// SPDX-License-Identifier: GPL-2.0-only /* * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter * * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cec-priv.h" static void cec_fill_msg_report_features(struct cec_adapter *adap, struct cec_msg *msg, unsigned int la_idx); /* * 400 ms is the time it takes for one 16 byte message to be * transferred and 5 is the maximum number of retries. Add * another 100 ms as a margin. So if the transmit doesn't * finish before that time something is really wrong and we * have to time out. * * This is a sign that something it really wrong and a warning * will be issued. */ #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100) #define call_op(adap, op, arg...) \ (adap->ops->op ? adap->ops->op(adap, ## arg) : 0) #define call_void_op(adap, op, arg...) \ do { \ if (adap->ops->op) \ adap->ops->op(adap, ## arg); \ } while (0) static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr) { int i; for (i = 0; i < adap->log_addrs.num_log_addrs; i++) if (adap->log_addrs.log_addr[i] == log_addr) return i; return -1; } static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr) { int i = cec_log_addr2idx(adap, log_addr); return adap->log_addrs.primary_device_type[i < 0 ? 0 : i]; } u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size, unsigned int *offset) { unsigned int loc = cec_get_edid_spa_location(edid, size); if (offset) *offset = loc; if (loc == 0) return CEC_PHYS_ADDR_INVALID; return (edid[loc] << 8) | edid[loc + 1]; } EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr); void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info, const struct drm_connector *connector) { memset(conn_info, 0, sizeof(*conn_info)); conn_info->type = CEC_CONNECTOR_TYPE_DRM; conn_info->drm.card_no = connector->dev->primary->index; conn_info->drm.connector_id = connector->base.id; } EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm); /* * Queue a new event for this filehandle. If ts == 0, then set it * to the current time. * * We keep a queue of at most max_event events where max_event differs * per event. If the queue becomes full, then drop the oldest event and * keep track of how many events we've dropped. */ void cec_queue_event_fh(struct cec_fh *fh, const struct cec_event *new_ev, u64 ts) { static const u16 max_events[CEC_NUM_EVENTS] = { 1, 1, 800, 800, 8, 8, 8, 8 }; struct cec_event_entry *entry; unsigned int ev_idx = new_ev->event - 1; if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events))) return; if (ts == 0) ts = ktime_get_ns(); mutex_lock(&fh->lock); if (ev_idx < CEC_NUM_CORE_EVENTS) entry = &fh->core_events[ev_idx]; else entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (entry) { if (new_ev->event == CEC_EVENT_LOST_MSGS && fh->queued_events[ev_idx]) { entry->ev.lost_msgs.lost_msgs += new_ev->lost_msgs.lost_msgs; goto unlock; } entry->ev = *new_ev; entry->ev.ts = ts; if (fh->queued_events[ev_idx] < max_events[ev_idx]) { /* Add new msg at the end of the queue */ list_add_tail(&entry->list, &fh->events[ev_idx]); fh->queued_events[ev_idx]++; fh->total_queued_events++; goto unlock; } if (ev_idx >= CEC_NUM_CORE_EVENTS) { list_add_tail(&entry->list, &fh->events[ev_idx]); /* drop the oldest event */ entry = list_first_entry(&fh->events[ev_idx], struct cec_event_entry, list); list_del(&entry->list); kfree(entry); } } /* Mark that events were lost */ entry = list_first_entry_or_null(&fh->events[ev_idx], struct cec_event_entry, list); if (entry) entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS; unlock: mutex_unlock(&fh->lock); wake_up_interruptible(&fh->wait); } /* Queue a new event for all open filehandles. */ static void cec_queue_event(struct cec_adapter *adap, const struct cec_event *ev) { u64 ts = ktime_get_ns(); struct cec_fh *fh; mutex_lock(&adap->devnode.lock); list_for_each_entry(fh, &adap->devnode.fhs, list) cec_queue_event_fh(fh, ev, ts); mutex_unlock(&adap->devnode.lock); } /* Notify userspace that the CEC pin changed state at the given time. */ void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, bool dropped_events, ktime_t ts) { struct cec_event ev = { .event = is_high ? CEC_EVENT_PIN_CEC_HIGH : CEC_EVENT_PIN_CEC_LOW, .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0, }; struct cec_fh *fh; mutex_lock(&adap->devnode.lock); list_for_each_entry(fh, &adap->devnode.fhs, list) if (fh->mode_follower == CEC_MODE_MONITOR_PIN) cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); mutex_unlock(&adap->devnode.lock); } EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event); /* Notify userspace that the HPD pin changed state at the given time. */ void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts) { struct cec_event ev = { .event = is_high ? CEC_EVENT_PIN_HPD_HIGH : CEC_EVENT_PIN_HPD_LOW, }; struct cec_fh *fh; mutex_lock(&adap->devnode.lock); list_for_each_entry(fh, &adap->devnode.fhs, list) cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); mutex_unlock(&adap->devnode.lock); } EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event); /* Notify userspace that the 5V pin changed state at the given time. */ void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts) { struct cec_event ev = { .event = is_high ? CEC_EVENT_PIN_5V_HIGH : CEC_EVENT_PIN_5V_LOW, }; struct cec_fh *fh; mutex_lock(&adap->devnode.lock); list_for_each_entry(fh, &adap->devnode.fhs, list) cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); mutex_unlock(&adap->devnode.lock); } EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event); /* * Queue a new message for this filehandle. * * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the * queue becomes full, then drop the oldest message and keep track * of how many messages we've dropped. */ static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg) { static const struct cec_event ev_lost_msgs = { .event = CEC_EVENT_LOST_MSGS, .flags = 0, { .lost_msgs = { 1 }, }, }; struct cec_msg_entry *entry; mutex_lock(&fh->lock); entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (entry) { entry->msg = *msg; /* Add new msg at the end of the queue */ list_add_tail(&entry->list, &fh->msgs); if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) { /* All is fine if there is enough room */ fh->queued_msgs++; mutex_unlock(&fh->lock); wake_up_interruptible(&fh->wait); return; } /* * if the message queue is full, then drop the oldest one and * send a lost message event. */ entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list); list_del(&entry->list); kfree(entry); } mutex_unlock(&fh->lock); /* * We lost a message, either because kmalloc failed or the queue * was full. */ cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns()); } /* * Queue the message for those filehandles that are in monitor mode. * If valid_la is true (this message is for us or was sent by us), * then pass it on to any monitoring filehandle. If this message * isn't for us or from us, then only give it to filehandles that * are in MONITOR_ALL mode. * * This can only happen if the CEC_CAP_MONITOR_ALL capability is * set and the CEC adapter was placed in 'monitor all' mode. */ static void cec_queue_msg_monitor(struct cec_adapter *adap, const struct cec_msg *msg, bool valid_la) { struct cec_fh *fh; u32 monitor_mode = valid_la ? CEC_MODE_MONITOR : CEC_MODE_MONITOR_ALL; mutex_lock(&adap->devnode.lock); list_for_each_entry(fh, &adap->devnode.fhs, list) { if (fh->mode_follower >= monitor_mode) cec_queue_msg_fh(fh, msg); } mutex_unlock(&adap->devnode.lock); } /* * Queue the message for follower filehandles. */ static void cec_queue_msg_followers(struct cec_adapter *adap, const struct cec_msg *msg) { struct cec_fh *fh; mutex_lock(&adap->devnode.lock); list_for_each_entry(fh, &adap->devnode.fhs, list) { if (fh->mode_follower == CEC_MODE_FOLLOWER) cec_queue_msg_fh(fh, msg); } mutex_unlock(&adap->devnode.lock); } /* Notify userspace of an adapter state change. */ static void cec_post_state_event(struct cec_adapter *adap) { struct cec_event ev = { .event = CEC_EVENT_STATE_CHANGE, }; ev.state_change.phys_addr = adap->phys_addr; ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask; ev.state_change.have_conn_info = adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR; cec_queue_event(adap, &ev); } /* * A CEC transmit (and a possible wait for reply) completed. * If this was in blocking mode, then complete it, otherwise * queue the message for userspace to dequeue later. * * This function is called with adap->lock held. */ static void cec_data_completed(struct cec_data *data) { /* * Delete this transmit from the filehandle's xfer_list since * we're done with it. * * Note that if the filehandle is closed before this transmit * finished, then the release() function will set data->fh to NULL. * Without that we would be referring to a closed filehandle. */ if (data->fh) list_del(&data->xfer_list); if (data->blocking) { /* * Someone is blocking so mark the message as completed * and call complete. */ data->completed = true; complete(&data->c); } else { /* * No blocking, so just queue the message if needed and * free the memory. */ if (data->fh) cec_queue_msg_fh(data->fh, &data->msg); kfree(data); } } /* * A pending CEC transmit needs to be cancelled, either because the CEC * adapter is disabled or the transmit takes an impossibly long time to * finish. * * This function is called with adap->lock held. */ static void cec_data_cancel(struct cec_data *data, u8 tx_status) { /* * It's either the current transmit, or it is a pending * transmit. Take the appropriate action to clear it. */ if (data->adap->transmitting == data) { data->adap->transmitting = NULL; } else { list_del_init(&data->list); if (!(data->msg.tx_status & CEC_TX_STATUS_OK)) if (!WARN_ON(!data->adap->transmit_queue_sz)) data->adap->transmit_queue_sz--; } if (data->msg.tx_status & CEC_TX_STATUS_OK) { data->msg.rx_ts = ktime_get_ns(); data->msg.rx_status = CEC_RX_STATUS_ABORTED; } else { data->msg.tx_ts = ktime_get_ns(); data->msg.tx_status |= tx_status | CEC_TX_STATUS_MAX_RETRIES; data->msg.tx_error_cnt++; data->attempts = 0; } /* Queue transmitted message for monitoring purposes */ cec_queue_msg_monitor(data->adap, &data->msg, 1); cec_data_completed(data); } /* * Flush all pending transmits and cancel any pending timeout work. * * This function is called with adap->lock held. */ static void cec_flush(struct cec_adapter *adap) { struct cec_data *data, *n; /* * If the adapter is disabled, or we're asked to stop, * then cancel any pending transmits. */ while (!list_empty(&adap->transmit_queue)) { data = list_first_entry(&adap->transmit_queue, struct cec_data, list); cec_data_cancel(data, CEC_TX_STATUS_ABORTED); } if (adap->transmitting) cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED); /* Cancel the pending timeout work. */ list_for_each_entry_safe(data, n, &adap->wait_queue, list) { if (cancel_delayed_work(&data->work)) cec_data_cancel(data, CEC_TX_STATUS_OK); /* * If cancel_delayed_work returned false, then * the cec_wait_timeout function is running, * which will call cec_data_completed. So no * need to do anything special in that case. */ } /* * If something went wrong and this counter isn't what it should * be, then this will reset it back to 0. Warn if it is not 0, * since it indicates a bug, either in this framework or in a * CEC driver. */ if (WARN_ON(adap->transmit_queue_sz)) adap->transmit_queue_sz = 0; } /* * Main CEC state machine * * Wait until the thread should be stopped, or we are not transmitting and * a new transmit message is queued up, in which case we start transmitting * that message. When the adapter finished transmitting the message it will * call cec_transmit_done(). * * If the adapter is disabled, then remove all queued messages instead. * * If the current transmit times out, then cancel that transmit. */ int cec_thread_func(void *_adap) { struct cec_adapter *adap = _adap; for (;;) { unsigned int signal_free_time; struct cec_data *data; bool timeout = false; u8 attempts; if (adap->transmit_in_progress) { int err; /* * We are transmitting a message, so add a timeout * to prevent the state machine to get stuck waiting * for this message to finalize and add a check to * see if the adapter is disabled in which case the * transmit should be canceled. */ err = wait_event_interruptible_timeout(adap->kthread_waitq, (adap->needs_hpd && (!adap->is_configured && !adap->is_configuring)) || kthread_should_stop() || (!adap->transmit_in_progress && !list_empty(&adap->transmit_queue)), msecs_to_jiffies(CEC_XFER_TIMEOUT_MS)); timeout = err == 0; } else { /* Otherwise we just wait for something to happen. */ wait_event_interruptible(adap->kthread_waitq, kthread_should_stop() || (!adap->transmit_in_progress && !list_empty(&adap->transmit_queue))); } mutex_lock(&adap->lock); if ((adap->needs_hpd && (!adap->is_configured && !adap->is_configuring)) || kthread_should_stop()) { cec_flush(adap); goto unlock; } if (adap->transmit_in_progress && timeout) { /* * If we timeout, then log that. Normally this does * not happen and it is an indication of a faulty CEC * adapter driver, or the CEC bus is in some weird * state. On rare occasions it can happen if there is * so much traffic on the bus that the adapter was * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s). */ if (adap->transmitting) { pr_warn("cec-%s: message %*ph timed out\n", adap->name, adap->transmitting->msg.len, adap->transmitting->msg.msg); /* Just give up on this. */ cec_data_cancel(adap->transmitting, CEC_TX_STATUS_TIMEOUT); } else { pr_warn("cec-%s: transmit timed out\n", adap->name); } adap->transmit_in_progress = false; adap->tx_timeouts++; goto unlock; } /* * If we are still transmitting, or there is nothing new to * transmit, then just continue waiting. */ if (adap->transmit_in_progress || list_empty(&adap->transmit_queue)) goto unlock; /* Get a new message to transmit */ data = list_first_entry(&adap->transmit_queue, struct cec_data, list); list_del_init(&data->list); if (!WARN_ON(!data->adap->transmit_queue_sz)) adap->transmit_queue_sz--; /* Make this the current transmitting message */ adap->transmitting = data; /* * Suggested number of attempts as per the CEC 2.0 spec: * 4 attempts is the default, except for 'secondary poll * messages', i.e. poll messages not sent during the adapter * configuration phase when it allocates logical addresses. */ if (data->msg.len == 1 && adap->is_configured) attempts = 2; else attempts = 4; /* Set the suggested signal free time */ if (data->attempts) { /* should be >= 3 data bit periods for a retry */ signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY; } else if (adap->last_initiator != cec_msg_initiator(&data->msg)) { /* should be >= 5 data bit periods for new initiator */ signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; adap->last_initiator = cec_msg_initiator(&data->msg); } else { /* * should be >= 7 data bit periods for sending another * frame immediately after another. */ signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER; } if (data->attempts == 0) data->attempts = attempts; /* Tell the adapter to transmit, cancel on error */ if (adap->ops->adap_transmit(adap, data->attempts, signal_free_time, &data->msg)) cec_data_cancel(data, CEC_TX_STATUS_ABORTED); else adap->transmit_in_progress = true; unlock: mutex_unlock(&adap->lock); if (kthread_should_stop()) break; } return 0; } /* * Called by the CEC adapter if a transmit finished. */ void cec_transmit_done_ts(struct cec_adapter *adap, u8 status, u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, u8 error_cnt, ktime_t ts) { struct cec_data *data; struct cec_msg *msg; unsigned int attempts_made = arb_lost_cnt + nack_cnt + low_drive_cnt + error_cnt; dprintk(2, "%s: status 0x%02x\n", __func__, status); if (attempts_made < 1) attempts_made = 1; mutex_lock(&adap->lock); data = adap->transmitting; if (!data) { /* * This might happen if a transmit was issued and the cable is * unplugged while the transmit is ongoing. Ignore this * transmit in that case. */ if (!adap->transmit_in_progress) dprintk(1, "%s was called without an ongoing transmit!\n", __func__); adap->transmit_in_progress = false; goto wake_thread; } adap->transmit_in_progress = false; msg = &data->msg; /* Drivers must fill in the status! */ WARN_ON(status == 0); msg->tx_ts = ktime_to_ns(ts); msg->tx_status |= status; msg->tx_arb_lost_cnt += arb_lost_cnt; msg->tx_nack_cnt += nack_cnt; msg->tx_low_drive_cnt += low_drive_cnt; msg->tx_error_cnt += error_cnt; /* Mark that we're done with this transmit */ adap->transmitting = NULL; /* * If there are still retry attempts left and there was an error and * the hardware didn't signal that it retried itself (by setting * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves. */ if (data->attempts > attempts_made && !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) { /* Retry this message */ data->attempts -= attempts_made; if (msg->timeout) dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n", msg->len, msg->msg, data->attempts, msg->reply); else dprintk(2, "retransmit: %*ph (attempts: %d)\n", msg->len, msg->msg, data->attempts); /* Add the message in front of the transmit queue */ list_add(&data->list, &adap->transmit_queue); adap->transmit_queue_sz++; goto wake_thread; } data->attempts = 0; /* Always set CEC_TX_STATUS_MAX_RETRIES on error */ if (!(status & CEC_TX_STATUS_OK)) msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES; /* Queue transmitted message for monitoring purposes */ cec_queue_msg_monitor(adap, msg, 1); if ((status & CEC_TX_STATUS_OK) && adap->is_configured && msg->timeout) { /* * Queue the message into the wait queue if we want to wait * for a reply. */ list_add_tail(&data->list, &adap->wait_queue); schedule_delayed_work(&data->work, msecs_to_jiffies(msg->timeout)); } else { /* Otherwise we're done */ cec_data_completed(data); } wake_thread: /* * Wake up the main thread to see if another message is ready * for transmitting or to retry the current message. */ wake_up_interruptible(&adap->kthread_waitq); mutex_unlock(&adap->lock); } EXPORT_SYMBOL_GPL(cec_transmit_done_ts); void cec_transmit_attempt_done_ts(struct cec_adapter *adap, u8 status, ktime_t ts) { switch (status & ~CEC_TX_STATUS_MAX_RETRIES) { case CEC_TX_STATUS_OK: cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts); return; case CEC_TX_STATUS_ARB_LOST: cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts); return; case CEC_TX_STATUS_NACK: cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts); return; case CEC_TX_STATUS_LOW_DRIVE: cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts); return; case CEC_TX_STATUS_ERROR: cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts); return; default: /* Should never happen */ WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status); return; } } EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts); /* * Called when waiting for a reply times out. */ static void cec_wait_timeout(struct work_struct *work) { struct cec_data *data = container_of(work, struct cec_data, work.work); struct cec_adapter *adap = data->adap; mutex_lock(&adap->lock); /* * Sanity check in case the timeout and the arrival of the message * happened at the same time. */ if (list_empty(&data->list)) goto unlock; /* Mark the message as timed out */ list_del_init(&data->list); data->msg.rx_ts = ktime_get_ns(); data->msg.rx_status = CEC_RX_STATUS_TIMEOUT; cec_data_completed(data); unlock: mutex_unlock(&adap->lock); } /* * Transmit a message. The fh argument may be NULL if the transmit is not * associated with a specific filehandle. * * This function is called with adap->lock held. */ int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg, struct cec_fh *fh, bool block) { struct cec_data *data; bool is_raw = msg_is_raw(msg); if (adap->devnode.unregistered) return -ENODEV; msg->rx_ts = 0; msg->tx_ts = 0; msg->rx_status = 0; msg->tx_status = 0; msg->tx_arb_lost_cnt = 0; msg->tx_nack_cnt = 0; msg->tx_low_drive_cnt = 0; msg->tx_error_cnt = 0; msg->sequence = 0; if (msg->reply && msg->timeout == 0) { /* Make sure the timeout isn't 0. */ msg->timeout = 1000; } msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW; if (!msg->timeout) msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS; /* Sanity checks */ if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) { dprintk(1, "%s: invalid length %d\n", __func__, msg->len); return -EINVAL; } memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); if (msg->timeout) dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n", __func__, msg->len, msg->msg, msg->reply, !block ? ", nb" : ""); else dprintk(2, "%s: %*ph%s\n", __func__, msg->len, msg->msg, !block ? " (nb)" : ""); if (msg->timeout && msg->len == 1) { dprintk(1, "%s: can't reply to poll msg\n", __func__); return -EINVAL; } if (is_raw) { if (!capable(CAP_SYS_RAWIO)) return -EPERM; } else { /* A CDC-Only device can only send CDC messages */ if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) && (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) { dprintk(1, "%s: not a CDC message\n", __func__); return -EINVAL; } if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) { msg->msg[2] = adap->phys_addr >> 8; msg->msg[3] = adap->phys_addr & 0xff; } if (msg->len == 1) { if (cec_msg_destination(msg) == 0xf) { dprintk(1, "%s: invalid poll message\n", __func__); return -EINVAL; } if (cec_has_log_addr(adap, cec_msg_destination(msg))) { /* * If the destination is a logical address our * adapter has already claimed, then just NACK * this. It depends on the hardware what it will * do with a POLL to itself (some OK this), so * it is just as easy to handle it here so the * behavior will be consistent. */ msg->tx_ts = ktime_get_ns(); msg->tx_status = CEC_TX_STATUS_NACK | CEC_TX_STATUS_MAX_RETRIES; msg->tx_nack_cnt = 1; msg->sequence = ++adap->sequence; if (!msg->sequence) msg->sequence = ++adap->sequence; return 0; } } if (msg->len > 1 && !cec_msg_is_broadcast(msg) && cec_has_log_addr(adap, cec_msg_destination(msg))) { dprintk(1, "%s: destination is the adapter itself\n", __func__); return -EINVAL; } if (msg->len > 1 && adap->is_configured && !cec_has_log_addr(adap, cec_msg_initiator(msg))) { dprintk(1, "%s: initiator has unknown logical address %d\n", __func__, cec_msg_initiator(msg)); return -EINVAL; } /* * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be * transmitted to a TV, even if the adapter is unconfigured. * This makes it possible to detect or wake up displays that * pull down the HPD when in standby. */ if (!adap->is_configured && !adap->is_configuring && (msg->len > 2 || cec_msg_destination(msg) != CEC_LOG_ADDR_TV || (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON && msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) { dprintk(1, "%s: adapter is unconfigured\n", __func__); return -ENONET; } } if (!adap->is_configured && !adap->is_configuring) { if (adap->needs_hpd) { dprintk(1, "%s: adapter is unconfigured and needs HPD\n", __func__); return -ENONET; } if (msg->reply) { dprintk(1, "%s: invalid msg->reply\n", __func__); return -EINVAL; } } if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) { dprintk(2, "%s: transmit queue full\n", __func__); return -EBUSY; } data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; msg->sequence = ++adap->sequence; if (!msg->sequence) msg->sequence = ++adap->sequence; data->msg = *msg; data->fh = fh; data->adap = adap; data->blocking = block; init_completion(&data->c); INIT_DELAYED_WORK(&data->work, cec_wait_timeout); if (fh) list_add_tail(&data->xfer_list, &fh->xfer_list); list_add_tail(&data->list, &adap->transmit_queue); adap->transmit_queue_sz++; if (!adap->transmitting) wake_up_interruptible(&adap->kthread_waitq); /* All done if we don't need to block waiting for completion */ if (!block) return 0; /* * Release the lock and wait, retake the lock afterwards. */ mutex_unlock(&adap->lock); wait_for_completion_killable(&data->c); if (!data->completed) cancel_delayed_work_sync(&data->work); mutex_lock(&adap->lock); /* Cancel the transmit if it was interrupted */ if (!data->completed) cec_data_cancel(data, CEC_TX_STATUS_ABORTED); /* The transmit completed (possibly with an error) */ *msg = data->msg; kfree(data); return 0; } /* Helper function to be used by drivers and this framework. */ int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, bool block) { int ret; mutex_lock(&adap->lock); ret = cec_transmit_msg_fh(adap, msg, NULL, block); mutex_unlock(&adap->lock); return ret; } EXPORT_SYMBOL_GPL(cec_transmit_msg); /* * I don't like forward references but without this the low-level * cec_received_msg() function would come after a bunch of high-level * CEC protocol handling functions. That was very confusing. */ static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, bool is_reply); #define DIRECTED 0x80 #define BCAST1_4 0x40 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */ #define BCAST (BCAST1_4 | BCAST2_0) #define BOTH (BCAST | DIRECTED) /* * Specify minimum length and whether the message is directed, broadcast * or both. Messages that do not match the criteria are ignored as per * the CEC specification. */ static const u8 cec_msg_size[256] = { [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST, [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED, [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED, [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED, [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST, [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST, [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST, [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST, [CEC_MSG_STANDBY] = 2 | BOTH, [CEC_MSG_RECORD_OFF] = 2 | DIRECTED, [CEC_MSG_RECORD_ON] = 3 | DIRECTED, [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED, [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED, [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED, [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED, [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED, [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED, [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED, [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED, [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED, [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED, [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED, [CEC_MSG_CEC_VERSION] = 3 | DIRECTED, [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED, [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED, [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED, [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST, [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST, [CEC_MSG_REPORT_FEATURES] = 6 | BCAST, [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED, [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED, [CEC_MSG_DECK_STATUS] = 3 | DIRECTED, [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED, [CEC_MSG_PLAY] = 3 | DIRECTED, [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED, [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED, [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED, [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED, [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED, [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED, [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST, [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED, [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED, [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH, [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH, [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH, [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED, [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED, [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED, [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED, [CEC_MSG_MENU_STATUS] = 3 | DIRECTED, [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED, [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED, [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED, [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0, [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED, [CEC_MSG_ABORT] = 2 | DIRECTED, [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED, [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED, [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED, [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH, [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED, [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED, [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED, [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED, [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED, [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED, [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED, [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED, [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED, [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST, [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST, [CEC_MSG_CDC_MESSAGE] = 2 | BCAST, }; /* Called by the CEC adapter if a message is received */ void cec_received_msg_ts(struct cec_adapter *adap, struct cec_msg *msg, ktime_t ts) { struct cec_data *data; u8 msg_init = cec_msg_initiator(msg); u8 msg_dest = cec_msg_destination(msg); u8 cmd = msg->msg[1]; bool is_reply = false; bool valid_la = true; u8 min_len = 0; if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE)) return; if (adap->devnode.unregistered) return; /* * Some CEC adapters will receive the messages that they transmitted. * This test filters out those messages by checking if we are the * initiator, and just returning in that case. * * Note that this won't work if this is an Unregistered device. * * It is bad practice if the hardware receives the message that it * transmitted and luckily most CEC adapters behave correctly in this * respect. */ if (msg_init != CEC_LOG_ADDR_UNREGISTERED && cec_has_log_addr(adap, msg_init)) return; msg->rx_ts = ktime_to_ns(ts); msg->rx_status = CEC_RX_STATUS_OK; msg->sequence = msg->reply = msg->timeout = 0; msg->tx_status = 0; msg->tx_ts = 0; msg->tx_arb_lost_cnt = 0; msg->tx_nack_cnt = 0; msg->tx_low_drive_cnt = 0; msg->tx_error_cnt = 0; msg->flags = 0; memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); mutex_lock(&adap->lock); dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); adap->last_initiator = 0xff; /* Check if this message was for us (directed or broadcast). */ if (!cec_msg_is_broadcast(msg)) valid_la = cec_has_log_addr(adap, msg_dest); /* * Check if the length is not too short or if the message is a * broadcast message where a directed message was expected or * vice versa. If so, then the message has to be ignored (according * to section CEC 7.3 and CEC 12.2). */ if (valid_la && msg->len > 1 && cec_msg_size[cmd]) { u8 dir_fl = cec_msg_size[cmd] & BOTH; min_len = cec_msg_size[cmd] & 0x1f; if (msg->len < min_len) valid_la = false; else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED)) valid_la = false; else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST)) valid_la = false; else if (cec_msg_is_broadcast(msg) && adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 && !(dir_fl & BCAST1_4)) valid_la = false; } if (valid_la && min_len) { /* These messages have special length requirements */ switch (cmd) { case CEC_MSG_TIMER_STATUS: if (msg->msg[2] & 0x10) { switch (msg->msg[2] & 0xf) { case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE: case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE: if (msg->len < 5) valid_la = false; break; } } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) { if (msg->len < 5) valid_la = false; } break; case CEC_MSG_RECORD_ON: switch (msg->msg[2]) { case CEC_OP_RECORD_SRC_OWN: break; case CEC_OP_RECORD_SRC_DIGITAL: if (msg->len < 10) valid_la = false; break; case CEC_OP_RECORD_SRC_ANALOG: if (msg->len < 7) valid_la = false; break; case CEC_OP_RECORD_SRC_EXT_PLUG: if (msg->len < 4) valid_la = false; break; case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR: if (msg->len < 5) valid_la = false; break; } break; } } /* It's a valid message and not a poll or CDC message */ if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) { bool abort = cmd == CEC_MSG_FEATURE_ABORT; /* The aborted command is in msg[2] */ if (abort) cmd = msg->msg[2]; /* * Walk over all transmitted messages that are waiting for a * reply. */ list_for_each_entry(data, &adap->wait_queue, list) { struct cec_msg *dst = &data->msg; /* * The *only* CEC message that has two possible replies * is CEC_MSG_INITIATE_ARC. * In this case allow either of the two replies. */ if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC && (cmd == CEC_MSG_REPORT_ARC_INITIATED || cmd == CEC_MSG_REPORT_ARC_TERMINATED) && (dst->reply == CEC_MSG_REPORT_ARC_INITIATED || dst->reply == CEC_MSG_REPORT_ARC_TERMINATED)) dst->reply = cmd; /* Does the command match? */ if ((abort && cmd != dst->msg[1]) || (!abort && cmd != dst->reply)) continue; /* Does the addressing match? */ if (msg_init != cec_msg_destination(dst) && !cec_msg_is_broadcast(dst)) continue; /* We got a reply */ memcpy(dst->msg, msg->msg, msg->len); dst->len = msg->len; dst->rx_ts = msg->rx_ts; dst->rx_status = msg->rx_status; if (abort) dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT; msg->flags = dst->flags; /* Remove it from the wait_queue */ list_del_init(&data->list); /* Cancel the pending timeout work */ if (!cancel_delayed_work(&data->work)) { mutex_unlock(&adap->lock); cancel_delayed_work_sync(&data->work); mutex_lock(&adap->lock); } /* * Mark this as a reply, provided someone is still * waiting for the answer. */ if (data->fh) is_reply = true; cec_data_completed(data); break; } } mutex_unlock(&adap->lock); /* Pass the message on to any monitoring filehandles */ cec_queue_msg_monitor(adap, msg, valid_la); /* We're done if it is not for us or a poll message */ if (!valid_la || msg->len <= 1) return; if (adap->log_addrs.log_addr_mask == 0) return; /* * Process the message on the protocol level. If is_reply is true, * then cec_receive_notify() won't pass on the reply to the listener(s) * since that was already done by cec_data_completed() above. */ cec_receive_notify(adap, msg, is_reply); } EXPORT_SYMBOL_GPL(cec_received_msg_ts); /* Logical Address Handling */ /* * Attempt to claim a specific logical address. * * This function is called with adap->lock held. */ static int cec_config_log_addr(struct cec_adapter *adap, unsigned int idx, unsigned int log_addr) { struct cec_log_addrs *las = &adap->log_addrs; struct cec_msg msg = { }; const unsigned int max_retries = 2; unsigned int i; int err; if (cec_has_log_addr(adap, log_addr)) return 0; /* Send poll message */ msg.len = 1; msg.msg[0] = (log_addr << 4) | log_addr; for (i = 0; i < max_retries; i++) { err = cec_transmit_msg_fh(adap, &msg, NULL, true); /* * While trying to poll the physical address was reset * and the adapter was unconfigured, so bail out. */ if (!adap->is_configuring) return -EINTR; if (err) return err; /* * The message was aborted due to a disconnect or * unconfigure, just bail out. */ if (msg.tx_status & CEC_TX_STATUS_ABORTED) return -EINTR; if (msg.tx_status & CEC_TX_STATUS_OK) return 0; if (msg.tx_status & CEC_TX_STATUS_NACK) break; /* * Retry up to max_retries times if the message was neither * OKed or NACKed. This can happen due to e.g. a Lost * Arbitration condition. */ } /* * If we are unable to get an OK or a NACK after max_retries attempts * (and note that each attempt already consists of four polls), then * then we assume that something is really weird and that it is not a * good idea to try and claim this logical address. */ if (i == max_retries) return 0; /* * Message not acknowledged, so this logical * address is free to use. */ err = adap->ops->adap_log_addr(adap, log_addr); if (err) return err; las->log_addr[idx] = log_addr; las->log_addr_mask |= 1 << log_addr; return 1; } /* * Unconfigure the adapter: clear all logical addresses and send * the state changed event. * * This function is called with adap->lock held. */ static void cec_adap_unconfigure(struct cec_adapter *adap) { if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID) WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID)); adap->log_addrs.log_addr_mask = 0; adap->is_configuring = false; adap->is_configured = false; cec_flush(adap); wake_up_interruptible(&adap->kthread_waitq); cec_post_state_event(adap); } /* * Attempt to claim the required logical addresses. */ static int cec_config_thread_func(void *arg) { /* The various LAs for each type of device */ static const u8 tv_log_addrs[] = { CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC, CEC_LOG_ADDR_INVALID }; static const u8 record_log_addrs[] = { CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2, CEC_LOG_ADDR_RECORD_3, CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, CEC_LOG_ADDR_INVALID }; static const u8 tuner_log_addrs[] = { CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2, CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4, CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, CEC_LOG_ADDR_INVALID }; static const u8 playback_log_addrs[] = { CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2, CEC_LOG_ADDR_PLAYBACK_3, CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, CEC_LOG_ADDR_INVALID }; static const u8 audiosystem_log_addrs[] = { CEC_LOG_ADDR_AUDIOSYSTEM, CEC_LOG_ADDR_INVALID }; static const u8 specific_use_log_addrs[] = { CEC_LOG_ADDR_SPECIFIC, CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, CEC_LOG_ADDR_INVALID }; static const u8 *type2addrs[6] = { [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs, [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs, [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs, [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs, [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs, [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs, }; static const u16 type2mask[] = { [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV, [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD, [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER, [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK, [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM, [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC, }; struct cec_adapter *adap = arg; struct cec_log_addrs *las = &adap->log_addrs; int err; int i, j; mutex_lock(&adap->lock); dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n", cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs); las->log_addr_mask = 0; if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED) goto configured; for (i = 0; i < las->num_log_addrs; i++) { unsigned int type = las->log_addr_type[i]; const u8 *la_list; u8 last_la; /* * The TV functionality can only map to physical address 0. * For any other address, try the Specific functionality * instead as per the spec. */ if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV) type = CEC_LOG_ADDR_TYPE_SPECIFIC; la_list = type2addrs[type]; last_la = las->log_addr[i]; las->log_addr[i] = CEC_LOG_ADDR_INVALID; if (last_la == CEC_LOG_ADDR_INVALID || last_la == CEC_LOG_ADDR_UNREGISTERED || !((1 << last_la) & type2mask[type])) last_la = la_list[0]; err = cec_config_log_addr(adap, i, last_la); if (err > 0) /* Reused last LA */ continue; if (err < 0) goto unconfigure; for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) { /* Tried this one already, skip it */ if (la_list[j] == last_la) continue; /* The backup addresses are CEC 2.0 specific */ if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 || la_list[j] == CEC_LOG_ADDR_BACKUP_2) && las->cec_version < CEC_OP_CEC_VERSION_2_0) continue; err = cec_config_log_addr(adap, i, la_list[j]); if (err == 0) /* LA is in use */ continue; if (err < 0) goto unconfigure; /* Done, claimed an LA */ break; } if (la_list[j] == CEC_LOG_ADDR_INVALID) dprintk(1, "could not claim LA %d\n", i); } if (adap->log_addrs.log_addr_mask == 0 && !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK)) goto unconfigure; configured: if (adap->log_addrs.log_addr_mask == 0) { /* Fall back to unregistered */ las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED; las->log_addr_mask = 1 << las->log_addr[0]; for (i = 1; i < las->num_log_addrs; i++) las->log_addr[i] = CEC_LOG_ADDR_INVALID; } for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) las->log_addr[i] = CEC_LOG_ADDR_INVALID; adap->is_configured = true; adap->is_configuring = false; cec_post_state_event(adap); /* * Now post the Report Features and Report Physical Address broadcast * messages. Note that these are non-blocking transmits, meaning that * they are just queued up and once adap->lock is unlocked the main * thread will kick in and start transmitting these. * * If after this function is done (but before one or more of these * messages are actually transmitted) the CEC adapter is unconfigured, * then any remaining messages will be dropped by the main thread. */ for (i = 0; i < las->num_log_addrs; i++) { struct cec_msg msg = {}; if (las->log_addr[i] == CEC_LOG_ADDR_INVALID || (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY)) continue; msg.msg[0] = (las->log_addr[i] << 4) | 0x0f; /* Report Features must come first according to CEC 2.0 */ if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED && adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) { cec_fill_msg_report_features(adap, &msg, i); cec_transmit_msg_fh(adap, &msg, NULL, false); } /* Report Physical Address */ cec_msg_report_physical_addr(&msg, adap->phys_addr, las->primary_device_type[i]); dprintk(1, "config: la %d pa %x.%x.%x.%x\n", las->log_addr[i], cec_phys_addr_exp(adap->phys_addr)); cec_transmit_msg_fh(adap, &msg, NULL, false); /* Report Vendor ID */ if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) { cec_msg_device_vendor_id(&msg, adap->log_addrs.vendor_id); cec_transmit_msg_fh(adap, &msg, NULL, false); } } adap->kthread_config = NULL; complete(&adap->config_completion); mutex_unlock(&adap->lock); return 0; unconfigure: for (i = 0; i < las->num_log_addrs; i++) las->log_addr[i] = CEC_LOG_ADDR_INVALID; cec_adap_unconfigure(adap); adap->kthread_config = NULL; mutex_unlock(&adap->lock); complete(&adap->config_completion); return 0; } /* * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the * logical addresses. * * This function is called with adap->lock held. */ static void cec_claim_log_addrs(struct cec_adapter *adap, bool block) { if (WARN_ON(adap->is_configuring || adap->is_configured)) return; init_completion(&adap->config_completion); /* Ready to kick off the thread */ adap->is_configuring = true; adap->kthread_config = kthread_run(cec_config_thread_func, adap, "ceccfg-%s", adap->name); if (IS_ERR(adap->kthread_config)) { adap->kthread_config = NULL; } else if (block) { mutex_unlock(&adap->lock); wait_for_completion(&adap->config_completion); mutex_lock(&adap->lock); } } /* Set a new physical address and send an event notifying userspace of this. * * This function is called with adap->lock held. */ void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) { if (phys_addr == adap->phys_addr) return; if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered) return; dprintk(1, "new physical address %x.%x.%x.%x\n", cec_phys_addr_exp(phys_addr)); if (phys_addr == CEC_PHYS_ADDR_INVALID || adap->phys_addr != CEC_PHYS_ADDR_INVALID) { adap->phys_addr = CEC_PHYS_ADDR_INVALID; cec_post_state_event(adap); cec_adap_unconfigure(adap); /* Disabling monitor all mode should always succeed */ if (adap->monitor_all_cnt) WARN_ON(call_op(adap, adap_monitor_all_enable, false)); mutex_lock(&adap->devnode.lock); if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) { WARN_ON(adap->ops->adap_enable(adap, false)); adap->transmit_in_progress = false; wake_up_interruptible(&adap->kthread_waitq); } mutex_unlock(&adap->devnode.lock); if (phys_addr == CEC_PHYS_ADDR_INVALID) return; } mutex_lock(&adap->devnode.lock); adap->last_initiator = 0xff; adap->transmit_in_progress = false; if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) && adap->ops->adap_enable(adap, true)) { mutex_unlock(&adap->devnode.lock); return; } if (adap->monitor_all_cnt && call_op(adap, adap_monitor_all_enable, true)) { if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) WARN_ON(adap->ops->adap_enable(adap, false)); mutex_unlock(&adap->devnode.lock); return; } mutex_unlock(&adap->devnode.lock); adap->phys_addr = phys_addr; cec_post_state_event(adap); if (adap->log_addrs.num_log_addrs) cec_claim_log_addrs(adap, block); } void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) { if (IS_ERR_OR_NULL(adap)) return; mutex_lock(&adap->lock); __cec_s_phys_addr(adap, phys_addr, block); mutex_unlock(&adap->lock); } EXPORT_SYMBOL_GPL(cec_s_phys_addr); void cec_s_phys_addr_from_edid(struct cec_adapter *adap, const struct edid *edid) { u16 pa = CEC_PHYS_ADDR_INVALID; if (edid && edid->extensions) pa = cec_get_edid_phys_addr((const u8 *)edid, EDID_LENGTH * (edid->extensions + 1), NULL); cec_s_phys_addr(adap, pa, false); } EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid); void cec_s_conn_info(struct cec_adapter *adap, const struct cec_connector_info *conn_info) { if (IS_ERR_OR_NULL(adap)) return; if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO)) return; mutex_lock(&adap->lock); if (conn_info) adap->conn_info = *conn_info; else memset(&adap->conn_info, 0, sizeof(adap->conn_info)); cec_post_state_event(adap); mutex_unlock(&adap->lock); } EXPORT_SYMBOL_GPL(cec_s_conn_info); /* * Called from either the ioctl or a driver to set the logical addresses. * * This function is called with adap->lock held. */ int __cec_s_log_addrs(struct cec_adapter *adap, struct cec_log_addrs *log_addrs, bool block) { u16 type_mask = 0; int i; if (adap->devnode.unregistered) return -ENODEV; if (!log_addrs || log_addrs->num_log_addrs == 0) { cec_adap_unconfigure(adap); adap->log_addrs.num_log_addrs = 0; for (i = 0; i < CEC_MAX_LOG_ADDRS; i++) adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID; adap->log_addrs.osd_name[0] = '\0'; adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE; adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0; return 0; } if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) { /* * Sanitize log_addrs fields if a CDC-Only device is * requested. */ log_addrs->num_log_addrs = 1; log_addrs->osd_name[0] = '\0'; log_addrs->vendor_id = CEC_VENDOR_ID_NONE; log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED; /* * This is just an internal convention since a CDC-Only device * doesn't have to be a switch. But switches already use * unregistered, so it makes some kind of sense to pick this * as the primary device. Since a CDC-Only device never sends * any 'normal' CEC messages this primary device type is never * sent over the CEC bus. */ log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH; log_addrs->all_device_types[0] = 0; log_addrs->features[0][0] = 0; log_addrs->features[0][1] = 0; } /* Ensure the osd name is 0-terminated */ log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0'; /* Sanity checks */ if (log_addrs->num_log_addrs > adap->available_log_addrs) { dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs); return -EINVAL; } /* * Vendor ID is a 24 bit number, so check if the value is * within the correct range. */ if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE && (log_addrs->vendor_id & 0xff000000) != 0) { dprintk(1, "invalid vendor ID\n"); return -EINVAL; } if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 && log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) { dprintk(1, "invalid CEC version\n"); return -EINVAL; } if (log_addrs->num_log_addrs > 1) for (i = 0; i < log_addrs->num_log_addrs; i++) if (log_addrs->log_addr_type[i] == CEC_LOG_ADDR_TYPE_UNREGISTERED) { dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n"); return -EINVAL; } for (i = 0; i < log_addrs->num_log_addrs; i++) { const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]); u8 *features = log_addrs->features[i]; bool op_is_dev_features = false; unsigned j; log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID; if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) { dprintk(1, "unknown logical address type\n"); return -EINVAL; } if (type_mask & (1 << log_addrs->log_addr_type[i])) { dprintk(1, "duplicate logical address type\n"); return -EINVAL; } type_mask |= 1 << log_addrs->log_addr_type[i]; if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) && (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) { /* Record already contains the playback functionality */ dprintk(1, "invalid record + playback combination\n"); return -EINVAL; } if (log_addrs->primary_device_type[i] > CEC_OP_PRIM_DEVTYPE_PROCESSOR) { dprintk(1, "unknown primary device type\n"); return -EINVAL; } if (log_addrs->primary_device_type[i] == 2) { dprintk(1, "invalid primary device type\n"); return -EINVAL; } for (j = 0; j < feature_sz; j++) { if ((features[j] & 0x80) == 0) { if (op_is_dev_features) break; op_is_dev_features = true; } } if (!op_is_dev_features || j == feature_sz) { dprintk(1, "malformed features\n"); return -EINVAL; } /* Zero unused part of the feature array */ memset(features + j + 1, 0, feature_sz - j - 1); } if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) { if (log_addrs->num_log_addrs > 2) { dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n"); return -EINVAL; } if (log_addrs->num_log_addrs == 2) { if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) | (1 << CEC_LOG_ADDR_TYPE_TV)))) { dprintk(1, "two LAs is only allowed for audiosystem and TV\n"); return -EINVAL; } if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) | (1 << CEC_LOG_ADDR_TYPE_RECORD)))) { dprintk(1, "an audiosystem/TV can only be combined with record or playback\n"); return -EINVAL; } } } /* Zero unused LAs */ for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) { log_addrs->primary_device_type[i] = 0; log_addrs->log_addr_type[i] = 0; log_addrs->all_device_types[i] = 0; memset(log_addrs->features[i], 0, sizeof(log_addrs->features[i])); } log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask; adap->log_addrs = *log_addrs; if (adap->phys_addr != CEC_PHYS_ADDR_INVALID) cec_claim_log_addrs(adap, block); return 0; } int cec_s_log_addrs(struct cec_adapter *adap, struct cec_log_addrs *log_addrs, bool block) { int err; mutex_lock(&adap->lock); err = __cec_s_log_addrs(adap, log_addrs, block); mutex_unlock(&adap->lock); return err; } EXPORT_SYMBOL_GPL(cec_s_log_addrs); /* High-level core CEC message handling */ /* Fill in the Report Features message */ static void cec_fill_msg_report_features(struct cec_adapter *adap, struct cec_msg *msg, unsigned int la_idx) { const struct cec_log_addrs *las = &adap->log_addrs; const u8 *features = las->features[la_idx]; bool op_is_dev_features = false; unsigned int idx; /* Report Features */ msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f; msg->len = 4; msg->msg[1] = CEC_MSG_REPORT_FEATURES; msg->msg[2] = adap->log_addrs.cec_version; msg->msg[3] = las->all_device_types[la_idx]; /* Write RC Profiles first, then Device Features */ for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) { msg->msg[msg->len++] = features[idx]; if ((features[idx] & CEC_OP_FEAT_EXT) == 0) { if (op_is_dev_features) break; op_is_dev_features = true; } } } /* Transmit the Feature Abort message */ static int cec_feature_abort_reason(struct cec_adapter *adap, struct cec_msg *msg, u8 reason) { struct cec_msg tx_msg = { }; /* * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT * message! */ if (msg->msg[1] == CEC_MSG_FEATURE_ABORT) return 0; /* Don't Feature Abort messages from 'Unregistered' */ if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED) return 0; cec_msg_set_reply_to(&tx_msg, msg); cec_msg_feature_abort(&tx_msg, msg->msg[1], reason); return cec_transmit_msg(adap, &tx_msg, false); } static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg) { return cec_feature_abort_reason(adap, msg, CEC_OP_ABORT_UNRECOGNIZED_OP); } static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg) { return cec_feature_abort_reason(adap, msg, CEC_OP_ABORT_REFUSED); } /* * Called when a CEC message is received. This function will do any * necessary core processing. The is_reply bool is true if this message * is a reply to an earlier transmit. * * The message is either a broadcast message or a valid directed message. */ static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, bool is_reply) { bool is_broadcast = cec_msg_is_broadcast(msg); u8 dest_laddr = cec_msg_destination(msg); u8 init_laddr = cec_msg_initiator(msg); u8 devtype = cec_log_addr2dev(adap, dest_laddr); int la_idx = cec_log_addr2idx(adap, dest_laddr); bool from_unregistered = init_laddr == 0xf; struct cec_msg tx_cec_msg = { }; dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); /* If this is a CDC-Only device, then ignore any non-CDC messages */ if (cec_is_cdc_only(&adap->log_addrs) && msg->msg[1] != CEC_MSG_CDC_MESSAGE) return 0; if (adap->ops->received) { /* Allow drivers to process the message first */ if (adap->ops->received(adap, msg) != -ENOMSG) return 0; } /* * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and * CEC_MSG_USER_CONTROL_RELEASED messages always have to be * handled by the CEC core, even if the passthrough mode is on. * The others are just ignored if passthrough mode is on. */ switch (msg->msg[1]) { case CEC_MSG_GET_CEC_VERSION: case CEC_MSG_ABORT: case CEC_MSG_GIVE_DEVICE_POWER_STATUS: case CEC_MSG_GIVE_OSD_NAME: /* * These messages reply with a directed message, so ignore if * the initiator is Unregistered. */ if (!adap->passthrough && from_unregistered) return 0; fallthrough; case CEC_MSG_GIVE_DEVICE_VENDOR_ID: case CEC_MSG_GIVE_FEATURES: case CEC_MSG_GIVE_PHYSICAL_ADDR: /* * Skip processing these messages if the passthrough mode * is on. */ if (adap->passthrough) goto skip_processing; /* Ignore if addressing is wrong */ if (is_broadcast) return 0; break; case CEC_MSG_USER_CONTROL_PRESSED: case CEC_MSG_USER_CONTROL_RELEASED: /* Wrong addressing mode: don't process */ if (is_broadcast || from_unregistered) goto skip_processing; break; case CEC_MSG_REPORT_PHYSICAL_ADDR: /* * This message is always processed, regardless of the * passthrough setting. * * Exception: don't process if wrong addressing mode. */ if (!is_broadcast) goto skip_processing; break; default: break; } cec_msg_set_reply_to(&tx_cec_msg, msg); switch (msg->msg[1]) { /* The following messages are processed but still passed through */ case CEC_MSG_REPORT_PHYSICAL_ADDR: { u16 pa = (msg->msg[2] << 8) | msg->msg[3]; dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n", cec_phys_addr_exp(pa), init_laddr); break; } case CEC_MSG_USER_CONTROL_PRESSED: if (!(adap->capabilities & CEC_CAP_RC) || !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) break; #ifdef CONFIG_MEDIA_CEC_RC switch (msg->msg[2]) { /* * Play function, this message can have variable length * depending on the specific play function that is used. */ case CEC_OP_UI_CMD_PLAY_FUNCTION: if (msg->len == 2) rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0); else rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2] << 8 | msg->msg[3], 0); break; /* * Other function messages that are not handled. * Currently the RC framework does not allow to supply an * additional parameter to a keypress. These "keys" contain * other information such as channel number, an input number * etc. * For the time being these messages are not processed by the * framework and are simply forwarded to the user space. */ case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE: case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION: case CEC_OP_UI_CMD_TUNE_FUNCTION: case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION: case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION: case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION: break; default: rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0); break; } #endif break; case CEC_MSG_USER_CONTROL_RELEASED: if (!(adap->capabilities & CEC_CAP_RC) || !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) break; #ifdef CONFIG_MEDIA_CEC_RC rc_keyup(adap->rc); #endif break; /* * The remaining messages are only processed if the passthrough mode * is off. */ case CEC_MSG_GET_CEC_VERSION: cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version); return cec_transmit_msg(adap, &tx_cec_msg, false); case CEC_MSG_GIVE_PHYSICAL_ADDR: /* Do nothing for CEC switches using addr 15 */ if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15) return 0; cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype); return cec_transmit_msg(adap, &tx_cec_msg, false); case CEC_MSG_GIVE_DEVICE_VENDOR_ID: if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE) return cec_feature_abort(adap, msg); cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id); return cec_transmit_msg(adap, &tx_cec_msg, false); case CEC_MSG_ABORT: /* Do nothing for CEC switches */ if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH) return 0; return cec_feature_refused(adap, msg); case CEC_MSG_GIVE_OSD_NAME: { if (adap->log_addrs.osd_name[0] == 0) return cec_feature_abort(adap, msg); cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name); return cec_transmit_msg(adap, &tx_cec_msg, false); } case CEC_MSG_GIVE_FEATURES: if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0) return cec_feature_abort(adap, msg); cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx); return cec_transmit_msg(adap, &tx_cec_msg, false); default: /* * Unprocessed messages are aborted if userspace isn't doing * any processing either. */ if (!is_broadcast && !is_reply && !adap->follower_cnt && !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT) return cec_feature_abort(adap, msg); break; } skip_processing: /* If this was a reply, then we're done, unless otherwise specified */ if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS)) return 0; /* * Send to the exclusive follower if there is one, otherwise send * to all followers. */ if (adap->cec_follower) cec_queue_msg_fh(adap->cec_follower, msg); else cec_queue_msg_followers(adap, msg); return 0; } /* * Helper functions to keep track of the 'monitor all' use count. * * These functions are called with adap->lock held. */ int cec_monitor_all_cnt_inc(struct cec_adapter *adap) { int ret = 0; if (adap->monitor_all_cnt == 0) ret = call_op(adap, adap_monitor_all_enable, 1); if (ret == 0) adap->monitor_all_cnt++; return ret; } void cec_monitor_all_cnt_dec(struct cec_adapter *adap) { adap->monitor_all_cnt--; if (adap->monitor_all_cnt == 0) WARN_ON(call_op(adap, adap_monitor_all_enable, 0)); } /* * Helper functions to keep track of the 'monitor pin' use count. * * These functions are called with adap->lock held. */ int cec_monitor_pin_cnt_inc(struct cec_adapter *adap) { int ret = 0; if (adap->monitor_pin_cnt == 0) ret = call_op(adap, adap_monitor_pin_enable, 1); if (ret == 0) adap->monitor_pin_cnt++; return ret; } void cec_monitor_pin_cnt_dec(struct cec_adapter *adap) { adap->monitor_pin_cnt--; if (adap->monitor_pin_cnt == 0) WARN_ON(call_op(adap, adap_monitor_pin_enable, 0)); } #ifdef CONFIG_DEBUG_FS /* * Log the current state of the CEC adapter. * Very useful for debugging. */ int cec_adap_status(struct seq_file *file, void *priv) { struct cec_adapter *adap = dev_get_drvdata(file->private); struct cec_data *data; mutex_lock(&adap->lock); seq_printf(file, "configured: %d\n", adap->is_configured); seq_printf(file, "configuring: %d\n", adap->is_configuring); seq_printf(file, "phys_addr: %x.%x.%x.%x\n", cec_phys_addr_exp(adap->phys_addr)); seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs); seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask); if (adap->cec_follower) seq_printf(file, "has CEC follower%s\n", adap->passthrough ? " (in passthrough mode)" : ""); if (adap->cec_initiator) seq_puts(file, "has CEC initiator\n"); if (adap->monitor_all_cnt) seq_printf(file, "file handles in Monitor All mode: %u\n", adap->monitor_all_cnt); if (adap->tx_timeouts) { seq_printf(file, "transmit timeouts: %u\n", adap->tx_timeouts); adap->tx_timeouts = 0; } data = adap->transmitting; if (data) seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n", data->msg.len, data->msg.msg, data->msg.reply, data->msg.timeout); seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz); list_for_each_entry(data, &adap->transmit_queue, list) { seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n", data->msg.len, data->msg.msg, data->msg.reply, data->msg.timeout); } list_for_each_entry(data, &adap->wait_queue, list) { seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n", data->msg.len, data->msg.msg, data->msg.reply, data->msg.timeout); } call_void_op(adap, adap_status, file); mutex_unlock(&adap->lock); return 0; } #endif