/* Samsung S5H1409 VSB/QAM demodulator driver Copyright (C) 2006 Steven Toth This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "dvb_frontend.h" #include "s5h1409.h" struct s5h1409_state { struct i2c_adapter *i2c; /* configuration settings */ const struct s5h1409_config *config; struct dvb_frontend frontend; /* previous uncorrected block counter */ enum fe_modulation current_modulation; u32 current_frequency; int if_freq; u32 is_qam_locked; /* QAM tuning state goes through the following state transitions */ #define QAM_STATE_UNTUNED 0 #define QAM_STATE_TUNING_STARTED 1 #define QAM_STATE_INTERLEAVE_SET 2 #define QAM_STATE_QAM_OPTIMIZED_L1 3 #define QAM_STATE_QAM_OPTIMIZED_L2 4 #define QAM_STATE_QAM_OPTIMIZED_L3 5 u8 qam_state; }; static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Enable verbose debug messages"); #define dprintk if (debug) printk /* Register values to initialise the demod, this will set VSB by default */ static struct init_tab { u8 reg; u16 data; } init_tab[] = { { 0x00, 0x0071, }, { 0x01, 0x3213, }, { 0x09, 0x0025, }, { 0x1c, 0x001d, }, { 0x1f, 0x002d, }, { 0x20, 0x001d, }, { 0x22, 0x0022, }, { 0x23, 0x0020, }, { 0x29, 0x110f, }, { 0x2a, 0x10b4, }, { 0x2b, 0x10ae, }, { 0x2c, 0x0031, }, { 0x31, 0x010d, }, { 0x32, 0x0100, }, { 0x44, 0x0510, }, { 0x54, 0x0104, }, { 0x58, 0x2222, }, { 0x59, 0x1162, }, { 0x5a, 0x3211, }, { 0x5d, 0x0370, }, { 0x5e, 0x0296, }, { 0x61, 0x0010, }, { 0x63, 0x4a00, }, { 0x65, 0x0800, }, { 0x71, 0x0003, }, { 0x72, 0x0470, }, { 0x81, 0x0002, }, { 0x82, 0x0600, }, { 0x86, 0x0002, }, { 0x8a, 0x2c38, }, { 0x8b, 0x2a37, }, { 0x92, 0x302f, }, { 0x93, 0x3332, }, { 0x96, 0x000c, }, { 0x99, 0x0101, }, { 0x9c, 0x2e37, }, { 0x9d, 0x2c37, }, { 0x9e, 0x2c37, }, { 0xab, 0x0100, }, { 0xac, 0x1003, }, { 0xad, 0x103f, }, { 0xe2, 0x0100, }, { 0xe3, 0x1000, }, { 0x28, 0x1010, }, { 0xb1, 0x000e, }, }; /* VSB SNR lookup table */ static struct vsb_snr_tab { u16 val; u16 data; } vsb_snr_tab[] = { { 924, 300, }, { 923, 300, }, { 918, 295, }, { 915, 290, }, { 911, 285, }, { 906, 280, }, { 901, 275, }, { 896, 270, }, { 891, 265, }, { 885, 260, }, { 879, 255, }, { 873, 250, }, { 864, 245, }, { 858, 240, }, { 850, 235, }, { 841, 230, }, { 832, 225, }, { 823, 220, }, { 812, 215, }, { 802, 210, }, { 788, 205, }, { 778, 200, }, { 767, 195, }, { 753, 190, }, { 740, 185, }, { 725, 180, }, { 707, 175, }, { 689, 170, }, { 671, 165, }, { 656, 160, }, { 637, 155, }, { 616, 150, }, { 542, 145, }, { 519, 140, }, { 507, 135, }, { 497, 130, }, { 492, 125, }, { 474, 120, }, { 300, 111, }, { 0, 0, }, }; /* QAM64 SNR lookup table */ static struct qam64_snr_tab { u16 val; u16 data; } qam64_snr_tab[] = { { 1, 0, }, { 12, 300, }, { 15, 290, }, { 18, 280, }, { 22, 270, }, { 23, 268, }, { 24, 266, }, { 25, 264, }, { 27, 262, }, { 28, 260, }, { 29, 258, }, { 30, 256, }, { 32, 254, }, { 33, 252, }, { 34, 250, }, { 35, 249, }, { 36, 248, }, { 37, 247, }, { 38, 246, }, { 39, 245, }, { 40, 244, }, { 41, 243, }, { 42, 241, }, { 43, 240, }, { 44, 239, }, { 45, 238, }, { 46, 237, }, { 47, 236, }, { 48, 235, }, { 49, 234, }, { 50, 233, }, { 51, 232, }, { 52, 231, }, { 53, 230, }, { 55, 229, }, { 56, 228, }, { 57, 227, }, { 58, 226, }, { 59, 225, }, { 60, 224, }, { 62, 223, }, { 63, 222, }, { 65, 221, }, { 66, 220, }, { 68, 219, }, { 69, 218, }, { 70, 217, }, { 72, 216, }, { 73, 215, }, { 75, 214, }, { 76, 213, }, { 78, 212, }, { 80, 211, }, { 81, 210, }, { 83, 209, }, { 84, 208, }, { 85, 207, }, { 87, 206, }, { 89, 205, }, { 91, 204, }, { 93, 203, }, { 95, 202, }, { 96, 201, }, { 104, 200, }, { 255, 0, }, }; /* QAM256 SNR lookup table */ static struct qam256_snr_tab { u16 val; u16 data; } qam256_snr_tab[] = { { 1, 0, }, { 12, 400, }, { 13, 390, }, { 15, 380, }, { 17, 360, }, { 19, 350, }, { 22, 348, }, { 23, 346, }, { 24, 344, }, { 25, 342, }, { 26, 340, }, { 27, 336, }, { 28, 334, }, { 29, 332, }, { 30, 330, }, { 31, 328, }, { 32, 326, }, { 33, 325, }, { 34, 322, }, { 35, 320, }, { 37, 318, }, { 39, 316, }, { 40, 314, }, { 41, 312, }, { 42, 310, }, { 43, 308, }, { 46, 306, }, { 47, 304, }, { 49, 302, }, { 51, 300, }, { 53, 298, }, { 54, 297, }, { 55, 296, }, { 56, 295, }, { 57, 294, }, { 59, 293, }, { 60, 292, }, { 61, 291, }, { 63, 290, }, { 64, 289, }, { 65, 288, }, { 66, 287, }, { 68, 286, }, { 69, 285, }, { 71, 284, }, { 72, 283, }, { 74, 282, }, { 75, 281, }, { 76, 280, }, { 77, 279, }, { 78, 278, }, { 81, 277, }, { 83, 276, }, { 84, 275, }, { 86, 274, }, { 87, 273, }, { 89, 272, }, { 90, 271, }, { 92, 270, }, { 93, 269, }, { 95, 268, }, { 96, 267, }, { 98, 266, }, { 100, 265, }, { 102, 264, }, { 104, 263, }, { 105, 262, }, { 106, 261, }, { 110, 260, }, { 255, 0, }, }; /* 8 bit registers, 16 bit values */ static int s5h1409_writereg(struct s5h1409_state *state, u8 reg, u16 data) { int ret; u8 buf[] = { reg, data >> 8, data & 0xff }; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 3 }; ret = i2c_transfer(state->i2c, &msg, 1); if (ret != 1) printk(KERN_ERR "%s: error (reg == 0x%02x, val == 0x%04x, ret == %i)\n", __func__, reg, data, ret); return (ret != 1) ? -1 : 0; } static u16 s5h1409_readreg(struct s5h1409_state *state, u8 reg) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0, 0 }; struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 2 } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) printk("%s: readreg error (ret == %i)\n", __func__, ret); return (b1[0] << 8) | b1[1]; } static int s5h1409_softreset(struct dvb_frontend *fe) { struct s5h1409_state *state = fe->demodulator_priv; dprintk("%s()\n", __func__); s5h1409_writereg(state, 0xf5, 0); s5h1409_writereg(state, 0xf5, 1); state->is_qam_locked = 0; state->qam_state = QAM_STATE_UNTUNED; return 0; } #define S5H1409_VSB_IF_FREQ 5380 #define S5H1409_QAM_IF_FREQ (state->config->qam_if) static int s5h1409_set_if_freq(struct dvb_frontend *fe, int KHz) { struct s5h1409_state *state = fe->demodulator_priv; dprintk("%s(%d KHz)\n", __func__, KHz); switch (KHz) { case 4000: s5h1409_writereg(state, 0x87, 0x014b); s5h1409_writereg(state, 0x88, 0x0cb5); s5h1409_writereg(state, 0x89, 0x03e2); break; case 5380: case 44000: default: s5h1409_writereg(state, 0x87, 0x01be); s5h1409_writereg(state, 0x88, 0x0436); s5h1409_writereg(state, 0x89, 0x054d); break; } state->if_freq = KHz; return 0; } static int s5h1409_set_spectralinversion(struct dvb_frontend *fe, int inverted) { struct s5h1409_state *state = fe->demodulator_priv; dprintk("%s(%d)\n", __func__, inverted); if (inverted == 1) return s5h1409_writereg(state, 0x1b, 0x1101); /* Inverted */ else return s5h1409_writereg(state, 0x1b, 0x0110); /* Normal */ } static int s5h1409_enable_modulation(struct dvb_frontend *fe, enum fe_modulation m) { struct s5h1409_state *state = fe->demodulator_priv; dprintk("%s(0x%08x)\n", __func__, m); switch (m) { case VSB_8: dprintk("%s() VSB_8\n", __func__); if (state->if_freq != S5H1409_VSB_IF_FREQ) s5h1409_set_if_freq(fe, S5H1409_VSB_IF_FREQ); s5h1409_writereg(state, 0xf4, 0); break; case QAM_64: case QAM_256: case QAM_AUTO: dprintk("%s() QAM_AUTO (64/256)\n", __func__); if (state->if_freq != S5H1409_QAM_IF_FREQ) s5h1409_set_if_freq(fe, S5H1409_QAM_IF_FREQ); s5h1409_writereg(state, 0xf4, 1); s5h1409_writereg(state, 0x85, 0x110); break; default: dprintk("%s() Invalid modulation\n", __func__); return -EINVAL; } state->current_modulation = m; s5h1409_softreset(fe); return 0; } static int s5h1409_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct s5h1409_state *state = fe->demodulator_priv; dprintk("%s(%d)\n", __func__, enable); if (enable) return s5h1409_writereg(state, 0xf3, 1); else return s5h1409_writereg(state, 0xf3, 0); } static int s5h1409_set_gpio(struct dvb_frontend *fe, int enable) { struct s5h1409_state *state = fe->demodulator_priv; dprintk("%s(%d)\n", __func__, enable); if (enable) return s5h1409_writereg(state, 0xe3, s5h1409_readreg(state, 0xe3) | 0x1100); else return s5h1409_writereg(state, 0xe3, s5h1409_readreg(state, 0xe3) & 0xfeff); } static int s5h1409_sleep(struct dvb_frontend *fe, int enable) { struct s5h1409_state *state = fe->demodulator_priv; dprintk("%s(%d)\n", __func__, enable); return s5h1409_writereg(state, 0xf2, enable); } static int s5h1409_register_reset(struct dvb_frontend *fe) { struct s5h1409_state *state = fe->demodulator_priv; dprintk("%s()\n", __func__); return s5h1409_writereg(state, 0xfa, 0); } static void s5h1409_set_qam_amhum_mode(struct dvb_frontend *fe) { struct s5h1409_state *state = fe->demodulator_priv; u16 reg; if (state->qam_state < QAM_STATE_INTERLEAVE_SET) { /* We should not perform amhum optimization until the interleave mode has been configured */ return; } if (state->qam_state == QAM_STATE_QAM_OPTIMIZED_L3) { /* We've already reached the maximum optimization level, so dont bother banging on the status registers */ return; } /* QAM EQ lock check */ reg = s5h1409_readreg(state, 0xf0); if ((reg >> 13) & 0x1) { reg &= 0xff; s5h1409_writereg(state, 0x96, 0x000c); if (reg < 0x68) { if (state->qam_state < QAM_STATE_QAM_OPTIMIZED_L3) { dprintk("%s() setting QAM state to OPT_L3\n", __func__); s5h1409_writereg(state, 0x93, 0x3130); s5h1409_writereg(state, 0x9e, 0x2836); state->qam_state = QAM_STATE_QAM_OPTIMIZED_L3; } } else { if (state->qam_state < QAM_STATE_QAM_OPTIMIZED_L2) { dprintk("%s() setting QAM state to OPT_L2\n", __func__); s5h1409_writereg(state, 0x93, 0x3332); s5h1409_writereg(state, 0x9e, 0x2c37); state->qam_state = QAM_STATE_QAM_OPTIMIZED_L2; } } } else { if (state->qam_state < QAM_STATE_QAM_OPTIMIZED_L1) { dprintk("%s() setting QAM state to OPT_L1\n", __func__); s5h1409_writereg(state, 0x96, 0x0008); s5h1409_writereg(state, 0x93, 0x3332); s5h1409_writereg(state, 0x9e, 0x2c37); state->qam_state = QAM_STATE_QAM_OPTIMIZED_L1; } } } static void s5h1409_set_qam_amhum_mode_legacy(struct dvb_frontend *fe) { struct s5h1409_state *state = fe->demodulator_priv; u16 reg; if (state->is_qam_locked) return; /* QAM EQ lock check */ reg = s5h1409_readreg(state, 0xf0); if ((reg >> 13) & 0x1) { state->is_qam_locked = 1; reg &= 0xff; s5h1409_writereg(state, 0x96, 0x00c); if ((reg < 0x38) || (reg > 0x68)) { s5h1409_writereg(state, 0x93, 0x3332); s5h1409_writereg(state, 0x9e, 0x2c37); } else { s5h1409_writereg(state, 0x93, 0x3130); s5h1409_writereg(state, 0x9e, 0x2836); } } else { s5h1409_writereg(state, 0x96, 0x0008); s5h1409_writereg(state, 0x93, 0x3332); s5h1409_writereg(state, 0x9e, 0x2c37); } } static void s5h1409_set_qam_interleave_mode(struct dvb_frontend *fe) { struct s5h1409_state *state = fe->demodulator_priv; u16 reg, reg1, reg2; if (state->qam_state >= QAM_STATE_INTERLEAVE_SET) { /* We've done the optimization already */ return; } reg = s5h1409_readreg(state, 0xf1); /* Master lock */ if ((reg >> 15) & 0x1) { if (state->qam_state == QAM_STATE_UNTUNED || state->qam_state == QAM_STATE_TUNING_STARTED) { dprintk("%s() setting QAM state to INTERLEAVE_SET\n", __func__); reg1 = s5h1409_readreg(state, 0xb2); reg2 = s5h1409_readreg(state, 0xad); s5h1409_writereg(state, 0x96, 0x0020); s5h1409_writereg(state, 0xad, (((reg1 & 0xf000) >> 4) | (reg2 & 0xf0ff))); state->qam_state = QAM_STATE_INTERLEAVE_SET; } } else { if (state->qam_state == QAM_STATE_UNTUNED) { dprintk("%s() setting QAM state to TUNING_STARTED\n", __func__); s5h1409_writereg(state, 0x96, 0x08); s5h1409_writereg(state, 0xab, s5h1409_readreg(state, 0xab) | 0x1001); state->qam_state = QAM_STATE_TUNING_STARTED; } } } static void s5h1409_set_qam_interleave_mode_legacy(struct dvb_frontend *fe) { struct s5h1409_state *state = fe->demodulator_priv; u16 reg, reg1, reg2; reg = s5h1409_readreg(state, 0xf1); /* Master lock */ if ((reg >> 15) & 0x1) { if (state->qam_state != 2) { state->qam_state = 2; reg1 = s5h1409_readreg(state, 0xb2); reg2 = s5h1409_readreg(state, 0xad); s5h1409_writereg(state, 0x96, 0x20); s5h1409_writereg(state, 0xad, (((reg1 & 0xf000) >> 4) | (reg2 & 0xf0ff))); s5h1409_writereg(state, 0xab, s5h1409_readreg(state, 0xab) & 0xeffe); } } else { if (state->qam_state != 1) { state->qam_state = 1; s5h1409_writereg(state, 0x96, 0x08); s5h1409_writereg(state, 0xab, s5h1409_readreg(state, 0xab) | 0x1001); } } } /* Talk to the demod, set the FEC, GUARD, QAM settings etc */ static int s5h1409_set_frontend(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; struct s5h1409_state *state = fe->demodulator_priv; dprintk("%s(frequency=%d)\n", __func__, p->frequency); s5h1409_softreset(fe); state->current_frequency = p->frequency; s5h1409_enable_modulation(fe, p->modulation); if (fe->ops.tuner_ops.set_params) { if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } /* Issue a reset to the demod so it knows to resync against the newly tuned frequency */ s5h1409_softreset(fe); /* Optimize the demod for QAM */ if (state->current_modulation != VSB_8) { /* This almost certainly applies to all boards, but for now only do it for the HVR-1600. Once the other boards are tested, the "legacy" versions can just go away */ if (state->config->hvr1600_opt == S5H1409_HVR1600_OPTIMIZE) { s5h1409_set_qam_interleave_mode(fe); s5h1409_set_qam_amhum_mode(fe); } else { s5h1409_set_qam_amhum_mode_legacy(fe); s5h1409_set_qam_interleave_mode_legacy(fe); } } return 0; } static int s5h1409_set_mpeg_timing(struct dvb_frontend *fe, int mode) { struct s5h1409_state *state = fe->demodulator_priv; u16 val; dprintk("%s(%d)\n", __func__, mode); val = s5h1409_readreg(state, 0xac) & 0xcfff; switch (mode) { case S5H1409_MPEGTIMING_CONTINOUS_INVERTING_CLOCK: val |= 0x0000; break; case S5H1409_MPEGTIMING_CONTINOUS_NONINVERTING_CLOCK: dprintk("%s(%d) Mode1 or Defaulting\n", __func__, mode); val |= 0x1000; break; case S5H1409_MPEGTIMING_NONCONTINOUS_INVERTING_CLOCK: val |= 0x2000; break; case S5H1409_MPEGTIMING_NONCONTINOUS_NONINVERTING_CLOCK: val |= 0x3000; break; default: return -EINVAL; } /* Configure MPEG Signal Timing charactistics */ return s5h1409_writereg(state, 0xac, val); } /* Reset the demod hardware and reset all of the configuration registers to a default state. */ static int s5h1409_init(struct dvb_frontend *fe) { int i; struct s5h1409_state *state = fe->demodulator_priv; dprintk("%s()\n", __func__); s5h1409_sleep(fe, 0); s5h1409_register_reset(fe); for (i = 0; i < ARRAY_SIZE(init_tab); i++) s5h1409_writereg(state, init_tab[i].reg, init_tab[i].data); /* The datasheet says that after initialisation, VSB is default */ state->current_modulation = VSB_8; /* Optimize for the HVR-1600 if appropriate. Note that some of these may get folded into the generic case after testing with other devices */ if (state->config->hvr1600_opt == S5H1409_HVR1600_OPTIMIZE) { /* VSB AGC REF */ s5h1409_writereg(state, 0x09, 0x0050); /* Unknown but Windows driver does it... */ s5h1409_writereg(state, 0x21, 0x0001); s5h1409_writereg(state, 0x50, 0x030e); /* QAM AGC REF */ s5h1409_writereg(state, 0x82, 0x0800); } if (state->config->output_mode == S5H1409_SERIAL_OUTPUT) s5h1409_writereg(state, 0xab, s5h1409_readreg(state, 0xab) | 0x100); /* Serial */ else s5h1409_writereg(state, 0xab, s5h1409_readreg(state, 0xab) & 0xfeff); /* Parallel */ s5h1409_set_spectralinversion(fe, state->config->inversion); s5h1409_set_if_freq(fe, state->if_freq); s5h1409_set_gpio(fe, state->config->gpio); s5h1409_set_mpeg_timing(fe, state->config->mpeg_timing); s5h1409_softreset(fe); /* Note: Leaving the I2C gate closed. */ s5h1409_i2c_gate_ctrl(fe, 0); return 0; } static int s5h1409_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct s5h1409_state *state = fe->demodulator_priv; u16 reg; u32 tuner_status = 0; *status = 0; /* Optimize the demod for QAM */ if (state->current_modulation != VSB_8) { /* This almost certainly applies to all boards, but for now only do it for the HVR-1600. Once the other boards are tested, the "legacy" versions can just go away */ if (state->config->hvr1600_opt == S5H1409_HVR1600_OPTIMIZE) { s5h1409_set_qam_interleave_mode(fe); s5h1409_set_qam_amhum_mode(fe); } } /* Get the demodulator status */ reg = s5h1409_readreg(state, 0xf1); if (reg & 0x1000) *status |= FE_HAS_VITERBI; if (reg & 0x8000) *status |= FE_HAS_LOCK | FE_HAS_SYNC; switch (state->config->status_mode) { case S5H1409_DEMODLOCKING: if (*status & FE_HAS_VITERBI) *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL; break; case S5H1409_TUNERLOCKING: /* Get the tuner status */ if (fe->ops.tuner_ops.get_status) { if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); fe->ops.tuner_ops.get_status(fe, &tuner_status); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } if (tuner_status) *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL; break; } dprintk("%s() status 0x%08x\n", __func__, *status); return 0; } static int s5h1409_qam256_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v) { int i, ret = -EINVAL; dprintk("%s()\n", __func__); for (i = 0; i < ARRAY_SIZE(qam256_snr_tab); i++) { if (v < qam256_snr_tab[i].val) { *snr = qam256_snr_tab[i].data; ret = 0; break; } } return ret; } static int s5h1409_qam64_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v) { int i, ret = -EINVAL; dprintk("%s()\n", __func__); for (i = 0; i < ARRAY_SIZE(qam64_snr_tab); i++) { if (v < qam64_snr_tab[i].val) { *snr = qam64_snr_tab[i].data; ret = 0; break; } } return ret; } static int s5h1409_vsb_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v) { int i, ret = -EINVAL; dprintk("%s()\n", __func__); for (i = 0; i < ARRAY_SIZE(vsb_snr_tab); i++) { if (v > vsb_snr_tab[i].val) { *snr = vsb_snr_tab[i].data; ret = 0; break; } } dprintk("%s() snr=%d\n", __func__, *snr); return ret; } static int s5h1409_read_snr(struct dvb_frontend *fe, u16 *snr) { struct s5h1409_state *state = fe->demodulator_priv; u16 reg; dprintk("%s()\n", __func__); switch (state->current_modulation) { case QAM_64: reg = s5h1409_readreg(state, 0xf0) & 0xff; return s5h1409_qam64_lookup_snr(fe, snr, reg); case QAM_256: reg = s5h1409_readreg(state, 0xf0) & 0xff; return s5h1409_qam256_lookup_snr(fe, snr, reg); case VSB_8: reg = s5h1409_readreg(state, 0xf1) & 0x3ff; return s5h1409_vsb_lookup_snr(fe, snr, reg); default: break; } return -EINVAL; } static int s5h1409_read_signal_strength(struct dvb_frontend *fe, u16 *signal_strength) { /* borrowed from lgdt330x.c * * Calculate strength from SNR up to 35dB * Even though the SNR can go higher than 35dB, * there is some comfort factor in having a range of * strong signals that can show at 100% */ u16 snr; u32 tmp; int ret = s5h1409_read_snr(fe, &snr); *signal_strength = 0; if (0 == ret) { /* The following calculation method was chosen * purely for the sake of code re-use from the * other demod drivers that use this method */ /* Convert from SNR in dB * 10 to 8.24 fixed-point */ tmp = (snr * ((1 << 24) / 10)); /* Convert from 8.24 fixed-point to * scale the range 0 - 35*2^24 into 0 - 65535*/ if (tmp >= 8960 * 0x10000) *signal_strength = 0xffff; else *signal_strength = tmp / 8960; } return ret; } static int s5h1409_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct s5h1409_state *state = fe->demodulator_priv; *ucblocks = s5h1409_readreg(state, 0xb5); return 0; } static int s5h1409_read_ber(struct dvb_frontend *fe, u32 *ber) { return s5h1409_read_ucblocks(fe, ber); } static int s5h1409_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *p) { struct s5h1409_state *state = fe->demodulator_priv; p->frequency = state->current_frequency; p->modulation = state->current_modulation; return 0; } static int s5h1409_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; return 0; } static void s5h1409_release(struct dvb_frontend *fe) { struct s5h1409_state *state = fe->demodulator_priv; kfree(state); } static struct dvb_frontend_ops s5h1409_ops; struct dvb_frontend *s5h1409_attach(const struct s5h1409_config *config, struct i2c_adapter *i2c) { struct s5h1409_state *state = NULL; u16 reg; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct s5h1409_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; state->current_modulation = 0; state->if_freq = S5H1409_VSB_IF_FREQ; /* check if the demod exists */ reg = s5h1409_readreg(state, 0x04); if ((reg != 0x0066) && (reg != 0x007f)) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &s5h1409_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; if (s5h1409_init(&state->frontend) != 0) { printk(KERN_ERR "%s: Failed to initialize correctly\n", __func__); goto error; } /* Note: Leaving the I2C gate open here. */ s5h1409_i2c_gate_ctrl(&state->frontend, 1); return &state->frontend; error: kfree(state); return NULL; } EXPORT_SYMBOL(s5h1409_attach); static struct dvb_frontend_ops s5h1409_ops = { .delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B }, .info = { .name = "Samsung S5H1409 QAM/8VSB Frontend", .frequency_min = 54000000, .frequency_max = 858000000, .frequency_stepsize = 62500, .caps = FE_CAN_QAM_64 | FE_CAN_QAM_256 | FE_CAN_8VSB }, .init = s5h1409_init, .i2c_gate_ctrl = s5h1409_i2c_gate_ctrl, .set_frontend = s5h1409_set_frontend, .get_frontend = s5h1409_get_frontend, .get_tune_settings = s5h1409_get_tune_settings, .read_status = s5h1409_read_status, .read_ber = s5h1409_read_ber, .read_signal_strength = s5h1409_read_signal_strength, .read_snr = s5h1409_read_snr, .read_ucblocks = s5h1409_read_ucblocks, .release = s5h1409_release, }; MODULE_DESCRIPTION("Samsung S5H1409 QAM-B/ATSC Demodulator driver"); MODULE_AUTHOR("Steven Toth"); MODULE_LICENSE("GPL");