// SPDX-License-Identifier: GPL-2.0-or-later /* * RDMA Transport Layer * * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved. * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved. * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved. */ #undef pr_fmt #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt #include #include #include "rtrs-pri.h" #include "rtrs-log.h" MODULE_DESCRIPTION("RDMA Transport Core"); MODULE_LICENSE("GPL"); struct rtrs_iu *rtrs_iu_alloc(u32 queue_size, size_t size, gfp_t gfp_mask, struct ib_device *dma_dev, enum dma_data_direction dir, void (*done)(struct ib_cq *cq, struct ib_wc *wc)) { struct rtrs_iu *ius, *iu; int i; ius = kcalloc(queue_size, sizeof(*ius), gfp_mask); if (!ius) return NULL; for (i = 0; i < queue_size; i++) { iu = &ius[i]; iu->buf = kzalloc(size, gfp_mask); if (!iu->buf) goto err; iu->dma_addr = ib_dma_map_single(dma_dev, iu->buf, size, dir); if (ib_dma_mapping_error(dma_dev, iu->dma_addr)) goto err; iu->cqe.done = done; iu->size = size; iu->direction = dir; } return ius; err: rtrs_iu_free(ius, dir, dma_dev, i); return NULL; } EXPORT_SYMBOL_GPL(rtrs_iu_alloc); void rtrs_iu_free(struct rtrs_iu *ius, enum dma_data_direction dir, struct ib_device *ibdev, u32 queue_size) { struct rtrs_iu *iu; int i; if (!ius) return; for (i = 0; i < queue_size; i++) { iu = &ius[i]; ib_dma_unmap_single(ibdev, iu->dma_addr, iu->size, dir); kfree(iu->buf); } kfree(ius); } EXPORT_SYMBOL_GPL(rtrs_iu_free); int rtrs_iu_post_recv(struct rtrs_con *con, struct rtrs_iu *iu) { struct rtrs_sess *sess = con->sess; struct ib_recv_wr wr; struct ib_sge list; list.addr = iu->dma_addr; list.length = iu->size; list.lkey = sess->dev->ib_pd->local_dma_lkey; if (list.length == 0) { rtrs_wrn(con->sess, "Posting receive work request failed, sg list is empty\n"); return -EINVAL; } wr = (struct ib_recv_wr) { .wr_cqe = &iu->cqe, .sg_list = &list, .num_sge = 1, }; return ib_post_recv(con->qp, &wr, NULL); } EXPORT_SYMBOL_GPL(rtrs_iu_post_recv); int rtrs_post_recv_empty(struct rtrs_con *con, struct ib_cqe *cqe) { struct ib_recv_wr wr; wr = (struct ib_recv_wr) { .wr_cqe = cqe, }; return ib_post_recv(con->qp, &wr, NULL); } EXPORT_SYMBOL_GPL(rtrs_post_recv_empty); int rtrs_iu_post_send(struct rtrs_con *con, struct rtrs_iu *iu, size_t size, struct ib_send_wr *head) { struct rtrs_sess *sess = con->sess; struct ib_send_wr wr; struct ib_sge list; if (WARN_ON(size == 0)) return -EINVAL; list.addr = iu->dma_addr; list.length = size; list.lkey = sess->dev->ib_pd->local_dma_lkey; wr = (struct ib_send_wr) { .wr_cqe = &iu->cqe, .sg_list = &list, .num_sge = 1, .opcode = IB_WR_SEND, .send_flags = IB_SEND_SIGNALED, }; if (head) { struct ib_send_wr *tail = head; while (tail->next) tail = tail->next; tail->next = ≀ } else { head = ≀ } return ib_post_send(con->qp, head, NULL); } EXPORT_SYMBOL_GPL(rtrs_iu_post_send); int rtrs_iu_post_rdma_write_imm(struct rtrs_con *con, struct rtrs_iu *iu, struct ib_sge *sge, unsigned int num_sge, u32 rkey, u64 rdma_addr, u32 imm_data, enum ib_send_flags flags, struct ib_send_wr *head) { struct ib_rdma_wr wr; int i; wr = (struct ib_rdma_wr) { .wr.wr_cqe = &iu->cqe, .wr.sg_list = sge, .wr.num_sge = num_sge, .rkey = rkey, .remote_addr = rdma_addr, .wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM, .wr.ex.imm_data = cpu_to_be32(imm_data), .wr.send_flags = flags, }; /* * If one of the sges has 0 size, the operation will fail with a * length error */ for (i = 0; i < num_sge; i++) if (WARN_ON(sge[i].length == 0)) return -EINVAL; if (head) { struct ib_send_wr *tail = head; while (tail->next) tail = tail->next; tail->next = &wr.wr; } else { head = &wr.wr; } return ib_post_send(con->qp, head, NULL); } EXPORT_SYMBOL_GPL(rtrs_iu_post_rdma_write_imm); int rtrs_post_rdma_write_imm_empty(struct rtrs_con *con, struct ib_cqe *cqe, u32 imm_data, enum ib_send_flags flags, struct ib_send_wr *head) { struct ib_send_wr wr; wr = (struct ib_send_wr) { .wr_cqe = cqe, .send_flags = flags, .opcode = IB_WR_RDMA_WRITE_WITH_IMM, .ex.imm_data = cpu_to_be32(imm_data), }; if (head) { struct ib_send_wr *tail = head; while (tail->next) tail = tail->next; tail->next = ≀ } else { head = ≀ } return ib_post_send(con->qp, head, NULL); } EXPORT_SYMBOL_GPL(rtrs_post_rdma_write_imm_empty); static void qp_event_handler(struct ib_event *ev, void *ctx) { struct rtrs_con *con = ctx; switch (ev->event) { case IB_EVENT_COMM_EST: rtrs_info(con->sess, "QP event %s (%d) received\n", ib_event_msg(ev->event), ev->event); rdma_notify(con->cm_id, IB_EVENT_COMM_EST); break; default: rtrs_info(con->sess, "Unhandled QP event %s (%d) received\n", ib_event_msg(ev->event), ev->event); break; } } static int create_cq(struct rtrs_con *con, int cq_vector, u16 cq_size, enum ib_poll_context poll_ctx) { struct rdma_cm_id *cm_id = con->cm_id; struct ib_cq *cq; cq = ib_alloc_cq(cm_id->device, con, cq_size, cq_vector, poll_ctx); if (IS_ERR(cq)) { rtrs_err(con->sess, "Creating completion queue failed, errno: %ld\n", PTR_ERR(cq)); return PTR_ERR(cq); } con->cq = cq; return 0; } static int create_qp(struct rtrs_con *con, struct ib_pd *pd, u16 wr_queue_size, u32 max_sge) { struct ib_qp_init_attr init_attr = {NULL}; struct rdma_cm_id *cm_id = con->cm_id; int ret; init_attr.cap.max_send_wr = wr_queue_size; init_attr.cap.max_recv_wr = wr_queue_size; init_attr.cap.max_recv_sge = 1; init_attr.event_handler = qp_event_handler; init_attr.qp_context = con; init_attr.cap.max_send_sge = max_sge; init_attr.qp_type = IB_QPT_RC; init_attr.send_cq = con->cq; init_attr.recv_cq = con->cq; init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; ret = rdma_create_qp(cm_id, pd, &init_attr); if (ret) { rtrs_err(con->sess, "Creating QP failed, err: %d\n", ret); return ret; } con->qp = cm_id->qp; return ret; } int rtrs_cq_qp_create(struct rtrs_sess *sess, struct rtrs_con *con, u32 max_send_sge, int cq_vector, u16 cq_size, u16 wr_queue_size, enum ib_poll_context poll_ctx) { int err; err = create_cq(con, cq_vector, cq_size, poll_ctx); if (err) return err; err = create_qp(con, sess->dev->ib_pd, wr_queue_size, max_send_sge); if (err) { ib_free_cq(con->cq); con->cq = NULL; return err; } con->sess = sess; return 0; } EXPORT_SYMBOL_GPL(rtrs_cq_qp_create); void rtrs_cq_qp_destroy(struct rtrs_con *con) { if (con->qp) { rdma_destroy_qp(con->cm_id); con->qp = NULL; } if (con->cq) { ib_free_cq(con->cq); con->cq = NULL; } } EXPORT_SYMBOL_GPL(rtrs_cq_qp_destroy); static void schedule_hb(struct rtrs_sess *sess) { queue_delayed_work(sess->hb_wq, &sess->hb_dwork, msecs_to_jiffies(sess->hb_interval_ms)); } void rtrs_send_hb_ack(struct rtrs_sess *sess) { struct rtrs_con *usr_con = sess->con[0]; u32 imm; int err; imm = rtrs_to_imm(RTRS_HB_ACK_IMM, 0); err = rtrs_post_rdma_write_imm_empty(usr_con, sess->hb_cqe, imm, IB_SEND_SIGNALED, NULL); if (err) { sess->hb_err_handler(usr_con); return; } } EXPORT_SYMBOL_GPL(rtrs_send_hb_ack); static void hb_work(struct work_struct *work) { struct rtrs_con *usr_con; struct rtrs_sess *sess; u32 imm; int err; sess = container_of(to_delayed_work(work), typeof(*sess), hb_dwork); usr_con = sess->con[0]; if (sess->hb_missed_cnt > sess->hb_missed_max) { sess->hb_err_handler(usr_con); return; } if (sess->hb_missed_cnt++) { /* Reschedule work without sending hb */ schedule_hb(sess); return; } imm = rtrs_to_imm(RTRS_HB_MSG_IMM, 0); err = rtrs_post_rdma_write_imm_empty(usr_con, sess->hb_cqe, imm, IB_SEND_SIGNALED, NULL); if (err) { sess->hb_err_handler(usr_con); return; } schedule_hb(sess); } void rtrs_init_hb(struct rtrs_sess *sess, struct ib_cqe *cqe, unsigned int interval_ms, unsigned int missed_max, void (*err_handler)(struct rtrs_con *con), struct workqueue_struct *wq) { sess->hb_cqe = cqe; sess->hb_interval_ms = interval_ms; sess->hb_err_handler = err_handler; sess->hb_wq = wq; sess->hb_missed_max = missed_max; sess->hb_missed_cnt = 0; INIT_DELAYED_WORK(&sess->hb_dwork, hb_work); } EXPORT_SYMBOL_GPL(rtrs_init_hb); void rtrs_start_hb(struct rtrs_sess *sess) { schedule_hb(sess); } EXPORT_SYMBOL_GPL(rtrs_start_hb); void rtrs_stop_hb(struct rtrs_sess *sess) { cancel_delayed_work_sync(&sess->hb_dwork); sess->hb_missed_cnt = 0; sess->hb_missed_max = 0; } EXPORT_SYMBOL_GPL(rtrs_stop_hb); static int rtrs_str_gid_to_sockaddr(const char *addr, size_t len, short port, struct sockaddr_storage *dst) { struct sockaddr_ib *dst_ib = (struct sockaddr_ib *)dst; int ret; /* * We can use some of the IPv6 functions since GID is a valid * IPv6 address format */ ret = in6_pton(addr, len, dst_ib->sib_addr.sib_raw, '\0', NULL); if (ret == 0) return -EINVAL; dst_ib->sib_family = AF_IB; /* * Use the same TCP server port number as the IB service ID * on the IB port space range */ dst_ib->sib_sid = cpu_to_be64(RDMA_IB_IP_PS_IB | port); dst_ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); dst_ib->sib_pkey = cpu_to_be16(0xffff); return 0; } /** * rtrs_str_to_sockaddr() - Convert rtrs address string to sockaddr * @addr: String representation of an addr (IPv4, IPv6 or IB GID): * - "ip:192.168.1.1" * - "ip:fe80::200:5aee:feaa:20a2" * - "gid:fe80::200:5aee:feaa:20a2" * @len: String address length * @port: Destination port * @dst: Destination sockaddr structure * * Returns 0 if conversion successful. Non-zero on error. */ static int rtrs_str_to_sockaddr(const char *addr, size_t len, u16 port, struct sockaddr_storage *dst) { if (strncmp(addr, "gid:", 4) == 0) { return rtrs_str_gid_to_sockaddr(addr + 4, len - 4, port, dst); } else if (strncmp(addr, "ip:", 3) == 0) { char port_str[8]; char *cpy; int err; snprintf(port_str, sizeof(port_str), "%u", port); cpy = kstrndup(addr + 3, len - 3, GFP_KERNEL); err = cpy ? inet_pton_with_scope(&init_net, AF_UNSPEC, cpy, port_str, dst) : -ENOMEM; kfree(cpy); return err; } return -EPROTONOSUPPORT; } /** * sockaddr_to_str() - convert sockaddr to a string. * @addr: the sockadddr structure to be converted. * @buf: string containing socket addr. * @len: string length. * * The return value is the number of characters written into buf not * including the trailing '\0'. If len is == 0 the function returns 0.. */ int sockaddr_to_str(const struct sockaddr *addr, char *buf, size_t len) { switch (addr->sa_family) { case AF_IB: return scnprintf(buf, len, "gid:%pI6", &((struct sockaddr_ib *)addr)->sib_addr.sib_raw); case AF_INET: return scnprintf(buf, len, "ip:%pI4", &((struct sockaddr_in *)addr)->sin_addr); case AF_INET6: return scnprintf(buf, len, "ip:%pI6c", &((struct sockaddr_in6 *)addr)->sin6_addr); } return scnprintf(buf, len, ""); } EXPORT_SYMBOL(sockaddr_to_str); /** * rtrs_addr_to_sockaddr() - convert path string "src,dst" or "src@dst" * to sockaddreses * @str: string containing source and destination addr of a path * separated by ',' or '@' I.e. "ip:1.1.1.1,ip:1.1.1.2" or * "ip:1.1.1.1@ip:1.1.1.2". If str contains only one address it's * considered to be destination. * @len: string length * @port: Destination port number. * @addr: will be set to the source/destination address or to NULL * if str doesn't contain any source address. * * Returns zero if conversion successful. Non-zero otherwise. */ int rtrs_addr_to_sockaddr(const char *str, size_t len, u16 port, struct rtrs_addr *addr) { const char *d; d = strchr(str, ','); if (!d) d = strchr(str, '@'); if (d) { if (rtrs_str_to_sockaddr(str, d - str, 0, addr->src)) return -EINVAL; d += 1; len -= d - str; str = d; } else { addr->src = NULL; } return rtrs_str_to_sockaddr(str, len, port, addr->dst); } EXPORT_SYMBOL(rtrs_addr_to_sockaddr); void rtrs_rdma_dev_pd_init(enum ib_pd_flags pd_flags, struct rtrs_rdma_dev_pd *pool) { WARN_ON(pool->ops && (!pool->ops->alloc ^ !pool->ops->free)); INIT_LIST_HEAD(&pool->list); mutex_init(&pool->mutex); pool->pd_flags = pd_flags; } EXPORT_SYMBOL(rtrs_rdma_dev_pd_init); void rtrs_rdma_dev_pd_deinit(struct rtrs_rdma_dev_pd *pool) { mutex_destroy(&pool->mutex); WARN_ON(!list_empty(&pool->list)); } EXPORT_SYMBOL(rtrs_rdma_dev_pd_deinit); static void dev_free(struct kref *ref) { struct rtrs_rdma_dev_pd *pool; struct rtrs_ib_dev *dev; dev = container_of(ref, typeof(*dev), ref); pool = dev->pool; mutex_lock(&pool->mutex); list_del(&dev->entry); mutex_unlock(&pool->mutex); if (pool->ops && pool->ops->deinit) pool->ops->deinit(dev); ib_dealloc_pd(dev->ib_pd); if (pool->ops && pool->ops->free) pool->ops->free(dev); else kfree(dev); } int rtrs_ib_dev_put(struct rtrs_ib_dev *dev) { return kref_put(&dev->ref, dev_free); } EXPORT_SYMBOL(rtrs_ib_dev_put); static int rtrs_ib_dev_get(struct rtrs_ib_dev *dev) { return kref_get_unless_zero(&dev->ref); } struct rtrs_ib_dev * rtrs_ib_dev_find_or_add(struct ib_device *ib_dev, struct rtrs_rdma_dev_pd *pool) { struct rtrs_ib_dev *dev; mutex_lock(&pool->mutex); list_for_each_entry(dev, &pool->list, entry) { if (dev->ib_dev->node_guid == ib_dev->node_guid && rtrs_ib_dev_get(dev)) goto out_unlock; } mutex_unlock(&pool->mutex); if (pool->ops && pool->ops->alloc) dev = pool->ops->alloc(); else dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (IS_ERR_OR_NULL(dev)) goto out_err; kref_init(&dev->ref); dev->pool = pool; dev->ib_dev = ib_dev; dev->ib_pd = ib_alloc_pd(ib_dev, pool->pd_flags); if (IS_ERR(dev->ib_pd)) goto out_free_dev; if (pool->ops && pool->ops->init && pool->ops->init(dev)) goto out_free_pd; mutex_lock(&pool->mutex); list_add(&dev->entry, &pool->list); out_unlock: mutex_unlock(&pool->mutex); return dev; out_free_pd: ib_dealloc_pd(dev->ib_pd); out_free_dev: if (pool->ops && pool->ops->free) pool->ops->free(dev); else kfree(dev); out_err: return NULL; } EXPORT_SYMBOL(rtrs_ib_dev_find_or_add);