd) ? V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK; v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status); return 0; } /* ----------------------------------------------------------------------- */ struct stdi_readback { u16 bl, lcf, lcvs; u8 hs_pol, vs_pol; bool interlaced; }; static int stdi2dv_timings(struct v4l2_subdev *sd, struct stdi_readback *stdi, struct v4l2_dv_timings *timings) { struct adv76xx_state *state = to_state(sd); u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl; u32 pix_clk; int i; for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) { const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt; if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i], adv76xx_get_dv_timings_cap(sd, -1), adv76xx_check_dv_timings, NULL)) continue; if (vtotal(bt) != stdi->lcf + 1) continue; if (bt->vsync != stdi->lcvs) continue; pix_clk = hfreq * htotal(bt); if ((pix_clk < bt->pixelclock + 1000000) && (pix_clk > bt->pixelclock - 1000000)) { *timings = v4l2_dv_timings_presets[i]; return 0; } } if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0, (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), false, timings)) return 0; if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs, (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), false, state->aspect_ratio, timings)) return 0; v4l2_dbg(2, debug, sd, "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n", __func__, stdi->lcvs, stdi->lcf, stdi->bl, stdi->hs_pol, stdi->vs_pol); return -1; } static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi) { struct adv76xx_state *state = to_state(sd); const struct adv76xx_chip_info *info = state->info; u8 polarity; if (no_lock_stdi(sd) || no_lock_sspd(sd)) { v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__); return -1; } /* read STDI */ stdi->bl = cp_read16(sd, 0xb1, 0x3fff); stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff); stdi->lcvs = cp_read(sd, 0xb3) >> 3; stdi->interlaced = io_read(sd, 0x12) & 0x10; if (adv76xx_has_afe(state)) { /* read SSPD */ polarity = cp_read(sd, 0xb5); if ((polarity & 0x03) == 0x01) { stdi->hs_pol = polarity & 0x10 ? (polarity & 0x08 ? '+' : '-') : 'x'; stdi->vs_pol = polarity & 0x40 ? (polarity & 0x20 ? '+' : '-') : 'x'; } else { stdi->hs_pol = 'x'; stdi->vs_pol = 'x'; } } else { polarity = hdmi_read(sd, 0x05); stdi->hs_pol = polarity & 0x20 ? '+' : '-'; stdi->vs_pol = polarity & 0x10 ? '+' : '-'; } if (no_lock_stdi(sd) || no_lock_sspd(sd)) { v4l2_dbg(2, debug, sd, "%s: signal lost during readout of STDI/SSPD\n", __func__); return -1; } if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) { v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__); memset(stdi, 0, sizeof(struct stdi_readback)); return -1; } v4l2_dbg(2, debug, sd, "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n", __func__, stdi->lcf, stdi->bl, stdi->lcvs, stdi->hs_pol, stdi->vs_pol, stdi->interlaced ? "interlaced" : "progressive"); return 0; } static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd, struct v4l2_enum_dv_timings *timings) { struct adv76xx_state *state = to_state(sd); if (timings->pad >= state->source_pad) return -EINVAL; return v4l2_enum_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, timings->pad), adv76xx_check_dv_timings, NULL); } static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd, struct v4l2_dv_timings_cap *cap) { struct adv76xx_state *state = to_state(sd); unsigned int pad = cap->pad; if (cap->pad >= state->source_pad) return -EINVAL; *cap = *adv76xx_get_dv_timings_cap(sd, pad); cap->pad = pad; return 0; } /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings if the format is listed in adv76xx_timings[] */ static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1), is_digital_input(sd) ? 250000 : 1000000, adv76xx_check_dv_timings, NULL); } static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd) { unsigned int freq; int a, b; a = hdmi_read(sd, 0x06); b = hdmi_read(sd, 0x3b); if (a < 0 || b < 0) return 0; freq = a * 1000000 + ((b & 0x30) >> 4) * 250000; if (is_hdmi(sd)) { /* adjust for deep color mode */ unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8; freq = freq * 8 / bits_per_channel; } return freq; } static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd) { int a, b; a = hdmi_read(sd, 0x51); b = hdmi_read(sd, 0x52); if (a < 0 || b < 0) return 0; return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128; } static int adv76xx_query_dv_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct adv76xx_state *state = to_state(sd); const struct adv76xx_chip_info *info = state->info; struct v4l2_bt_timings *bt = &timings->bt; struct stdi_readback stdi; if (!timings) return -EINVAL; memset(timings, 0, sizeof(struct v4l2_dv_timings)); if (no_signal(sd)) { state->restart_stdi_once = true; v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); return -ENOLINK; } /* read STDI */ if (read_stdi(sd, &stdi)) { v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__); return -ENOLINK; } bt->interlaced = stdi.interlaced ? V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE; if (is_digital_input(sd)) { bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; u8 vic = 0; u32 w, h; w = hdmi_read16(sd, 0x07, info->linewidth_mask); h = hdmi_read16(sd, 0x09, info->field0_height_mask); if (hdmi_signal && (io_read(sd, 0x60) & 1)) vic = infoframe_read(sd, 0x04); if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) && bt->width == w && bt->height == h) goto found; timings->type = V4L2_DV_BT_656_1120; bt->width = w; bt->height = h; bt->pixelclock = info->read_hdmi_pixelclock(sd); bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask); bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask); bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask); bt->vfrontporch = hdmi_read16(sd, 0x2a, info->field0_vfrontporch_mask) / 2; bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2; bt->vbackporch = hdmi_read16(sd, 0x32, info->field0_vbackporch_mask) / 2; bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) | ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0); if (bt->interlaced == V4L2_DV_INTERLACED) { bt->height += hdmi_read16(sd, 0x0b, info->field1_height_mask); bt->il_vfrontporch = hdmi_read16(sd, 0x2c, info->field1_vfrontporch_mask) / 2; bt->il_vsync = hdmi_read16(sd, 0x30, info->field1_vsync_mask) / 2; bt->il_vbackporch = hdmi_read16(sd, 0x34, info->field1_vbackporch_mask) / 2; } adv76xx_fill_optional_dv_timings_fields(sd, timings); } else { /* find format * Since LCVS values are inaccurate [REF_03, p. 275-276], * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails. */ if (!stdi2dv_timings(sd, &stdi, timings)) goto found; stdi.lcvs += 1; v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs); if (!stdi2dv_timings(sd, &stdi, timings)) goto found; stdi.lcvs -= 2; v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs); if (stdi2dv_timings(sd, &stdi, timings)) { /* * The STDI block may measure wrong values, especially * for lcvs and lcf. If the driver can not find any * valid timing, the STDI block is restarted to measure * the video timings again. The function will return an * error, but the restart of STDI will generate a new * STDI interrupt and the format detection process will * restart. */ if (state->restart_stdi_once) { v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__); /* TODO restart STDI for Sync Channel 2 */ /* enter one-shot mode */ cp_write_clr_set(sd, 0x86, 0x06, 0x00); /* trigger STDI restart */ cp_write_clr_set(sd, 0x86, 0x06, 0x04); /* reset to continuous mode */ cp_write_clr_set(sd, 0x86, 0x06, 0x02); state->restart_stdi_once = false; return -ENOLINK; } v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__); return -ERANGE; } state->restart_stdi_once = true; } found: if (no_signal(sd)) { v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__); memset(timings, 0, sizeof(struct v4l2_dv_timings)); return -ENOLINK; } if ((is_analog_input(sd) && bt->pixelclock > 170000000) || (is_digital_input(sd) && bt->pixelclock > 225000000)) { v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n", __func__, (u32)bt->pixelclock); return -ERANGE; } if (debug > 1) v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ", timings, true); return 0; } static int adv76xx_s_dv_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct adv76xx_state *state = to_state(sd); struct v4l2_bt_timings *bt; int err; if (!timings) return -EINVAL; if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) { v4l2_dbg(1, debug, sd, "%s: no change\n", __func__); return 0; } bt = &timings->bt; if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1), adv76xx_check_dv_timings, NULL)) return -ERANGE; adv76xx_fill_optional_dv_timings_fields(sd, timings); state->timings = *timings; cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00); /* Use prim_mode and vid_std when available */ err = configure_predefined_video_timings(sd, timings); if (err) { /* custom settings when the video format does not have prim_mode/vid_std */ configure_custom_video_timings(sd, bt); } set_rgb_quantization_range(sd); if (debug > 1) v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ", timings, true); return 0; } static int adv76xx_g_dv_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct adv76xx_state *state = to_state(sd); *timings = state->timings; return 0; } static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable) { hdmi_write(sd, 0x01, enable ? 0x00 : 0x78); } static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable) { hdmi_write(sd, 0x83, enable ? 0xfe : 0xff); } static void enable_input(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); if (is_analog_input(sd)) { io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */ } else if (is_digital_input(sd)) { hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input); state->info->set_termination(sd, true); io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */ hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */ } else { v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", __func__, state->selected_input); } } static void disable_input(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */ msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */ io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */ state->info->set_termination(sd, false); } static void select_input(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); const struct adv76xx_chip_info *info = state->info; if (is_analog_input(sd)) { adv76xx_write_reg_seq(sd, info->recommended_settings[0]); afe_write(sd, 0x00, 0x08); /* power up ADC */ afe_write(sd, 0x01, 0x06); /* power up Analog Front End */ afe_write(sd, 0xc8, 0x00); /* phase control */ } else if (is_digital_input(sd)) { hdmi_write(sd, 0x00, state->selected_input & 0x03); adv76xx_write_reg_seq(sd, info->recommended_settings[1]); if (adv76xx_has_afe(state)) { afe_write(sd, 0x00, 0xff); /* power down ADC */ afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */ afe_write(sd, 0xc8, 0x40); /* phase control */ } cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */ cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */ cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */ } else { v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", __func__, state->selected_input); } } static int adv76xx_s_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { struct adv76xx_state *state = to_state(sd); v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d", __func__, input, state->selected_input); if (input == state->selected_input) return 0; if (input > state->info->max_port) return -EINVAL; state->selected_input = input; disable_input(sd); select_input(sd); enable_input(sd); v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); return 0; } static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_mbus_code_enum *code) { struct adv76xx_state *state = to_state(sd); if (code->index >= state->info->nformats) return -EINVAL; code->code = state->info->formats[code->index].code; return 0; } static void adv76xx_fill_format(struct adv76xx_state *state, struct v4l2_mbus_framefmt *format) { memset(format, 0, sizeof(*format)); format->width = state->timings.bt.width; format->height = state->timings.bt.height; format->field = V4L2_FIELD_NONE; format->colorspace = V4L2_COLORSPACE_SRGB; if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) format->colorspace = (state->timings.bt.height <= 576) ? V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709; } /* * Compute the op_ch_sel value required to obtain on the bus the component order * corresponding to the selected format taking into account bus reordering * applied by the board at the output of the device. * * The following table gives the op_ch_value from the format component order * (expressed as op_ch_sel value in column) and the bus reordering (expressed as * adv76xx_bus_order value in row). * * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5) * ----------+------------------------------------------------- * RGB (NOP) | GBR GRB BGR RGB BRG RBG * GRB (1-2) | BGR RGB GBR GRB RBG BRG * RBG (2-3) | GRB GBR BRG RBG BGR RGB * BGR (1-3) | RBG BRG RGB BGR GRB GBR * BRG (ROR) | BRG RBG GRB GBR RGB BGR * GBR (ROL) | RGB BGR RBG BRG GBR GRB */ static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state) { #define _SEL(a,b,c,d,e,f) { \ ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \ ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f } #define _BUS(x) [ADV7604_BUS_ORDER_##x] static const unsigned int op_ch_sel[6][6] = { _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG), _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG), _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB), _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR), _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR), _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB), }; return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5]; } static void adv76xx_setup_format(struct adv76xx_state *state) { struct v4l2_subdev *sd = &state->sd; io_write_clr_set(sd, 0x02, 0x02, state->format->rgb_out ? ADV76XX_RGB_OUT : 0); io_write(sd, 0x03, state->format->op_format_sel | state->pdata.op_format_mode_sel); io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state)); io_write_clr_set(sd, 0x05, 0x01, state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0); set_rgb_quantization_range(sd); } static int adv76xx_get_format(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *format) { struct adv76xx_state *state = to_state(sd); if (format->pad != state->source_pad) return -EINVAL; adv76xx_fill_format(state, &format->format); if (format->which == V4L2_SUBDEV_FORMAT_TRY) { struct v4l2_mbus_framefmt *fmt; fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad); format->format.code = fmt->code; } else { format->format.code = state->format->code; } return 0; } static int adv76xx_get_selection(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_selection *sel) { struct adv76xx_state *state = to_state(sd); if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE) return -EINVAL; /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */ if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS) return -EINVAL; sel->r.left = 0; sel->r.top = 0; sel->r.width = state->timings.bt.width; sel->r.height = state->timings.bt.height; return 0; } static int adv76xx_set_format(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *format) { struct adv76xx_state *state = to_state(sd); const struct adv76xx_format_info *info; if (format->pad != state->source_pad) return -EINVAL; info = adv76xx_format_info(state, format->format.code); if (!info) info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); adv76xx_fill_format(state, &format->format); format->format.code = info->code; if (format->which == V4L2_SUBDEV_FORMAT_TRY) { struct v4l2_mbus_framefmt *fmt; fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad); fmt->code = format->format.code; } else { state->format = info; adv76xx_setup_format(state); } return 0; } #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status) { struct adv76xx_state *state = to_state(sd); if ((cec_read(sd, 0x11) & 0x01) == 0) { v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__); return; } if (tx_raw_status & 0x02) { v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n", __func__); cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST, 1, 0, 0, 0); return; } if (tx_raw_status & 0x04) { u8 status; u8 nack_cnt; u8 low_drive_cnt; v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__); /* * We set this status bit since this hardware performs * retransmissions. */ status = CEC_TX_STATUS_MAX_RETRIES; nack_cnt = cec_read(sd, 0x14) & 0xf; if (nack_cnt) status |= CEC_TX_STATUS_NACK; low_drive_cnt = cec_read(sd, 0x14) >> 4; if (low_drive_cnt) status |= CEC_TX_STATUS_LOW_DRIVE; cec_transmit_done(state->cec_adap, status, 0, nack_cnt, low_drive_cnt, 0); return; } if (tx_raw_status & 0x01) { v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__); cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0); return; } } static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled) { struct adv76xx_state *state = to_state(sd); u8 cec_irq; /* cec controller */ cec_irq = io_read(sd, 0x4d) & 0x0f; if (!cec_irq) return; v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq); adv76xx_cec_tx_raw_status(sd, cec_irq); if (cec_irq & 0x08) { struct cec_msg msg; msg.len = cec_read(sd, 0x25) & 0x1f; if (msg.len > 16) msg.len = 16; if (msg.len) { u8 i; for (i = 0; i < msg.len; i++) msg.msg[i] = cec_read(sd, i + 0x15); cec_write(sd, 0x26, 0x01); /* re-enable rx */ cec_received_msg(state->cec_adap, &msg); } } /* note: the bit order is swapped between 0x4d and 0x4e */ cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) | ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3); io_write(sd, 0x4e, cec_irq); if (handled) *handled = true; } static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable) { struct adv76xx_state *state = cec_get_drvdata(adap); struct v4l2_subdev *sd = &state->sd; if (!state->cec_enabled_adap && enable) { cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */ cec_write(sd, 0x2c, 0x01); /* cec soft reset */ cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */ /* enabled irqs: */ /* tx: ready */ /* tx: arbitration lost */ /* tx: retry timeout */ /* rx: ready */ io_write_clr_set(sd, 0x50, 0x0f, 0x0f); cec_write(sd, 0x26, 0x01); /* enable rx */ } else if (state->cec_enabled_adap && !enable) { /* disable cec interrupts */ io_write_clr_set(sd, 0x50, 0x0f, 0x00); /* disable address mask 1-3 */ cec_write_clr_set(sd, 0x27, 0x70, 0x00); /* power down cec section */ cec_write_clr_set(sd, 0x2a, 0x01, 0x00); state->cec_valid_addrs = 0; } state->cec_enabled_adap = enable; adv76xx_s_detect_tx_5v_ctrl(sd); return 0; } static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr) { struct adv76xx_state *state = cec_get_drvdata(adap); struct v4l2_subdev *sd = &state->sd; unsigned int i, free_idx = ADV76XX_MAX_ADDRS; if (!state->cec_enabled_adap) return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO; if (addr == CEC_LOG_ADDR_INVALID) { cec_write_clr_set(sd, 0x27, 0x70, 0); state->cec_valid_addrs = 0; return 0; } for (i = 0; i < ADV76XX_MAX_ADDRS; i++) { bool is_valid = state->cec_valid_addrs & (1 << i); if (free_idx == ADV76XX_MAX_ADDRS && !is_valid) free_idx = i; if (is_valid && state->cec_addr[i] == addr) return 0; } if (i == ADV76XX_MAX_ADDRS) { i = free_idx; if (i == ADV76XX_MAX_ADDRS) return -ENXIO; } state->cec_addr[i] = addr; state->cec_valid_addrs |= 1 << i; switch (i) { case 0: /* enable address mask 0 */ cec_write_clr_set(sd, 0x27, 0x10, 0x10); /* set address for mask 0 */ cec_write_clr_set(sd, 0x28, 0x0f, addr); break; case 1: /* enable address mask 1 */ cec_write_clr_set(sd, 0x27, 0x20, 0x20); /* set address for mask 1 */ cec_write_clr_set(sd, 0x28, 0xf0, addr << 4); break; case 2: /* enable address mask 2 */ cec_write_clr_set(sd, 0x27, 0x40, 0x40); /* set address for mask 1 */ cec_write_clr_set(sd, 0x29, 0x0f, addr); break; } return 0; } static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, u32 signal_free_time, struct cec_msg *msg) { struct adv76xx_state *state = cec_get_drvdata(adap); struct v4l2_subdev *sd = &state->sd; u8 len = msg->len; unsigned int i; /* * The number of retries is the number of attempts - 1, but retry * at least once. It's not clear if a value of 0 is allowed, so * let's do at least one retry. */ cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4); if (len > 16) { v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len); return -EINVAL; } /* write data */ for (i = 0; i < len; i++) cec_write(sd, i, msg->msg[i]); /* set length (data + header) */ cec_write(sd, 0x10, len); /* start transmit, enable tx */ cec_write(sd, 0x11, 0x01); return 0; } static const struct cec_adap_ops adv76xx_cec_adap_ops = { .adap_enable = adv76xx_cec_adap_enable, .adap_log_addr = adv76xx_cec_adap_log_addr, .adap_transmit = adv76xx_cec_adap_transmit, }; #endif static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled) { struct adv76xx_state *state = to_state(sd); const struct adv76xx_chip_info *info = state->info; const u8 irq_reg_0x43 = io_read(sd, 0x43); const u8 irq_reg_0x6b = io_read(sd, 0x6b); const u8 irq_reg_0x70 = io_read(sd, 0x70); u8 fmt_change_digital; u8 fmt_change; u8 tx_5v; if (irq_reg_0x43) io_write(sd, 0x44, irq_reg_0x43); if (irq_reg_0x70) io_write(sd, 0x71, irq_reg_0x70); if (irq_reg_0x6b) io_write(sd, 0x6c, irq_reg_0x6b); v4l2_dbg(2, debug, sd, "%s: ", __func__); /* format change */ fmt_change = irq_reg_0x43 & 0x98; fmt_change_digital = is_digital_input(sd) ? irq_reg_0x6b & info->fmt_change_digital_mask : 0; if (fmt_change || fmt_change_digital) { v4l2_dbg(1, debug, sd, "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n", __func__, fmt_change, fmt_change_digital); v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); if (handled) *handled = true; } /* HDMI/DVI mode */ if (irq_reg_0x6b & 0x01) { v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__, (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI"); set_rgb_quantization_range(sd); if (handled) *handled = true; } #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) /* cec */ adv76xx_cec_isr(sd, handled); #endif /* tx 5v detect */ tx_5v = irq_reg_0x70 & info->cable_det_mask; if (tx_5v) { v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v); adv76xx_s_detect_tx_5v_ctrl(sd); if (handled) *handled = true; } return 0; } static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) { struct adv76xx_state *state = to_state(sd); u8 *data = NULL; memset(edid->reserved, 0, sizeof(edid->reserved)); switch (edid->pad) { case ADV76XX_PAD_HDMI_PORT_A: case ADV7604_PAD_HDMI_PORT_B: case ADV7604_PAD_HDMI_PORT_C: case ADV7604_PAD_HDMI_PORT_D: if (state->edid.present & (1 << edid->pad)) data = state->edid.edid; break; default: return -EINVAL; } if (edid->start_block == 0 && edid->blocks == 0) { edid->blocks = data ? state->edid.blocks : 0; return 0; } if (!data) return -ENODATA; if (edid->start_block >= state->edid.blocks) return -EINVAL; if (edid->start_block + edid->blocks > state->edid.blocks) edid->blocks = state->edid.blocks - edid->start_block; memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128); return 0; } static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) { struct adv76xx_state *state = to_state(sd); const struct adv76xx_chip_info *info = state->info; unsigned int spa_loc; u16 pa; int err; int i; memset(edid->reserved, 0, sizeof(edid->reserved)); if (edid->pad > ADV7604_PAD_HDMI_PORT_D) return -EINVAL; if (edid->start_block != 0) return -EINVAL; if (edid->blocks == 0) { /* Disable hotplug and I2C access to EDID RAM from DDC port */ state->edid.present &= ~(1 << edid->pad); adv76xx_set_hpd(state, state->edid.present); rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); /* Fall back to a 16:9 aspect ratio */ state->aspect_ratio.numerator = 16; state->aspect_ratio.denominator = 9; if (!state->edid.present) state->edid.blocks = 0; v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n", __func__, edid->pad, state->edid.present); return 0; } if (edid->blocks > 2) { edid->blocks = 2; return -E2BIG; } pa = cec_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc); err = cec_phys_addr_validate(pa, &pa, NULL); if (err) return err; v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n", __func__, edid->pad, state->edid.present); /* Disable hotplug and I2C access to EDID RAM from DDC port */ cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); adv76xx_set_hpd(state, 0); rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00); /* * Return an error if no location of the source physical address * was found. */ if (spa_loc == 0) return -EINVAL; switch (edid->pad) { case ADV76XX_PAD_HDMI_PORT_A: state->spa_port_a[0] = edid->edid[spa_loc]; state->spa_port_a[1] = edid->edid[spa_loc + 1]; break; case ADV7604_PAD_HDMI_PORT_B: rep_write(sd, 0x70, edid->edid[spa_loc]); rep_write(sd, 0x71, edid->edid[spa_loc + 1]); break; case ADV7604_PAD_HDMI_PORT_C: rep_write(sd, 0x72, edid->edid[spa_loc]); rep_write(sd, 0x73, edid->edid[spa_loc + 1]); break; case ADV7604_PAD_HDMI_PORT_D: rep_write(sd, 0x74, edid->edid[spa_loc]); rep_write(sd, 0x75, edid->edid[spa_loc + 1]); break; default: return -EINVAL; } if (info->type == ADV7604) { rep_write(sd, 0x76, spa_loc & 0xff); rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2); } else { /* ADV7612 Software Manual Rev. A, p. 15 */ rep_write(sd, 0x70, spa_loc & 0xff); rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8); } edid->edid[spa_loc] = state->spa_port_a[0]; edid->edid[spa_loc + 1] = state->spa_port_a[1]; memcpy(state->edid.edid, edid->edid, 128 * edid->blocks); state->edid.blocks = edid->blocks; state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15], edid->edid[0x16]); state->edid.present |= 1 << edid->pad; err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid); if (err < 0) { v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad); return err; } /* adv76xx calculates the checksums and enables I2C access to internal EDID RAM from DDC port. */ rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); for (i = 0; i < 1000; i++) { if (rep_read(sd, info->edid_status_reg) & state->edid.present) break; mdelay(1); } if (i == 1000) { v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present); return -EIO; } cec_s_phys_addr(state->cec_adap, pa, false); /* enable hotplug after 100 ms */ schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10); return 0; } /*********** avi info frame CEA-861-E **************/ static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = { { "AVI", 0x01, 0xe0, 0x00 }, { "Audio", 0x02, 0xe3, 0x1c }, { "SDP", 0x04, 0xe6, 0x2a }, { "Vendor", 0x10, 0xec, 0x54 } }; static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index, union hdmi_infoframe *frame) { uint8_t buffer[32]; u8 len; int i; if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) { v4l2_info(sd, "%s infoframe not received\n", adv76xx_cri[index].desc); return -ENOENT; } for (i = 0; i < 3; i++) buffer[i] = infoframe_read(sd, adv76xx_cri[index].head_addr + i); len = buffer[2] + 1; if (len + 3 > sizeof(buffer)) { v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__, adv76xx_cri[index].desc, len); return -ENOENT; } for (i = 0; i < len; i++) buffer[i + 3] = infoframe_read(sd, adv76xx_cri[index].payload_addr + i); if (hdmi_infoframe_unpack(frame, buffer) < 0) { v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__, adv76xx_cri[index].desc); return -ENOENT; } return 0; } static void adv76xx_log_infoframes(struct v4l2_subdev *sd) { int i; if (!is_hdmi(sd)) { v4l2_info(sd, "receive DVI-D signal, no infoframes\n"); return; } for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) { union hdmi_infoframe frame; struct i2c_client *client = v4l2_get_subdevdata(sd); if (adv76xx_read_infoframe(sd, i, &frame)) return; hdmi_infoframe_log(KERN_INFO, &client->dev, &frame); } } static int adv76xx_log_status(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); const struct adv76xx_chip_info *info = state->info; struct v4l2_dv_timings timings; struct stdi_readback stdi; u8 reg_io_0x02 = io_read(sd, 0x02); u8 edid_enabled; u8 cable_det; static const char * const csc_coeff_sel_rb[16] = { "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB", "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709", "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709", "reserved", "reserved", "reserved", "reserved", "manual" }; static const char * const input_color_space_txt[16] = { "RGB limited range (16-235)", "RGB full range (0-255)", "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", "xvYCC Bt.601", "xvYCC Bt.709", "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", "invalid", "invalid", "invalid", "invalid", "invalid", "invalid", "invalid", "automatic" }; static const char * const hdmi_color_space_txt[16] = { "RGB limited range (16-235)", "RGB full range (0-255)", "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", "xvYCC Bt.601", "xvYCC Bt.709", "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", "sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid", "invalid", "invalid", "invalid" }; static const char * const rgb_quantization_range_txt[] = { "Automatic", "RGB limited range (16-235)", "RGB full range (0-255)", }; static const char * const deep_color_mode_txt[4] = { "8-bits per channel", "10-bits per channel", "12-bits per channel", "16-bits per channel (not supported)" }; v4l2_info(sd, "-----Chip status-----\n"); v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on"); edid_enabled = rep_read(sd, info->edid_status_reg); v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n", ((edid_enabled & 0x01) ? "Yes" : "No"), ((edid_enabled & 0x02) ? "Yes" : "No"), ((edid_enabled & 0x04) ? "Yes" : "No"), ((edid_enabled & 0x08) ? "Yes" : "No")); v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ? "enabled" : "disabled"); if (state->cec_enabled_adap) { int i; for (i = 0; i < ADV76XX_MAX_ADDRS; i++) { bool is_valid = state->cec_valid_addrs & (1 << i); if (is_valid) v4l2_info(sd, "CEC Logical Address: 0x%x\n", state->cec_addr[i]); } } v4l2_info(sd, "-----Signal status-----\n"); cable_det = info->read_cable_det(sd); v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n", ((cable_det & 0x01) ? "Yes" : "No"), ((cable_det & 0x02) ? "Yes" : "No"), ((cable_det & 0x04) ? "Yes" : "No"), ((cable_det & 0x08) ? "Yes" : "No")); v4l2_info(sd, "TMDS signal detected: %s\n", no_signal_tmds(sd) ? "false" : "true"); v4l2_info(sd, "TMDS signal locked: %s\n", no_lock_tmds(sd) ? "false" : "true"); v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true"); v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true"); v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true"); v4l2_info(sd, "CP free run: %s\n", (in_free_run(sd)) ? "on" : "off"); v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n", io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f, (io_read(sd, 0x01) & 0x70) >> 4); v4l2_info(sd, "-----Video Timings-----\n"); if (read_stdi(sd, &stdi)) v4l2_info(sd, "STDI: not locked\n"); else v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n", stdi.lcf, stdi.bl, stdi.lcvs, stdi.interlaced ? "interlaced" : "progressive", stdi.hs_pol, stdi.vs_pol); if (adv76xx_query_dv_timings(sd, &timings)) v4l2_info(sd, "No video detected\n"); else v4l2_print_dv_timings(sd->name, "Detected format: ", &timings, true); v4l2_print_dv_timings(sd->name, "Configured format: ", &state->timings, true); if (no_signal(sd)) return 0; v4l2_info(sd, "-----Color space-----\n"); v4l2_info(sd, "RGB quantization range ctrl: %s\n", rgb_quantization_range_txt[state->rgb_quantization_range]); v4l2_info(sd, "Input color space: %s\n", input_color_space_txt[reg_io_0x02 >> 4]); v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n", (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr", (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ? "(16-235)" : "(0-255)", (reg_io_0x02 & 0x08) ? "enabled" : "disabled"); v4l2_info(sd, "Color space conversion: %s\n", csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]); if (!is_digital_input(sd)) return 0; v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D"); v4l2_info(sd, "Digital video port selected: %c\n", (hdmi_read(sd, 0x00) & 0x03) + 'A'); v4l2_info(sd, "HDCP encrypted content: %s\n", (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false"); v4l2_info(sd, "HDCP keys read: %s%s\n", (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no", (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : ""); if (is_hdmi(sd)) { bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01; bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01; bool audio_mute = io_read(sd, 0x65) & 0x40; v4l2_info(sd, "Audio: pll %s, samples %s, %s\n", audio_pll_locked ? "locked" : "not locked", audio_sample_packet_detect ? "detected" : "not detected", audio_mute ? "muted" : "enabled"); if (audio_pll_locked && audio_sample_packet_detect) { v4l2_info(sd, "Audio format: %s\n", (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo"); } v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) + (hdmi_read(sd, 0x5c) << 8) + (hdmi_read(sd, 0x5d) & 0xf0)); v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) + (hdmi_read(sd, 0x5e) << 8) + hdmi_read(sd, 0x5f)); v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off"); v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]); v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]); adv76xx_log_infoframes(sd); } return 0; } static int adv76xx_subscribe_event(struct v4l2_subdev *sd, struct v4l2_fh *fh, struct v4l2_event_subscription *sub) { switch (sub->type) { case V4L2_EVENT_SOURCE_CHANGE: return v4l2_src_change_event_subdev_subscribe(sd, fh, sub); case V4L2_EVENT_CTRL: return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub); default: return -EINVAL; } } static int adv76xx_registered(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int err; err = cec_register_adapter(state->cec_adap, &client->dev); if (err) cec_delete_adapter(state->cec_adap); return err; } static void adv76xx_unregistered(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); cec_unregister_adapter(state->cec_adap); } /* ----------------------------------------------------------------------- */ static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = { .s_ctrl = adv76xx_s_ctrl, .g_volatile_ctrl = adv76xx_g_volatile_ctrl, }; static const struct v4l2_subdev_core_ops adv76xx_core_ops = { .log_status = adv76xx_log_status, .interrupt_service_routine = adv76xx_isr, .subscribe_event = adv76xx_subscribe_event, .unsubscribe_event = v4l2_event_subdev_unsubscribe, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = adv76xx_g_register, .s_register = adv76xx_s_register, #endif }; static const struct v4l2_subdev_video_ops adv76xx_video_ops = { .s_routing = adv76xx_s_routing, .g_input_status = adv76xx_g_input_status, .s_dv_timings = adv76xx_s_dv_timings, .g_dv_timings = adv76xx_g_dv_timings, .query_dv_timings = adv76xx_query_dv_timings, }; static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = { .enum_mbus_code = adv76xx_enum_mbus_code, .get_selection = adv76xx_get_selection, .get_fmt = adv76xx_get_format, .set_fmt = adv76xx_set_format, .get_edid = adv76xx_get_edid, .set_edid = adv76xx_set_edid, .dv_timings_cap = adv76xx_dv_timings_cap, .enum_dv_timings = adv76xx_enum_dv_timings, }; static const struct v4l2_subdev_ops adv76xx_ops = { .core = &adv76xx_core_ops, .video = &adv76xx_video_ops, .pad = &adv76xx_pad_ops, }; static const struct v4l2_subdev_internal_ops adv76xx_int_ops = { .registered = adv76xx_registered, .unregistered = adv76xx_unregistered, }; /* -------------------------- custom ctrls ---------------------------------- */ static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = { .ops = &adv76xx_ctrl_ops, .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE, .name = "Analog Sampling Phase", .type = V4L2_CTRL_TYPE_INTEGER, .min = 0, .max = 0x1f, .step = 1, .def = 0, }; static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = { .ops = &adv76xx_ctrl_ops, .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL, .name = "Free Running Color, Manual", .type = V4L2_CTRL_TYPE_BOOLEAN, .min = false, .max = true, .step = 1, .def = false, }; static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = { .ops = &adv76xx_ctrl_ops, .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR, .name = "Free Running Color", .type = V4L2_CTRL_TYPE_INTEGER, .min = 0x0, .max = 0xffffff, .step = 0x1, .def = 0x0, }; /* ----------------------------------------------------------------------- */ static int adv76xx_core_init(struct v4l2_subdev *sd) { struct adv76xx_state *state = to_state(sd); const struct adv76xx_chip_info *info = state->info; struct adv76xx_platform_data *pdata = &state->pdata; hdmi_write(sd, 0x48, (pdata->disable_pwrdnb ? 0x80 : 0) | (pdata->disable_cable_det_rst ? 0x40 : 0)); disable_input(sd); if (pdata->default_input >= 0 && pdata->default_input < state->source_pad) { state->selected_input = pdata->default_input; select_input(sd); enable_input(sd); } /* power */ io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */ io_write(sd, 0x0b, 0x44); /* Power down ESDP block */ cp_write(sd, 0xcf, 0x01); /* Power down macrovision */ /* video format */ io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3); io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 | pdata->insert_av_codes << 2 | pdata->replicate_av_codes << 1); adv76xx_setup_format(state); cp_write(sd, 0x69, 0x30); /* Enable CP CSC */ /* VS, HS polarities */ io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 | pdata->inv_hs_pol << 1 | pdata->inv_llc_pol); /* Adjust drive strength */ io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 | pdata->dr_str_clk << 2 | pdata->dr_str_sync); cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */ cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */ cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold - ADI recommended setting [REF_01, c. 2.3.3] */ cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold - ADI recommended setting [REF_01, c. 2.3.3] */ cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution for digital formats */ /* HDMI audio */ hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */ hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */ hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */ /* TODO from platform data */ afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */ if (adv76xx_has_afe(state)) { afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */ io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4); } /* interrupts */ io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */ io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */ io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */ io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */ info->setup_irqs(sd); return v4l2_ctrl_handler_setup(sd->ctrl_handler); } static void adv7604_setup_irqs(struct v4l2_subdev *sd) { io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */ } static void adv7611_setup_irqs(struct v4l2_subdev *sd) { io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */ } static void adv7612_setup_irqs(struct v4l2_subdev *sd) { io_write(sd, 0x41, 0xd0); /* disable INT2 */ } static void adv76xx_unregister_clients(struct adv76xx_state *state) { unsigned int i; for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) { if (state->i2c_clients[i]) i2c_unregister_device(state->i2c_clients[i]); } } static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd, u8 addr, u8 io_reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); if (addr) io_write(sd, io_reg, addr << 1); return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1); } static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = { /* reset ADI recommended settings for HDMI: */ /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */ /* set ADI recommended settings for digitizer */ /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */ { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */ { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */ { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */ { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */ { ADV76XX_REG_SEQ_TERM, 0 }, }; static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = { /* set ADI recommended settings for HDMI: */ /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */ { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */ /* reset ADI recommended settings for digitizer */ /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */ { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */ { ADV76XX_REG_SEQ_TERM, 0 }, }; static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = { /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */ { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e }, { ADV76XX_REG_SEQ_TERM, 0 }, }; static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = { { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, { ADV76XX_REG_SEQ_TERM, 0 }, }; static const struct adv76xx_chip_info adv76xx_chip_info[] = { [ADV7604] = { .type = ADV7604, .has_afe = true, .max_port = ADV7604_PAD_VGA_COMP, .num_dv_ports = 4, .edid_enable_reg = 0x77, .edid_status_reg = 0x7d, .lcf_reg = 0xb3, .tdms_lock_mask = 0xe0, .cable_det_mask = 0x1e, .fmt_change_digital_mask = 0xc1, .cp_csc = 0xfc, .formats = adv7604_formats, .nformats = ARRAY_SIZE(adv7604_formats), .set_termination = adv7604_set_termination, .setup_irqs = adv7604_setup_irqs, .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock, .read_cable_det = adv7604_read_cable_det, .recommended_settings = { [0] = adv7604_recommended_settings_afe, [1] = adv7604_recommended_settings_hdmi, }, .num_recommended_settings = { [0] = ARRAY_SIZE(adv7604_recommended_settings_afe), [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi), }, .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) | BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) | BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) | BIT(ADV7604_PAGE_VDP), .linewidth_mask = 0xfff, .field0_height_mask = 0xfff, .field1_height_mask = 0xfff, .hfrontporch_mask = 0x3ff, .hsync_mask = 0x3ff, .hbackporch_mask = 0x3ff, .field0_vfrontporch_mask = 0x1fff, .field0_vsync_mask = 0x1fff, .field0_vbackporch_mask = 0x1fff, .field1_vfrontporch_mask = 0x1fff, .field1_vsync_mask = 0x1fff, .field1_vbackporch_mask = 0x1fff, }, [ADV7611] = { .type = ADV7611, .has_afe = false, .max_port = ADV76XX_PAD_HDMI_PORT_A, .num_dv_ports = 1, .edid_enable_reg = 0x74, .edid_status_reg = 0x76, .lcf_reg = 0xa3, .tdms_lock_mask = 0x43, .cable_det_mask = 0x01, .fmt_change_digital_mask = 0x03, .cp_csc = 0xf4, .formats = adv7611_formats, .nformats = ARRAY_SIZE(adv7611_formats), .set_termination = adv7611_set_termination, .setup_irqs = adv7611_setup_irqs, .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, .read_cable_det = adv7611_read_cable_det, .recommended_settings = { [1] = adv7611_recommended_settings_hdmi, }, .num_recommended_settings = { [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi), }, .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), .linewidth_mask = 0x1fff, .field0_height_mask = 0x1fff, .field1_height_mask = 0x1fff, .hfrontporch_mask = 0x1fff, .hsync_mask = 0x1fff, .hbackporch_mask = 0x1fff, .field0_vfrontporch_mask = 0x3fff, .field0_vsync_mask = 0x3fff, .field0_vbackporch_mask = 0x3fff, .field1_vfrontporch_mask = 0x3fff, .field1_vsync_mask = 0x3fff, .field1_vbackporch_mask = 0x3fff, }, [ADV7612] = { .type = ADV7612, .has_afe = false, .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */ .num_dv_ports = 1, /* normally 2 */ .edid_enable_reg = 0x74, .edid_status_reg = 0x76, .lcf_reg = 0xa3, .tdms_lock_mask = 0x43, .cable_det_mask = 0x01, .fmt_change_digital_mask = 0x03, .cp_csc = 0xf4, .formats = adv7612_formats, .nformats = ARRAY_SIZE(adv7612_formats), .set_termination = adv7611_set_termination, .setup_irqs = adv7612_setup_irqs, .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, .read_cable_det = adv7612_read_cable_det, .recommended_settings = { [1] = adv7612_recommended_settings_hdmi, }, .num_recommended_settings = { [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi), }, .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), .linewidth_mask = 0x1fff, .field0_height_mask = 0x1fff, .field1_height_mask = 0x1fff, .hfrontporch_mask = 0x1fff, .hsync_mask = 0x1fff, .hbackporch_mask = 0x1fff, .field0_vfrontporch_mask = 0x3fff, .field0_vsync_mask = 0x3fff, .field0_vbackporch_mask = 0x3fff, .field1_vfrontporch_mask = 0x3fff, .field1_vsync_mask = 0x3fff, .field1_vbackporch_mask = 0x3fff, }, }; static const struct i2c_device_id adv76xx_i2c_id[] = { { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] }, { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] }, { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] }, { } }; MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id); static const struct of_device_id adv76xx_of_id[] __maybe_unused = { { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] }, { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] }, { } }; MODULE_DEVICE_TABLE(of, adv76xx_of_id); static int adv76xx_parse_dt(struct adv76xx_state *state) { struct v4l2_fwnode_endpoint bus_cfg; struct device_node *endpoint; struct device_node *np; unsigned int flags; int ret; u32 v; np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node; /* Parse the endpoint. */ endpoint = of_graph_get_next_endpoint(np, NULL); if (!endpoint) return -EINVAL; ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg); if (ret) { of_node_put(endpoint); return ret; } of_node_put(endpoint); if (!of_property_read_u32(np, "default-input", &v)) state->pdata.default_input = v; else state->pdata.default_input = -1; flags = bus_cfg.bus.parallel.flags; if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) state->pdata.inv_hs_pol = 1; if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH) state->pdata.inv_vs_pol = 1; if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) state->pdata.inv_llc_pol = 1; if (bus_cfg.bus_type == V4L2_MBUS_BT656) state->pdata.insert_av_codes = 1; /* Disable the interrupt for now as no DT-based board uses it. */ state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED; /* Use the default I2C addresses. */ state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42; state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40; state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e; state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38; state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c; state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26; state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32; state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36; state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34; state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30; state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22; state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24; /* Hardcode the remaining platform data fields. */ state->pdata.disable_pwrdnb = 0; state->pdata.disable_cable_det_rst = 0; state->pdata.blank_data = 1; state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0; state->pdata.bus_order = ADV7604_BUS_ORDER_RGB; state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH; state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH; state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH; return 0; } static const struct regmap_config adv76xx_regmap_cnf[] = { { .name = "io", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, { .name = "avlink", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, { .name = "cec", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, { .name = "infoframe", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, { .name = "esdp", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, { .name = "epp", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, { .name = "afe", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, { .name = "rep", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, { .name = "edid", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, { .name = "hdmi", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, { .name = "test", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, { .name = "cp", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, { .name = "vdp", .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_NONE, }, }; static int configure_regmap(struct adv76xx_state *state, int region) { int err; if (!state->i2c_clients[region]) return -ENODEV; state->regmap[region] = devm_regmap_init_i2c(state->i2c_clients[region], &adv76xx_regmap_cnf[region]); if (IS_ERR(state->regmap[region])) { err = PTR_ERR(state->regmap[region]); v4l_err(state->i2c_clients[region], "Error initializing regmap %d with error %d\n", region, err); return -EINVAL; } return 0; } static int configure_regmaps(struct adv76xx_state *state) { int i, err; for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) { err = configure_regmap(state, i); if (err && (err != -ENODEV)) return err; } return 0; } static void adv76xx_reset(struct adv76xx_state *state) { if (state->reset_gpio) { /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */ gpiod_set_value_cansleep(state->reset_gpio, 0); usleep_range(5000, 10000); gpiod_set_value_cansleep(state->reset_gpio, 1); /* It is recommended to wait 5 ms after the low pulse before */ /* an I2C write is performed to the ADV76XX. */ usleep_range(5000, 10000); } } static int adv76xx_probe(struct i2c_client *client, const struct i2c_device_id *id) { static const struct v4l2_dv_timings cea640x480 = V4L2_DV_BT_CEA_640X480P59_94; struct adv76xx_state *state; struct v4l2_ctrl_handler *hdl; struct v4l2_ctrl *ctrl; struct v4l2_subdev *sd; unsigned int i; unsigned int val, val2; int err; /* Check if the adapter supports the needed features */ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n", client->addr << 1); state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; state->i2c_clients[ADV76XX_PAGE_IO] = client; /* initialize variables */ state->restart_stdi_once = true; state->selected_input = ~0; if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) { const struct of_device_id *oid; oid = of_match_node(adv76xx_of_id, client->dev.of_node); state->info = oid->data; err = adv76xx_parse_dt(state); if (err < 0) { v4l_err(client, "DT parsing error\n"); return err; } } else if (client->dev.platform_data) { struct adv76xx_platform_data *pdata = client->dev.platform_data; state->info = (const struct adv76xx_chip_info *)id->driver_data; state->pdata = *pdata; } else { v4l_err(client, "No platform data!\n"); return -ENODEV; } /* Request GPIOs. */ for (i = 0; i < state->info->num_dv_ports; ++i) { state->hpd_gpio[i] = devm_gpiod_get_index_optional(&client->dev, "hpd", i, GPIOD_OUT_LOW); if (IS_ERR(state->hpd_gpio[i])) return PTR_ERR(state->hpd_gpio[i]); if (state->hpd_gpio[i]) v4l_info(client, "Handling HPD %u GPIO\n", i); } state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(state->reset_gpio)) return PTR_ERR(state->reset_gpio); adv76xx_reset(state); state->timings = cea640x480; state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); sd = &state->sd; v4l2_i2c_subdev_init(sd, client, &adv76xx_ops); snprintf(sd->name, sizeof(sd->name), "%s %d-%04x", id->name, i2c_adapter_id(client->adapter), client->addr); sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; sd->internal_ops = &adv76xx_int_ops; /* Configure IO Regmap region */ err = configure_regmap(state, ADV76XX_PAGE_IO); if (err) { v4l2_err(sd, "Error configuring IO regmap region\n"); return -ENODEV; } /* * Verify that the chip is present. On ADV7604 the RD_INFO register only * identifies the revision, while on ADV7611 it identifies the model as * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611. */ switch (state->info->type) { case ADV7604: err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val); if (err) { v4l2_err(sd, "Error %d reading IO Regmap\n", err); return -ENODEV; } if (val != 0x68) { v4l2_err(sd, "not an adv7604 on address 0x%x\n", client->addr << 1); return -ENODEV; } break; case ADV7611: case ADV7612: err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xea, &val); if (err) { v4l2_err(sd, "Error %d reading IO Regmap\n", err); return -ENODEV; } val2 = val << 8; err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xeb, &val); if (err) { v4l2_err(sd, "Error %d reading IO Regmap\n", err); return -ENODEV; } val |= val2; if ((state->info->type == ADV7611 && val != 0x2051) || (state->info->type == ADV7612 && val != 0x2041)) { v4l2_err(sd, "not an adv761x on address 0x%x\n", client->addr << 1); return -ENODEV; } break; } /* control handlers */ hdl = &state->hdl; v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8); v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, V4L2_CID_BRIGHTNESS, -128, 127, 1, 0); v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, V4L2_CID_CONTRAST, 0, 255, 1, 128); v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, V4L2_CID_SATURATION, 0, 255, 1, 128); v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, V4L2_CID_HUE, 0, 128, 1, 0); ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_DV_RX_POWER_PRESENT, 0, (1 << state->info->num_dv_ports) - 1, 0, 0); state->rgb_quantization_range_ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0, V4L2_DV_RGB_RANGE_AUTO); /* custom controls */ if (adv76xx_has_afe(state)) state->analog_sampling_phase_ctrl = v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL); state->free_run_color_manual_ctrl = v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL); state->free_run_color_ctrl = v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL); sd->ctrl_handler = hdl; if (hdl->error) { err = hdl->error; goto err_hdl; } if (adv76xx_s_detect_tx_5v_ctrl(sd)) { err = -ENODEV; goto err_hdl; } for (i = 1; i < ADV76XX_PAGE_MAX; ++i) { if (!(BIT(i) & state->info->page_mask)) continue; state->i2c_clients[i] = adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i], 0xf2 + i); if (!state->i2c_clients[i]) { err = -ENOMEM; v4l2_err(sd, "failed to create i2c client %u\n", i); goto err_i2c; } } INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug, adv76xx_delayed_work_enable_hotplug); state->source_pad = state->info->num_dv_ports + (state->info->has_afe ? 2 : 0); for (i = 0; i < state->source_pad; ++i) state->pads[i].flags = MEDIA_PAD_FL_SINK; state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE; err = media_entity_pads_init(&sd->entity, state->source_pad + 1, state->pads); if (err) goto err_work_queues; /* Configure regmaps */ err = configure_regmaps(state); if (err) goto err_entity; err = adv76xx_core_init(sd); if (err) goto err_entity; #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops, state, dev_name(&client->dev), CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS); err = PTR_ERR_OR_ZERO(state->cec_adap); if (err) goto err_entity; #endif v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, client->addr << 1, client->adapter->name); err = v4l2_async_register_subdev(sd); if (err) goto err_entity; return 0; err_entity: media_entity_cleanup(&sd->entity); err_work_queues: cancel_delayed_work(&state->delayed_work_enable_hotplug); err_i2c: adv76xx_unregister_clients(state); err_hdl: v4l2_ctrl_handler_free(hdl); return err; } /* ----------------------------------------------------------------------- */ static int adv76xx_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct adv76xx_state *state = to_state(sd); /* disable interrupts */ io_write(sd, 0x40, 0); io_write(sd, 0x41, 0); io_write(sd, 0x46, 0); io_write(sd, 0x6e, 0); io_write(sd, 0x73, 0); cancel_delayed_work(&state->delayed_work_enable_hotplug); v4l2_async_unregister_subdev(sd); media_entity_cleanup(&sd->entity); adv76xx_unregister_clients(to_state(sd)); v4l2_ctrl_handler_free(sd->ctrl_handler); return 0; } /* ----------------------------------------------------------------------- */ static struct i2c_driver adv76xx_driver = { .driver = { .name = "adv7604", .of_match_table = of_match_ptr(adv76xx_of_id), }, .probe = adv76xx_probe, .remove = adv76xx_remove, .id_table = adv76xx_i2c_id, }; module_i2c_driver(adv76xx_driver);