/* * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved. * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include "iscsi_iser.h" #define ISER_KMALLOC_THRESHOLD 0x20000 /* 128K - kmalloc limit */ /** * iser_start_rdma_unaligned_sg */ static int iser_start_rdma_unaligned_sg(struct iscsi_iser_task *iser_task, struct iser_data_buf *data, struct iser_data_buf *data_copy, enum iser_data_dir cmd_dir) { struct ib_device *dev = iser_task->ib_conn->device->ib_device; struct scatterlist *sgl = (struct scatterlist *)data->buf; struct scatterlist *sg; char *mem = NULL; unsigned long cmd_data_len = 0; int dma_nents, i; for_each_sg(sgl, sg, data->size, i) cmd_data_len += ib_sg_dma_len(dev, sg); if (cmd_data_len > ISER_KMALLOC_THRESHOLD) mem = (void *)__get_free_pages(GFP_ATOMIC, ilog2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT); else mem = kmalloc(cmd_data_len, GFP_ATOMIC); if (mem == NULL) { iser_err("Failed to allocate mem size %d %d for copying sglist\n", data->size, (int)cmd_data_len); return -ENOMEM; } if (cmd_dir == ISER_DIR_OUT) { /* copy the unaligned sg the buffer which is used for RDMA */ int i; char *p, *from; sgl = (struct scatterlist *)data->buf; p = mem; for_each_sg(sgl, sg, data->size, i) { from = kmap_atomic(sg_page(sg)); memcpy(p, from + sg->offset, sg->length); kunmap_atomic(from); p += sg->length; } } sg_init_one(&data_copy->sg_single, mem, cmd_data_len); data_copy->buf = &data_copy->sg_single; data_copy->size = 1; data_copy->copy_buf = mem; dma_nents = ib_dma_map_sg(dev, &data_copy->sg_single, 1, (cmd_dir == ISER_DIR_OUT) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); BUG_ON(dma_nents == 0); data_copy->dma_nents = dma_nents; data_copy->data_len = cmd_data_len; return 0; } /** * iser_finalize_rdma_unaligned_sg */ void iser_finalize_rdma_unaligned_sg(struct iscsi_iser_task *iser_task, struct iser_data_buf *data, struct iser_data_buf *data_copy, enum iser_data_dir cmd_dir) { struct ib_device *dev; unsigned long cmd_data_len; dev = iser_task->ib_conn->device->ib_device; ib_dma_unmap_sg(dev, &data_copy->sg_single, 1, (cmd_dir == ISER_DIR_OUT) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (cmd_dir == ISER_DIR_IN) { char *mem; struct scatterlist *sgl, *sg; unsigned char *p, *to; unsigned int sg_size; int i; /* copy back read RDMA to unaligned sg */ mem = data_copy->copy_buf; sgl = (struct scatterlist *)data->buf; sg_size = data->size; p = mem; for_each_sg(sgl, sg, sg_size, i) { to = kmap_atomic(sg_page(sg)); memcpy(to + sg->offset, p, sg->length); kunmap_atomic(to); p += sg->length; } } cmd_data_len = data->data_len; if (cmd_data_len > ISER_KMALLOC_THRESHOLD) free_pages((unsigned long)data_copy->copy_buf, ilog2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT); else kfree(data_copy->copy_buf); data_copy->copy_buf = NULL; } #define IS_4K_ALIGNED(addr) ((((unsigned long)addr) & ~MASK_4K) == 0) /** * iser_sg_to_page_vec - Translates scatterlist entries to physical addresses * and returns the length of resulting physical address array (may be less than * the original due to possible compaction). * * we build a "page vec" under the assumption that the SG meets the RDMA * alignment requirements. Other then the first and last SG elements, all * the "internal" elements can be compacted into a list whose elements are * dma addresses of physical pages. The code supports also the weird case * where --few fragments of the same page-- are present in the SG as * consecutive elements. Also, it handles one entry SG. */ static int iser_sg_to_page_vec(struct iser_data_buf *data, struct ib_device *ibdev, u64 *pages, int *offset, int *data_size) { struct scatterlist *sg, *sgl = (struct scatterlist *)data->buf; u64 start_addr, end_addr, page, chunk_start = 0; unsigned long total_sz = 0; unsigned int dma_len; int i, new_chunk, cur_page, last_ent = data->dma_nents - 1; /* compute the offset of first element */ *offset = (u64) sgl[0].offset & ~MASK_4K; new_chunk = 1; cur_page = 0; for_each_sg(sgl, sg, data->dma_nents, i) { start_addr = ib_sg_dma_address(ibdev, sg); if (new_chunk) chunk_start = start_addr; dma_len = ib_sg_dma_len(ibdev, sg); end_addr = start_addr + dma_len; total_sz += dma_len; /* collect page fragments until aligned or end of SG list */ if (!IS_4K_ALIGNED(end_addr) && i < last_ent) { new_chunk = 0; continue; } new_chunk = 1; /* address of the first page in the contiguous chunk; masking relevant for the very first SG entry, which might be unaligned */ page = chunk_start & MASK_4K; do { pages[cur_page++] = page; page += SIZE_4K; } while (page < end_addr); } *data_size = total_sz; iser_dbg("page_vec->data_size:%d cur_page %d\n", *data_size, cur_page); return cur_page; } /** * iser_data_buf_aligned_len - Tries to determine the maximal correctly aligned * for RDMA sub-list of a scatter-gather list of memory buffers, and returns * the number of entries which are aligned correctly. Supports the case where * consecutive SG elements are actually fragments of the same physcial page. */ static int iser_data_buf_aligned_len(struct iser_data_buf *data, struct ib_device *ibdev) { struct scatterlist *sgl, *sg, *next_sg = NULL; u64 start_addr, end_addr; int i, ret_len, start_check = 0; if (data->dma_nents == 1) return 1; sgl = (struct scatterlist *)data->buf; start_addr = ib_sg_dma_address(ibdev, sgl); for_each_sg(sgl, sg, data->dma_nents, i) { if (start_check && !IS_4K_ALIGNED(start_addr)) break; next_sg = sg_next(sg); if (!next_sg) break; end_addr = start_addr + ib_sg_dma_len(ibdev, sg); start_addr = ib_sg_dma_address(ibdev, next_sg); if (end_addr == start_addr) { start_check = 0; continue; } else start_check = 1; if (!IS_4K_ALIGNED(end_addr)) break; } ret_len = (next_sg) ? i : i+1; iser_dbg("Found %d aligned entries out of %d in sg:0x%p\n", ret_len, data->dma_nents, data); return ret_len; } static void iser_data_buf_dump(struct iser_data_buf *data, struct ib_device *ibdev) { struct scatterlist *sgl = (struct scatterlist *)data->buf; struct scatterlist *sg; int i; for_each_sg(sgl, sg, data->dma_nents, i) iser_dbg("sg[%d] dma_addr:0x%lX page:0x%p " "off:0x%x sz:0x%x dma_len:0x%x\n", i, (unsigned long)ib_sg_dma_address(ibdev, sg), sg_page(sg), sg->offset, sg->length, ib_sg_dma_len(ibdev, sg)); } static void iser_dump_page_vec(struct iser_page_vec *page_vec) { int i; iser_err("page vec length %d data size %d\n", page_vec->length, page_vec->data_size); for (i = 0; i < page_vec->length; i++) iser_err("%d %lx\n",i,(unsigned long)page_vec->pages[i]); } static void iser_page_vec_build(struct iser_data_buf *data, struct iser_page_vec *page_vec, struct ib_device *ibdev) { int page_vec_len = 0; page_vec->length = 0; page_vec->offset = 0; iser_dbg("Translating sg sz: %d\n", data->dma_nents); page_vec_len = iser_sg_to_page_vec(data, ibdev, page_vec->pages, &page_vec->offset, &page_vec->data_size); iser_dbg("sg len %d page_vec_len %d\n", data->dma_nents, page_vec_len); page_vec->length = page_vec_len; if (page_vec_len * SIZE_4K < page_vec->data_size) { iser_err("page_vec too short to hold this SG\n"); iser_data_buf_dump(data, ibdev); iser_dump_page_vec(page_vec); BUG(); } } int iser_dma_map_task_data(struct iscsi_iser_task *iser_task, struct iser_data_buf *data, enum iser_data_dir iser_dir, enum dma_data_direction dma_dir) { struct ib_device *dev; iser_task->dir[iser_dir] = 1; dev = iser_task->ib_conn->device->ib_device; data->dma_nents = ib_dma_map_sg(dev, data->buf, data->size, dma_dir); if (data->dma_nents == 0) { iser_err("dma_map_sg failed!!!\n"); return -EINVAL; } return 0; } void iser_dma_unmap_task_data(struct iscsi_iser_task *iser_task, struct iser_data_buf *data) { struct ib_device *dev; dev = iser_task->ib_conn->device->ib_device; ib_dma_unmap_sg(dev, data->buf, data->size, DMA_FROM_DEVICE); } static int fall_to_bounce_buf(struct iscsi_iser_task *iser_task, struct ib_device *ibdev, struct iser_data_buf *mem, struct iser_data_buf *mem_copy, enum iser_data_dir cmd_dir, int aligned_len) { struct iscsi_conn *iscsi_conn = iser_task->ib_conn->iscsi_conn; iscsi_conn->fmr_unalign_cnt++; iser_warn("rdma alignment violation (%d/%d aligned) or FMR not supported\n", aligned_len, mem->size); if (iser_debug_level > 0) iser_data_buf_dump(mem, ibdev); /* unmap the command data before accessing it */ iser_dma_unmap_task_data(iser_task, mem); /* allocate copy buf, if we are writing, copy the */ /* unaligned scatterlist, dma map the copy */ if (iser_start_rdma_unaligned_sg(iser_task, mem, mem_copy, cmd_dir) != 0) return -ENOMEM; return 0; } /** * iser_reg_rdma_mem_fmr - Registers memory intended for RDMA, * using FMR (if possible) obtaining rkey and va * * returns 0 on success, errno code on failure */ int iser_reg_rdma_mem_fmr(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir) { struct iser_conn *ib_conn = iser_task->ib_conn; struct iser_device *device = ib_conn->device; struct ib_device *ibdev = device->ib_device; struct iser_data_buf *mem = &iser_task->data[cmd_dir]; struct iser_regd_buf *regd_buf; int aligned_len; int err; int i; struct scatterlist *sg; regd_buf = &iser_task->rdma_regd[cmd_dir]; aligned_len = iser_data_buf_aligned_len(mem, ibdev); if (aligned_len != mem->dma_nents) { err = fall_to_bounce_buf(iser_task, ibdev, mem, &iser_task->data_copy[cmd_dir], cmd_dir, aligned_len); if (err) { iser_err("failed to allocate bounce buffer\n"); return err; } mem = &iser_task->data_copy[cmd_dir]; } /* if there a single dma entry, FMR is not needed */ if (mem->dma_nents == 1) { sg = (struct scatterlist *)mem->buf; regd_buf->reg.lkey = device->mr->lkey; regd_buf->reg.rkey = device->mr->rkey; regd_buf->reg.len = ib_sg_dma_len(ibdev, &sg[0]); regd_buf->reg.va = ib_sg_dma_address(ibdev, &sg[0]); regd_buf->reg.is_mr = 0; iser_dbg("PHYSICAL Mem.register: lkey: 0x%08X rkey: 0x%08X " "va: 0x%08lX sz: %ld]\n", (unsigned int)regd_buf->reg.lkey, (unsigned int)regd_buf->reg.rkey, (unsigned long)regd_buf->reg.va, (unsigned long)regd_buf->reg.len); } else { /* use FMR for multiple dma entries */ iser_page_vec_build(mem, ib_conn->fmr.page_vec, ibdev); err = iser_reg_page_vec(ib_conn, ib_conn->fmr.page_vec, ®d_buf->reg); if (err && err != -EAGAIN) { iser_data_buf_dump(mem, ibdev); iser_err("mem->dma_nents = %d (dlength = 0x%x)\n", mem->dma_nents, ntoh24(iser_task->desc.iscsi_header.dlength)); iser_err("page_vec: data_size = 0x%x, length = %d, offset = 0x%x\n", ib_conn->fmr.page_vec->data_size, ib_conn->fmr.page_vec->length, ib_conn->fmr.page_vec->offset); for (i = 0; i < ib_conn->fmr.page_vec->length; i++) iser_err("page_vec[%d] = 0x%llx\n", i, (unsigned long long) ib_conn->fmr.page_vec->pages[i]); } if (err) return err; } return 0; } static inline enum ib_t10_dif_type scsi2ib_prot_type(unsigned char prot_type) { switch (prot_type) { case SCSI_PROT_DIF_TYPE0: return IB_T10DIF_NONE; case SCSI_PROT_DIF_TYPE1: return IB_T10DIF_TYPE1; case SCSI_PROT_DIF_TYPE2: return IB_T10DIF_TYPE2; case SCSI_PROT_DIF_TYPE3: return IB_T10DIF_TYPE3; default: return IB_T10DIF_NONE; } } static int iser_set_sig_attrs(struct scsi_cmnd *sc, struct ib_sig_attrs *sig_attrs) { unsigned char scsi_ptype = scsi_get_prot_type(sc); sig_attrs->mem.sig_type = IB_SIG_TYPE_T10_DIF; sig_attrs->wire.sig_type = IB_SIG_TYPE_T10_DIF; sig_attrs->mem.sig.dif.pi_interval = sc->device->sector_size; sig_attrs->wire.sig.dif.pi_interval = sc->device->sector_size; switch (scsi_get_prot_op(sc)) { case SCSI_PROT_WRITE_INSERT: case SCSI_PROT_READ_STRIP: sig_attrs->mem.sig.dif.type = IB_T10DIF_NONE; sig_attrs->wire.sig.dif.type = scsi2ib_prot_type(scsi_ptype); sig_attrs->wire.sig.dif.bg_type = IB_T10DIF_CRC; sig_attrs->wire.sig.dif.ref_tag = scsi_get_lba(sc) & 0xffffffff; break; case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: sig_attrs->mem.sig.dif.type = scsi2ib_prot_type(scsi_ptype); sig_attrs->mem.sig.dif.bg_type = IB_T10DIF_CRC; sig_attrs->mem.sig.dif.ref_tag = scsi_get_lba(sc) & 0xffffffff; sig_attrs->wire.sig.dif.type = IB_T10DIF_NONE; break; case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: sig_attrs->mem.sig.dif.type = scsi2ib_prot_type(scsi_ptype); sig_attrs->mem.sig.dif.bg_type = IB_T10DIF_CRC; sig_attrs->mem.sig.dif.ref_tag = scsi_get_lba(sc) & 0xffffffff; sig_attrs->wire.sig.dif.type = scsi2ib_prot_type(scsi_ptype); sig_attrs->wire.sig.dif.bg_type = IB_T10DIF_CRC; sig_attrs->wire.sig.dif.ref_tag = scsi_get_lba(sc) & 0xffffffff; break; default: iser_err("Unsupported PI operation %d\n", scsi_get_prot_op(sc)); return -EINVAL; } return 0; } static int iser_set_prot_checks(struct scsi_cmnd *sc, u8 *mask) { switch (scsi_get_prot_type(sc)) { case SCSI_PROT_DIF_TYPE0: *mask = 0x0; break; case SCSI_PROT_DIF_TYPE1: case SCSI_PROT_DIF_TYPE2: *mask = ISER_CHECK_GUARD | ISER_CHECK_REFTAG; break; case SCSI_PROT_DIF_TYPE3: *mask = ISER_CHECK_GUARD; break; default: iser_err("Unsupported protection type %d\n", scsi_get_prot_type(sc)); return -EINVAL; } return 0; } static int iser_reg_sig_mr(struct iscsi_iser_task *iser_task, struct fast_reg_descriptor *desc, struct ib_sge *data_sge, struct ib_sge *prot_sge, struct ib_sge *sig_sge) { struct iser_conn *ib_conn = iser_task->ib_conn; struct iser_pi_context *pi_ctx = desc->pi_ctx; struct ib_send_wr sig_wr, inv_wr; struct ib_send_wr *bad_wr, *wr = NULL; struct ib_sig_attrs sig_attrs; int ret; u32 key; memset(&sig_attrs, 0, sizeof(sig_attrs)); ret = iser_set_sig_attrs(iser_task->sc, &sig_attrs); if (ret) goto err; ret = iser_set_prot_checks(iser_task->sc, &sig_attrs.check_mask); if (ret) goto err; if (!(desc->reg_indicators & ISER_SIG_KEY_VALID)) { memset(&inv_wr, 0, sizeof(inv_wr)); inv_wr.opcode = IB_WR_LOCAL_INV; inv_wr.wr_id = ISER_FASTREG_LI_WRID; inv_wr.ex.invalidate_rkey = pi_ctx->sig_mr->rkey; wr = &inv_wr; /* Bump the key */ key = (u8)(pi_ctx->sig_mr->rkey & 0x000000FF); ib_update_fast_reg_key(pi_ctx->sig_mr, ++key); } memset(&sig_wr, 0, sizeof(sig_wr)); sig_wr.opcode = IB_WR_REG_SIG_MR; sig_wr.wr_id = ISER_FASTREG_LI_WRID; sig_wr.sg_list = data_sge; sig_wr.num_sge = 1; sig_wr.wr.sig_handover.sig_attrs = &sig_attrs; sig_wr.wr.sig_handover.sig_mr = pi_ctx->sig_mr; if (scsi_prot_sg_count(iser_task->sc)) sig_wr.wr.sig_handover.prot = prot_sge; sig_wr.wr.sig_handover.access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; if (!wr) wr = &sig_wr; else wr->next = &sig_wr; ret = ib_post_send(ib_conn->qp, wr, &bad_wr); if (ret) { iser_err("reg_sig_mr failed, ret:%d\n", ret); goto err; } desc->reg_indicators &= ~ISER_SIG_KEY_VALID; sig_sge->lkey = pi_ctx->sig_mr->lkey; sig_sge->addr = 0; sig_sge->length = data_sge->length + prot_sge->length; if (scsi_get_prot_op(iser_task->sc) == SCSI_PROT_WRITE_INSERT || scsi_get_prot_op(iser_task->sc) == SCSI_PROT_READ_STRIP) { sig_sge->length += (data_sge->length / iser_task->sc->device->sector_size) * 8; } iser_dbg("sig_sge: addr: 0x%llx length: %u lkey: 0x%x\n", sig_sge->addr, sig_sge->length, sig_sge->lkey); err: return ret; } static int iser_fast_reg_mr(struct iscsi_iser_task *iser_task, struct iser_regd_buf *regd_buf, struct iser_data_buf *mem, enum iser_reg_indicator ind, struct ib_sge *sge) { struct fast_reg_descriptor *desc = regd_buf->reg.mem_h; struct iser_conn *ib_conn = iser_task->ib_conn; struct iser_device *device = ib_conn->device; struct ib_device *ibdev = device->ib_device; struct ib_mr *mr; struct ib_fast_reg_page_list *frpl; struct ib_send_wr fastreg_wr, inv_wr; struct ib_send_wr *bad_wr, *wr = NULL; u8 key; int ret, offset, size, plen; /* if there a single dma entry, dma mr suffices */ if (mem->dma_nents == 1) { struct scatterlist *sg = (struct scatterlist *)mem->buf; sge->lkey = device->mr->lkey; sge->addr = ib_sg_dma_address(ibdev, &sg[0]); sge->length = ib_sg_dma_len(ibdev, &sg[0]); iser_dbg("Single DMA entry: lkey=0x%x, addr=0x%llx, length=0x%x\n", sge->lkey, sge->addr, sge->length); return 0; } if (ind == ISER_DATA_KEY_VALID) { mr = desc->data_mr; frpl = desc->data_frpl; } else { mr = desc->pi_ctx->prot_mr; frpl = desc->pi_ctx->prot_frpl; } plen = iser_sg_to_page_vec(mem, device->ib_device, frpl->page_list, &offset, &size); if (plen * SIZE_4K < size) { iser_err("fast reg page_list too short to hold this SG\n"); return -EINVAL; } if (!(desc->reg_indicators & ind)) { memset(&inv_wr, 0, sizeof(inv_wr)); inv_wr.wr_id = ISER_FASTREG_LI_WRID; inv_wr.opcode = IB_WR_LOCAL_INV; inv_wr.ex.invalidate_rkey = mr->rkey; wr = &inv_wr; /* Bump the key */ key = (u8)(mr->rkey & 0x000000FF); ib_update_fast_reg_key(mr, ++key); } /* Prepare FASTREG WR */ memset(&fastreg_wr, 0, sizeof(fastreg_wr)); fastreg_wr.wr_id = ISER_FASTREG_LI_WRID; fastreg_wr.opcode = IB_WR_FAST_REG_MR; fastreg_wr.wr.fast_reg.iova_start = frpl->page_list[0] + offset; fastreg_wr.wr.fast_reg.page_list = frpl; fastreg_wr.wr.fast_reg.page_list_len = plen; fastreg_wr.wr.fast_reg.page_shift = SHIFT_4K; fastreg_wr.wr.fast_reg.length = size; fastreg_wr.wr.fast_reg.rkey = mr->rkey; fastreg_wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ); if (!wr) wr = &fastreg_wr; else wr->next = &fastreg_wr; ret = ib_post_send(ib_conn->qp, wr, &bad_wr); if (ret) { iser_err("fast registration failed, ret:%d\n", ret); return ret; } desc->reg_indicators &= ~ind; sge->lkey = mr->lkey; sge->addr = frpl->page_list[0] + offset; sge->length = size; return ret; } /** * iser_reg_rdma_mem_fastreg - Registers memory intended for RDMA, * using Fast Registration WR (if possible) obtaining rkey and va * * returns 0 on success, errno code on failure */ int iser_reg_rdma_mem_fastreg(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir) { struct iser_conn *ib_conn = iser_task->ib_conn; struct iser_device *device = ib_conn->device; struct ib_device *ibdev = device->ib_device; struct iser_data_buf *mem = &iser_task->data[cmd_dir]; struct iser_regd_buf *regd_buf = &iser_task->rdma_regd[cmd_dir]; struct fast_reg_descriptor *desc = NULL; struct ib_sge data_sge; int err, aligned_len; unsigned long flags; aligned_len = iser_data_buf_aligned_len(mem, ibdev); if (aligned_len != mem->dma_nents) { err = fall_to_bounce_buf(iser_task, ibdev, mem, &iser_task->data_copy[cmd_dir], cmd_dir, aligned_len); if (err) { iser_err("failed to allocate bounce buffer\n"); return err; } mem = &iser_task->data_copy[cmd_dir]; } if (mem->dma_nents != 1 || scsi_get_prot_op(iser_task->sc) != SCSI_PROT_NORMAL) { spin_lock_irqsave(&ib_conn->lock, flags); desc = list_first_entry(&ib_conn->fastreg.pool, struct fast_reg_descriptor, list); list_del(&desc->list); spin_unlock_irqrestore(&ib_conn->lock, flags); regd_buf->reg.mem_h = desc; } err = iser_fast_reg_mr(iser_task, regd_buf, mem, ISER_DATA_KEY_VALID, &data_sge); if (err) goto err_reg; if (scsi_get_prot_op(iser_task->sc) != SCSI_PROT_NORMAL) { struct ib_sge prot_sge, sig_sge; memset(&prot_sge, 0, sizeof(prot_sge)); if (scsi_prot_sg_count(iser_task->sc)) { mem = &iser_task->prot[cmd_dir]; aligned_len = iser_data_buf_aligned_len(mem, ibdev); if (aligned_len != mem->dma_nents) { err = fall_to_bounce_buf(iser_task, ibdev, mem, &iser_task->prot_copy[cmd_dir], cmd_dir, aligned_len); if (err) { iser_err("failed to allocate bounce buffer\n"); return err; } mem = &iser_task->prot_copy[cmd_dir]; } err = iser_fast_reg_mr(iser_task, regd_buf, mem, ISER_PROT_KEY_VALID, &prot_sge); if (err) goto err_reg; } err = iser_reg_sig_mr(iser_task, desc, &data_sge, &prot_sge, &sig_sge); if (err) { iser_err("Failed to register signature mr\n"); return err; } desc->reg_indicators |= ISER_FASTREG_PROTECTED; regd_buf->reg.lkey = sig_sge.lkey; regd_buf->reg.rkey = desc->pi_ctx->sig_mr->rkey; regd_buf->reg.va = sig_sge.addr; regd_buf->reg.len = sig_sge.length; regd_buf->reg.is_mr = 1; } else { if (desc) { regd_buf->reg.rkey = desc->data_mr->rkey; regd_buf->reg.is_mr = 1; } else { regd_buf->reg.rkey = device->mr->rkey; regd_buf->reg.is_mr = 0; } regd_buf->reg.lkey = data_sge.lkey; regd_buf->reg.va = data_sge.addr; regd_buf->reg.len = data_sge.length; } return 0; err_reg: if (desc) { spin_lock_irqsave(&ib_conn->lock, flags); list_add_tail(&desc->list, &ib_conn->fastreg.pool); spin_unlock_irqrestore(&ib_conn->lock, flags); } return err; }