#ifndef _HFI1_KERNEL_H #define _HFI1_KERNEL_H /* * Copyright(c) 2015-2018 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chip_registers.h" #include "common.h" #include "verbs.h" #include "pio.h" #include "chip.h" #include "mad.h" #include "qsfp.h" #include "platform.h" #include "affinity.h" /* bumped 1 from s/w major version of TrueScale */ #define HFI1_CHIP_VERS_MAJ 3U /* don't care about this except printing */ #define HFI1_CHIP_VERS_MIN 0U /* The Organization Unique Identifier (Mfg code), and its position in GUID */ #define HFI1_OUI 0x001175 #define HFI1_OUI_LSB 40 #define DROP_PACKET_OFF 0 #define DROP_PACKET_ON 1 #define NEIGHBOR_TYPE_HFI 0 #define NEIGHBOR_TYPE_SWITCH 1 extern unsigned long hfi1_cap_mask; #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap) #define HFI1_CAP_UGET_MASK(mask, cap) \ (((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap) #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap)) #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap)) #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap)) #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap)) #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \ HFI1_CAP_MISC_MASK) /* Offline Disabled Reason is 4-bits */ #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON) /* * Control context is always 0 and handles the error packets. * It also handles the VL15 and multicast packets. */ #define HFI1_CTRL_CTXT 0 /* * Driver context will store software counters for each of the events * associated with these status registers */ #define NUM_CCE_ERR_STATUS_COUNTERS 41 #define NUM_RCV_ERR_STATUS_COUNTERS 64 #define NUM_MISC_ERR_STATUS_COUNTERS 13 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64 #define NUM_SEND_ERR_STATUS_COUNTERS 3 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24 /* * per driver stats, either not device nor port-specific, or * summed over all of the devices and ports. * They are described by name via ipathfs filesystem, so layout * and number of elements can change without breaking compatibility. * If members are added or deleted hfi1_statnames[] in debugfs.c must * change to match. */ struct hfi1_ib_stats { __u64 sps_ints; /* number of interrupts handled */ __u64 sps_errints; /* number of error interrupts */ __u64 sps_txerrs; /* tx-related packet errors */ __u64 sps_rcverrs; /* non-crc rcv packet errors */ __u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */ __u64 sps_nopiobufs; /* no pio bufs avail from kernel */ __u64 sps_ctxts; /* number of contexts currently open */ __u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */ __u64 sps_buffull; __u64 sps_hdrfull; }; extern struct hfi1_ib_stats hfi1_stats; extern const struct pci_error_handlers hfi1_pci_err_handler; /* * First-cut criterion for "device is active" is * two thousand dwords combined Tx, Rx traffic per * 5-second interval. SMA packets are 64 dwords, * and occur "a few per second", presumably each way. */ #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000) /* * Below contains all data related to a single context (formerly called port). */ struct hfi1_opcode_stats_perctx; struct ctxt_eager_bufs { ssize_t size; /* total size of eager buffers */ u32 count; /* size of buffers array */ u32 numbufs; /* number of buffers allocated */ u32 alloced; /* number of rcvarray entries used */ u32 rcvtid_size; /* size of each eager rcv tid */ u32 threshold; /* head update threshold */ struct eager_buffer { void *addr; dma_addr_t dma; ssize_t len; } *buffers; struct { void *addr; dma_addr_t dma; } *rcvtids; }; struct exp_tid_set { struct list_head list; u32 count; }; struct hfi1_ctxtdata { /* shadow the ctxt's RcvCtrl register */ u64 rcvctrl; /* rcvhdrq base, needs mmap before useful */ void *rcvhdrq; /* kernel virtual address where hdrqtail is updated */ volatile __le64 *rcvhdrtail_kvaddr; /* when waiting for rcv or pioavail */ wait_queue_head_t wait; /* rcvhdrq size (for freeing) */ size_t rcvhdrq_size; /* number of rcvhdrq entries */ u16 rcvhdrq_cnt; /* size of each of the rcvhdrq entries */ u16 rcvhdrqentsize; /* mmap of hdrq, must fit in 44 bits */ dma_addr_t rcvhdrq_dma; dma_addr_t rcvhdrqtailaddr_dma; struct ctxt_eager_bufs egrbufs; /* this receive context's assigned PIO ACK send context */ struct send_context *sc; /* dynamic receive available interrupt timeout */ u32 rcvavail_timeout; /* Reference count the base context usage */ struct kref kref; /* Device context index */ u16 ctxt; /* * non-zero if ctxt can be shared, and defines the maximum number of * sub-contexts for this device context. */ u16 subctxt_cnt; /* non-zero if ctxt is being shared. */ u16 subctxt_id; u8 uuid[16]; /* job key */ u16 jkey; /* number of RcvArray groups for this context. */ u32 rcv_array_groups; /* index of first eager TID entry. */ u32 eager_base; /* number of expected TID entries */ u32 expected_count; /* index of first expected TID entry. */ u32 expected_base; struct exp_tid_set tid_group_list; struct exp_tid_set tid_used_list; struct exp_tid_set tid_full_list; /* lock protecting all Expected TID data */ struct mutex exp_lock; /* per-context configuration flags */ unsigned long flags; /* per-context event flags for fileops/intr communication */ unsigned long event_flags; /* total number of polled urgent packets */ u32 urgent; /* saved total number of polled urgent packets for poll edge trigger */ u32 urgent_poll; /* same size as task_struct .comm[], command that opened context */ char comm[TASK_COMM_LEN]; /* so file ops can get at unit */ struct hfi1_devdata *dd; /* so functions that need physical port can get it easily */ struct hfi1_pportdata *ppd; /* associated msix interrupt */ u32 msix_intr; /* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */ void *subctxt_uregbase; /* An array of pages for the eager receive buffers * N */ void *subctxt_rcvegrbuf; /* An array of pages for the eager header queue entries * N */ void *subctxt_rcvhdr_base; /* Bitmask of in use context(s) */ DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS); /* The version of the library which opened this ctxt */ u32 userversion; /* Type of packets or conditions we want to poll for */ u16 poll_type; /* receive packet sequence counter */ u8 seq_cnt; /* ctxt rcvhdrq head offset */ u32 head; /* QPs waiting for context processing */ struct list_head qp_wait_list; /* interrupt handling */ u64 imask; /* clear interrupt mask */ int ireg; /* clear interrupt register */ unsigned numa_id; /* numa node of this context */ /* verbs rx_stats per rcd */ struct hfi1_opcode_stats_perctx *opstats; /* Is ASPM interrupt supported for this context */ bool aspm_intr_supported; /* ASPM state (enabled/disabled) for this context */ bool aspm_enabled; /* Timer for re-enabling ASPM if interrupt activity quietens down */ struct timer_list aspm_timer; /* Lock to serialize between intr, timer intr and user threads */ spinlock_t aspm_lock; /* Is ASPM processing enabled for this context (in intr context) */ bool aspm_intr_enable; /* Last interrupt timestamp */ ktime_t aspm_ts_last_intr; /* Last timestamp at which we scheduled a timer for this context */ ktime_t aspm_ts_timer_sched; /* * The interrupt handler for a particular receive context can vary * throughout it's lifetime. This is not a lock protected data member so * it must be updated atomically and the prev and new value must always * be valid. Worst case is we process an extra interrupt and up to 64 * packets with the wrong interrupt handler. */ int (*do_interrupt)(struct hfi1_ctxtdata *rcd, int threaded); /* Indicates that this is vnic context */ bool is_vnic; /* vnic queue index this context is mapped to */ u8 vnic_q_idx; }; /* * Represents a single packet at a high level. Put commonly computed things in * here so we do not have to keep doing them over and over. The rule of thumb is * if something is used one time to derive some value, store that something in * here. If it is used multiple times, then store the result of that derivation * in here. */ struct hfi1_packet { void *ebuf; void *hdr; void *payload; struct hfi1_ctxtdata *rcd; __le32 *rhf_addr; struct rvt_qp *qp; struct ib_other_headers *ohdr; struct ib_grh *grh; u64 rhf; u32 maxcnt; u32 rhqoff; u32 dlid; u32 slid; u16 tlen; s16 etail; u16 pkey; u8 hlen; u8 numpkt; u8 rsize; u8 updegr; u8 etype; u8 extra_byte; u8 pad; u8 sc; u8 sl; u8 opcode; bool migrated; }; /* Packet types */ #define HFI1_PKT_TYPE_9B 0 #define HFI1_PKT_TYPE_16B 1 /* * OPA 16B Header */ #define OPA_16B_L4_MASK 0xFFull #define OPA_16B_SC_MASK 0x1F00000ull #define OPA_16B_SC_SHIFT 20 #define OPA_16B_LID_MASK 0xFFFFFull #define OPA_16B_DLID_MASK 0xF000ull #define OPA_16B_DLID_SHIFT 20 #define OPA_16B_DLID_HIGH_SHIFT 12 #define OPA_16B_SLID_MASK 0xF00ull #define OPA_16B_SLID_SHIFT 20 #define OPA_16B_SLID_HIGH_SHIFT 8 #define OPA_16B_BECN_MASK 0x80000000ull #define OPA_16B_BECN_SHIFT 31 #define OPA_16B_FECN_MASK 0x10000000ull #define OPA_16B_FECN_SHIFT 28 #define OPA_16B_L2_MASK 0x60000000ull #define OPA_16B_L2_SHIFT 29 #define OPA_16B_PKEY_MASK 0xFFFF0000ull #define OPA_16B_PKEY_SHIFT 16 #define OPA_16B_LEN_MASK 0x7FF00000ull #define OPA_16B_LEN_SHIFT 20 #define OPA_16B_RC_MASK 0xE000000ull #define OPA_16B_RC_SHIFT 25 #define OPA_16B_AGE_MASK 0xFF0000ull #define OPA_16B_AGE_SHIFT 16 #define OPA_16B_ENTROPY_MASK 0xFFFFull /* * OPA 16B L2/L4 Encodings */ #define OPA_16B_L4_9B 0x00 #define OPA_16B_L2_TYPE 0x02 #define OPA_16B_L4_IB_LOCAL 0x09 #define OPA_16B_L4_IB_GLOBAL 0x0A #define OPA_16B_L4_ETHR OPA_VNIC_L4_ETHR static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr) { return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK); } static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr) { return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT); } static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr) { return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) | (((hdr->lrh[2] & OPA_16B_DLID_MASK) >> OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT)); } static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr) { return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) | (((hdr->lrh[2] & OPA_16B_SLID_MASK) >> OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT)); } static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr) { return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT); } static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr) { return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT); } static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr) { return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT); } static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr) { return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT); } static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr) { return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT); } static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr) { return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT); } static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr) { return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT); } static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr) { return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK); } #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw)) /* * BTH */ #define OPA_16B_BTH_PAD_MASK 7 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr) { return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) & OPA_16B_BTH_PAD_MASK); } struct rvt_sge_state; /* * Get/Set IB link-level config parameters for f_get/set_ib_cfg() * Mostly for MADs that set or query link parameters, also ipath * config interfaces */ #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */ #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */ #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */ #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */ #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */ #define HFI1_IB_CFG_SPD 5 /* current Link spd */ #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */ #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */ #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */ #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */ #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */ #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */ #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */ #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */ #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */ #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */ #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */ #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */ #define HFI1_IB_CFG_VL_HIGH_LIMIT 19 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */ #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */ /* * HFI or Host Link States * * These describe the states the driver thinks the logical and physical * states are in. Used as an argument to set_link_state(). Implemented * as bits for easy multi-state checking. The actual state can only be * one. */ #define __HLS_UP_INIT_BP 0 #define __HLS_UP_ARMED_BP 1 #define __HLS_UP_ACTIVE_BP 2 #define __HLS_DN_DOWNDEF_BP 3 /* link down default */ #define __HLS_DN_POLL_BP 4 #define __HLS_DN_DISABLE_BP 5 #define __HLS_DN_OFFLINE_BP 6 #define __HLS_VERIFY_CAP_BP 7 #define __HLS_GOING_UP_BP 8 #define __HLS_GOING_OFFLINE_BP 9 #define __HLS_LINK_COOLDOWN_BP 10 #define HLS_UP_INIT BIT(__HLS_UP_INIT_BP) #define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP) #define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP) #define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */ #define HLS_DN_POLL BIT(__HLS_DN_POLL_BP) #define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP) #define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP) #define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP) #define HLS_GOING_UP BIT(__HLS_GOING_UP_BP) #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP) #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP) #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE) #define HLS_DOWN ~(HLS_UP) #define HLS_DEFAULT HLS_DN_POLL /* use this MTU size if none other is given */ #define HFI1_DEFAULT_ACTIVE_MTU 10240 /* use this MTU size as the default maximum */ #define HFI1_DEFAULT_MAX_MTU 10240 /* default partition key */ #define DEFAULT_PKEY 0xffff /* * Possible fabric manager config parameters for fm_{get,set}_table() */ #define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */ #define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */ #define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */ #define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */ #define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */ #define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */ /* * Possible "operations" for f_rcvctrl(ppd, op, ctxt) * these are bits so they can be combined, e.g. * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB */ #define HFI1_RCVCTRL_TAILUPD_ENB 0x01 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02 #define HFI1_RCVCTRL_CTXT_ENB 0x04 #define HFI1_RCVCTRL_CTXT_DIS 0x08 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20 #define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */ #define HFI1_RCVCTRL_PKEY_DIS 0x80 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000 /* partition enforcement flags */ #define HFI1_PART_ENFORCE_IN 0x1 #define HFI1_PART_ENFORCE_OUT 0x2 /* how often we check for synthetic counter wrap around */ #define SYNTH_CNT_TIME 3 /* Counter flags */ #define CNTR_NORMAL 0x0 /* Normal counters, just read register */ #define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */ #define CNTR_DISABLED 0x2 /* Disable this counter */ #define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */ #define CNTR_VL 0x8 /* Per VL counter */ #define CNTR_SDMA 0x10 #define CNTR_INVALID_VL -1 /* Specifies invalid VL */ #define CNTR_MODE_W 0x0 #define CNTR_MODE_R 0x1 /* VLs Supported/Operational */ #define HFI1_MIN_VLS_SUPPORTED 1 #define HFI1_MAX_VLS_SUPPORTED 8 #define HFI1_GUIDS_PER_PORT 5 #define HFI1_PORT_GUID_INDEX 0 static inline void incr_cntr64(u64 *cntr) { if (*cntr < (u64)-1LL) (*cntr)++; } static inline void incr_cntr32(u32 *cntr) { if (*cntr < (u32)-1LL) (*cntr)++; } #define MAX_NAME_SIZE 64 struct hfi1_msix_entry { enum irq_type type; int irq; void *arg; cpumask_t mask; struct irq_affinity_notify notify; }; /* per-SL CCA information */ struct cca_timer { struct hrtimer hrtimer; struct hfi1_pportdata *ppd; /* read-only */ int sl; /* read-only */ u16 ccti; /* read/write - current value of CCTI */ }; struct link_down_reason { /* * SMA-facing value. Should be set from .latest when * HLS_UP_* -> HLS_DN_* transition actually occurs. */ u8 sma; u8 latest; }; enum { LO_PRIO_TABLE, HI_PRIO_TABLE, MAX_PRIO_TABLE }; struct vl_arb_cache { /* protect vl arb cache */ spinlock_t lock; struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE]; }; /* * The structure below encapsulates data relevant to a physical IB Port. * Current chips support only one such port, but the separation * clarifies things a bit. Note that to conform to IB conventions, * port-numbers are one-based. The first or only port is port1. */ struct hfi1_pportdata { struct hfi1_ibport ibport_data; struct hfi1_devdata *dd; struct kobject pport_cc_kobj; struct kobject sc2vl_kobj; struct kobject sl2sc_kobj; struct kobject vl2mtu_kobj; /* PHY support */ struct qsfp_data qsfp_info; /* Values for SI tuning of SerDes */ u32 port_type; u32 tx_preset_eq; u32 tx_preset_noeq; u32 rx_preset; u8 local_atten; u8 remote_atten; u8 default_atten; u8 max_power_class; /* did we read platform config from scratch registers? */ bool config_from_scratch; /* GUIDs for this interface, in host order, guids[0] is a port guid */ u64 guids[HFI1_GUIDS_PER_PORT]; /* GUID for peer interface, in host order */ u64 neighbor_guid; /* up or down physical link state */ u32 linkup; /* * this address is mapped read-only into user processes so they can * get status cheaply, whenever they want. One qword of status per port */ u64 *statusp; /* SendDMA related entries */ struct workqueue_struct *hfi1_wq; struct workqueue_struct *link_wq; /* move out of interrupt context */ struct work_struct link_vc_work; struct work_struct link_up_work; struct work_struct link_down_work; struct work_struct sma_message_work; struct work_struct freeze_work; struct work_struct link_downgrade_work; struct work_struct link_bounce_work; struct delayed_work start_link_work; /* host link state variables */ struct mutex hls_lock; u32 host_link_state; /* these are the "32 bit" regs */ u32 ibmtu; /* The MTU programmed for this unit */ /* * Current max size IB packet (in bytes) including IB headers, that * we can send. Changes when ibmtu changes. */ u32 ibmaxlen; u32 current_egress_rate; /* units [10^6 bits/sec] */ /* LID programmed for this instance */ u32 lid; /* list of pkeys programmed; 0 if not set */ u16 pkeys[MAX_PKEY_VALUES]; u16 link_width_supported; u16 link_width_downgrade_supported; u16 link_speed_supported; u16 link_width_enabled; u16 link_width_downgrade_enabled; u16 link_speed_enabled; u16 link_width_active; u16 link_width_downgrade_tx_active; u16 link_width_downgrade_rx_active; u16 link_speed_active; u8 vls_supported; u8 vls_operational; u8 actual_vls_operational; /* LID mask control */ u8 lmc; /* Rx Polarity inversion (compensate for ~tx on partner) */ u8 rx_pol_inv; u8 hw_pidx; /* physical port index */ u8 port; /* IB port number and index into dd->pports - 1 */ /* type of neighbor node */ u8 neighbor_type; u8 neighbor_normal; u8 neighbor_fm_security; /* 1 if firmware checking is disabled */ u8 neighbor_port_number; u8 is_sm_config_started; u8 offline_disabled_reason; u8 is_active_optimize_enabled; u8 driver_link_ready; /* driver ready for active link */ u8 link_enabled; /* link enabled? */ u8 linkinit_reason; u8 local_tx_rate; /* rate given to 8051 firmware */ u8 qsfp_retry_count; /* placeholders for IB MAD packet settings */ u8 overrun_threshold; u8 phy_error_threshold; unsigned int is_link_down_queued; /* Used to override LED behavior for things like maintenance beaconing*/ /* * Alternates per phase of blink * [0] holds LED off duration, [1] holds LED on duration */ unsigned long led_override_vals[2]; u8 led_override_phase; /* LSB picks from vals[] */ atomic_t led_override_timer_active; /* Used to flash LEDs in override mode */ struct timer_list led_override_timer; u32 sm_trap_qp; u32 sa_qp; /* * cca_timer_lock protects access to the per-SL cca_timer * structures (specifically the ccti member). */ spinlock_t cca_timer_lock ____cacheline_aligned_in_smp; struct cca_timer cca_timer[OPA_MAX_SLS]; /* List of congestion control table entries */ struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX]; /* congestion entries, each entry corresponding to a SL */ struct opa_congestion_setting_entry_shadow congestion_entries[OPA_MAX_SLS]; /* * cc_state_lock protects (write) access to the per-port * struct cc_state. */ spinlock_t cc_state_lock ____cacheline_aligned_in_smp; struct cc_state __rcu *cc_state; /* Total number of congestion control table entries */ u16 total_cct_entry; /* Bit map identifying service level */ u32 cc_sl_control_map; /* CA's max number of 64 entry units in the congestion control table */ u8 cc_max_table_entries; /* * begin congestion log related entries * cc_log_lock protects all congestion log related data */ spinlock_t cc_log_lock ____cacheline_aligned_in_smp; u8 threshold_cong_event_map[OPA_MAX_SLS / 8]; u16 threshold_event_counter; struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS]; int cc_log_idx; /* index for logging events */ int cc_mad_idx; /* index for reporting events */ /* end congestion log related entries */ struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE]; /* port relative counter buffer */ u64 *cntrs; /* port relative synthetic counter buffer */ u64 *scntrs; /* port_xmit_discards are synthesized from different egress errors */ u64 port_xmit_discards; u64 port_xmit_discards_vl[C_VL_COUNT]; u64 port_xmit_constraint_errors; u64 port_rcv_constraint_errors; /* count of 'link_err' interrupts from DC */ u64 link_downed; /* number of times link retrained successfully */ u64 link_up; /* number of times a link unknown frame was reported */ u64 unknown_frame_count; /* port_ltp_crc_mode is returned in 'portinfo' MADs */ u16 port_ltp_crc_mode; /* port_crc_mode_enabled is the crc we support */ u8 port_crc_mode_enabled; /* mgmt_allowed is also returned in 'portinfo' MADs */ u8 mgmt_allowed; u8 part_enforce; /* partition enforcement flags */ struct link_down_reason local_link_down_reason; struct link_down_reason neigh_link_down_reason; /* Value to be sent to link peer on LinkDown .*/ u8 remote_link_down_reason; /* Error events that will cause a port bounce. */ u32 port_error_action; struct work_struct linkstate_active_work; /* Does this port need to prescan for FECNs */ bool cc_prescan; /* * Sample sendWaitCnt & sendWaitVlCnt during link transition * and counter request. */ u64 port_vl_xmit_wait_last[C_VL_COUNT + 1]; u16 prev_link_width; u64 vl_xmit_flit_cnt[C_VL_COUNT + 1]; }; typedef int (*rhf_rcv_function_ptr)(struct hfi1_packet *packet); typedef void (*opcode_handler)(struct hfi1_packet *packet); typedef void (*hfi1_make_req)(struct rvt_qp *qp, struct hfi1_pkt_state *ps, struct rvt_swqe *wqe); /* return values for the RHF receive functions */ #define RHF_RCV_CONTINUE 0 /* keep going */ #define RHF_RCV_DONE 1 /* stop, this packet processed */ #define RHF_RCV_REPROCESS 2 /* stop. retain this packet */ struct rcv_array_data { u8 group_size; u16 ngroups; u16 nctxt_extra; }; struct per_vl_data { u16 mtu; struct send_context *sc; }; /* 16 to directly index */ #define PER_VL_SEND_CONTEXTS 16 struct err_info_rcvport { u8 status_and_code; u64 packet_flit1; u64 packet_flit2; }; struct err_info_constraint { u8 status; u16 pkey; u32 slid; }; struct hfi1_temp { unsigned int curr; /* current temperature */ unsigned int lo_lim; /* low temperature limit */ unsigned int hi_lim; /* high temperature limit */ unsigned int crit_lim; /* critical temperature limit */ u8 triggers; /* temperature triggers */ }; struct hfi1_i2c_bus { struct hfi1_devdata *controlling_dd; /* current controlling device */ struct i2c_adapter adapter; /* bus details */ struct i2c_algo_bit_data algo; /* bus algorithm details */ int num; /* bus number, 0 or 1 */ }; /* common data between shared ASIC HFIs */ struct hfi1_asic_data { struct hfi1_devdata *dds[2]; /* back pointers */ struct mutex asic_resource_mutex; struct hfi1_i2c_bus *i2c_bus0; struct hfi1_i2c_bus *i2c_bus1; }; /* sizes for both the QP and RSM map tables */ #define NUM_MAP_ENTRIES 256 #define NUM_MAP_REGS 32 /* * Number of VNIC contexts used. Ensure it is less than or equal to * max queues supported by VNIC (HFI1_VNIC_MAX_QUEUE). */ #define HFI1_NUM_VNIC_CTXT 8 /* Number of VNIC RSM entries */ #define NUM_VNIC_MAP_ENTRIES 8 /* Virtual NIC information */ struct hfi1_vnic_data { struct hfi1_ctxtdata *ctxt[HFI1_NUM_VNIC_CTXT]; struct kmem_cache *txreq_cache; u8 num_vports; struct idr vesw_idr; u8 rmt_start; u8 num_ctxt; u32 msix_idx; }; struct hfi1_vnic_vport_info; /* device data struct now contains only "general per-device" info. * fields related to a physical IB port are in a hfi1_pportdata struct. */ struct sdma_engine; struct sdma_vl_map; #define BOARD_VERS_MAX 96 /* how long the version string can be */ #define SERIAL_MAX 16 /* length of the serial number */ typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64); struct hfi1_devdata { struct hfi1_ibdev verbs_dev; /* must be first */ struct list_head list; /* pointers to related structs for this device */ /* pci access data structure */ struct pci_dev *pcidev; struct cdev user_cdev; struct cdev diag_cdev; struct cdev ui_cdev; struct device *user_device; struct device *diag_device; struct device *ui_device; /* first mapping up to RcvArray */ u8 __iomem *kregbase1; resource_size_t physaddr; /* second uncached mapping from RcvArray to pio send buffers */ u8 __iomem *kregbase2; /* for detecting offset above kregbase2 address */ u32 base2_start; /* Per VL data. Enough for all VLs but not all elements are set/used. */ struct per_vl_data vld[PER_VL_SEND_CONTEXTS]; /* send context data */ struct send_context_info *send_contexts; /* map hardware send contexts to software index */ u8 *hw_to_sw; /* spinlock for allocating and releasing send context resources */ spinlock_t sc_lock; /* lock for pio_map */ spinlock_t pio_map_lock; /* Send Context initialization lock. */ spinlock_t sc_init_lock; /* lock for sdma_map */ spinlock_t sde_map_lock; /* array of kernel send contexts */ struct send_context **kernel_send_context; /* array of vl maps */ struct pio_vl_map __rcu *pio_map; /* default flags to last descriptor */ u64 default_desc1; /* fields common to all SDMA engines */ volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */ dma_addr_t sdma_heads_phys; void *sdma_pad_dma; /* DMA'ed by chip */ dma_addr_t sdma_pad_phys; /* for deallocation */ size_t sdma_heads_size; /* number from the chip */ u32 chip_sdma_engines; /* num used */ u32 num_sdma; /* array of engines sized by num_sdma */ struct sdma_engine *per_sdma; /* array of vl maps */ struct sdma_vl_map __rcu *sdma_map; /* SPC freeze waitqueue and variable */ wait_queue_head_t sdma_unfreeze_wq; atomic_t sdma_unfreeze_count; u32 lcb_access_count; /* count of LCB users */ /* common data between shared ASIC HFIs in this OS */ struct hfi1_asic_data *asic_data; /* mem-mapped pointer to base of PIO buffers */ void __iomem *piobase; /* * write-combining mem-mapped pointer to base of RcvArray * memory. */ void __iomem *rcvarray_wc; /* * credit return base - a per-NUMA range of DMA address that * the chip will use to update the per-context free counter */ struct credit_return_base *cr_base; /* send context numbers and sizes for each type */ struct sc_config_sizes sc_sizes[SC_MAX]; char *boardname; /* human readable board info */ /* reset value */ u64 z_int_counter; u64 z_rcv_limit; u64 z_send_schedule; u64 __percpu *send_schedule; /* number of reserved contexts for VNIC usage */ u16 num_vnic_contexts; /* number of receive contexts in use by the driver */ u32 num_rcv_contexts; /* number of pio send contexts in use by the driver */ u32 num_send_contexts; /* * number of ctxts available for PSM open */ u32 freectxts; /* total number of available user/PSM contexts */ u32 num_user_contexts; /* base receive interrupt timeout, in CSR units */ u32 rcv_intr_timeout_csr; u32 freezelen; /* max length of freezemsg */ u64 __iomem *egrtidbase; spinlock_t sendctrl_lock; /* protect changes to SendCtrl */ spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */ spinlock_t uctxt_lock; /* protect rcd changes */ struct mutex dc8051_lock; /* exclusive access to 8051 */ struct workqueue_struct *update_cntr_wq; struct work_struct update_cntr_work; /* exclusive access to 8051 memory */ spinlock_t dc8051_memlock; int dc8051_timed_out; /* remember if the 8051 timed out */ /* * A page that will hold event notification bitmaps for all * contexts. This page will be mapped into all processes. */ unsigned long *events; /* * per unit status, see also portdata statusp * mapped read-only into user processes so they can get unit and * IB link status cheaply */ struct hfi1_status *status; /* revision register shadow */ u64 revision; /* Base GUID for device (network order) */ u64 base_guid; /* these are the "32 bit" regs */ /* value we put in kr_rcvhdrsize */ u32 rcvhdrsize; /* number of receive contexts the chip supports */ u32 chip_rcv_contexts; /* number of receive array entries */ u32 chip_rcv_array_count; /* number of PIO send contexts the chip supports */ u32 chip_send_contexts; /* number of bytes in the PIO memory buffer */ u32 chip_pio_mem_size; /* number of bytes in the SDMA memory buffer */ u32 chip_sdma_mem_size; /* size of each rcvegrbuffer */ u32 rcvegrbufsize; /* log2 of above */ u16 rcvegrbufsize_shift; /* both sides of the PCIe link are gen3 capable */ u8 link_gen3_capable; u8 dc_shutdown; /* localbus width (1, 2,4,8,16,32) from config space */ u32 lbus_width; /* localbus speed in MHz */ u32 lbus_speed; int unit; /* unit # of this chip */ int node; /* home node of this chip */ /* save these PCI fields to restore after a reset */ u32 pcibar0; u32 pcibar1; u32 pci_rom; u16 pci_command; u16 pcie_devctl; u16 pcie_lnkctl; u16 pcie_devctl2; u32 pci_msix0; u32 pci_tph2; /* * ASCII serial number, from flash, large enough for original * all digit strings, and longer serial number format */ u8 serial[SERIAL_MAX]; /* human readable board version */ u8 boardversion[BOARD_VERS_MAX]; u8 lbus_info[32]; /* human readable localbus info */ /* chip major rev, from CceRevision */ u8 majrev; /* chip minor rev, from CceRevision */ u8 minrev; /* hardware ID */ u8 hfi1_id; /* implementation code */ u8 icode; /* vAU of this device */ u8 vau; /* vCU of this device */ u8 vcu; /* link credits of this device */ u16 link_credits; /* initial vl15 credits to use */ u16 vl15_init; /* * Cached value for vl15buf, read during verify cap interrupt. VL15 * credits are to be kept at 0 and set when handling the link-up * interrupt. This removes the possibility of receiving VL15 MAD * packets before this HFI is ready. */ u16 vl15buf_cached; /* Misc small ints */ u8 n_krcv_queues; u8 qos_shift; u16 irev; /* implementation revision */ u32 dc8051_ver; /* 8051 firmware version */ spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */ struct platform_config platform_config; struct platform_config_cache pcfg_cache; struct diag_client *diag_client; /* MSI-X information */ struct hfi1_msix_entry *msix_entries; u32 num_msix_entries; u32 first_dyn_msix_idx; /* INTx information */ u32 requested_intx_irq; /* did we request one? */ /* general interrupt: mask of handled interrupts */ u64 gi_mask[CCE_NUM_INT_CSRS]; struct rcv_array_data rcv_entries; /* cycle length of PS* counters in HW (in picoseconds) */ u16 psxmitwait_check_rate; /* * 64 bit synthetic counters */ struct timer_list synth_stats_timer; /* * device counters */ char *cntrnames; size_t cntrnameslen; size_t ndevcntrs; u64 *cntrs; u64 *scntrs; /* * remembered values for synthetic counters */ u64 last_tx; u64 last_rx; /* * per-port counters */ size_t nportcntrs; char *portcntrnames; size_t portcntrnameslen; struct err_info_rcvport err_info_rcvport; struct err_info_constraint err_info_rcv_constraint; struct err_info_constraint err_info_xmit_constraint; atomic_t drop_packet; u8 do_drop; u8 err_info_uncorrectable; u8 err_info_fmconfig; /* * Software counters for the status bits defined by the * associated error status registers */ u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS]; u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS]; u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS]; u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS]; u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS]; u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS]; u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS]; /* Software counter that spans all contexts */ u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS]; /* Software counter that spans all DMA engines */ u64 sw_send_dma_eng_err_status_cnt[ NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS]; /* Software counter that aggregates all cce_err_status errors */ u64 sw_cce_err_status_aggregate; /* Software counter that aggregates all bypass packet rcv errors */ u64 sw_rcv_bypass_packet_errors; /* receive interrupt function */ rhf_rcv_function_ptr normal_rhf_rcv_functions[8]; /* Save the enabled LCB error bits */ u64 lcb_err_en; struct cpu_mask_set *comp_vect; int *comp_vect_mappings; u32 comp_vect_possible_cpus; /* * Capability to have different send engines simply by changing a * pointer value. */ send_routine process_pio_send ____cacheline_aligned_in_smp; send_routine process_dma_send; void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf, u64 pbc, const void *from, size_t count); int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx, struct hfi1_vnic_vport_info *vinfo, struct sk_buff *skb, u64 pbc, u8 plen); /* hfi1_pportdata, points to array of (physical) port-specific * data structs, indexed by pidx (0..n-1) */ struct hfi1_pportdata *pport; /* receive context data */ struct hfi1_ctxtdata **rcd; u64 __percpu *int_counter; /* verbs tx opcode stats */ struct hfi1_opcode_stats_perctx __percpu *tx_opstats; /* device (not port) flags, basically device capabilities */ u16 flags; /* Number of physical ports available */ u8 num_pports; /* Lowest context number which can be used by user processes or VNIC */ u8 first_dyn_alloc_ctxt; /* adding a new field here would make it part of this cacheline */ /* seqlock for sc2vl */ seqlock_t sc2vl_lock ____cacheline_aligned_in_smp; u64 sc2vl[4]; /* receive interrupt functions */ rhf_rcv_function_ptr *rhf_rcv_function_map; u64 __percpu *rcv_limit; u16 rhf_offset; /* offset of RHF within receive header entry */ /* adding a new field here would make it part of this cacheline */ /* OUI comes from the HW. Used everywhere as 3 separate bytes. */ u8 oui1; u8 oui2; u8 oui3; /* Timer and counter used to detect RcvBufOvflCnt changes */ struct timer_list rcverr_timer; wait_queue_head_t event_queue; /* receive context tail dummy address */ __le64 *rcvhdrtail_dummy_kvaddr; dma_addr_t rcvhdrtail_dummy_dma; u32 rcv_ovfl_cnt; /* Serialize ASPM enable/disable between multiple verbs contexts */ spinlock_t aspm_lock; /* Number of verbs contexts which have disabled ASPM */ atomic_t aspm_disabled_cnt; /* Keeps track of user space clients */ atomic_t user_refcount; /* Used to wait for outstanding user space clients before dev removal */ struct completion user_comp; bool eprom_available; /* true if EPROM is available for this device */ bool aspm_supported; /* Does HW support ASPM */ bool aspm_enabled; /* ASPM state: enabled/disabled */ struct rhashtable *sdma_rht; struct kobject kobj; /* vnic data */ struct hfi1_vnic_data vnic; }; static inline bool hfi1_vnic_is_rsm_full(struct hfi1_devdata *dd, int spare) { return (dd->vnic.rmt_start + spare) > NUM_MAP_ENTRIES; } /* 8051 firmware version helper */ #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c)) #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16) #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8) #define dc8051_ver_patch(a) ((a) & 0x0000ff) /* f_put_tid types */ #define PT_EXPECTED 0 #define PT_EAGER 1 #define PT_INVALID_FLUSH 2 #define PT_INVALID 3 struct tid_rb_node; struct mmu_rb_node; struct mmu_rb_handler; /* Private data for file operations */ struct hfi1_filedata { struct hfi1_devdata *dd; struct hfi1_ctxtdata *uctxt; struct hfi1_user_sdma_comp_q *cq; struct hfi1_user_sdma_pkt_q *pq; u16 subctxt; /* for cpu affinity; -1 if none */ int rec_cpu_num; u32 tid_n_pinned; struct mmu_rb_handler *handler; struct tid_rb_node **entry_to_rb; spinlock_t tid_lock; /* protect tid_[limit,used] counters */ u32 tid_limit; u32 tid_used; u32 *invalid_tids; u32 invalid_tid_idx; /* protect invalid_tids array and invalid_tid_idx */ spinlock_t invalid_lock; struct mm_struct *mm; }; extern struct list_head hfi1_dev_list; extern spinlock_t hfi1_devs_lock; struct hfi1_devdata *hfi1_lookup(int unit); static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt) { return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) * HFI1_MAX_SHARED_CTXTS; } int hfi1_init(struct hfi1_devdata *dd, int reinit); int hfi1_count_active_units(void); int hfi1_diag_add(struct hfi1_devdata *dd); void hfi1_diag_remove(struct hfi1_devdata *dd); void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup); void handle_user_interrupt(struct hfi1_ctxtdata *rcd); int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd); int hfi1_create_kctxts(struct hfi1_devdata *dd); int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, struct hfi1_ctxtdata **rcd); void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd); void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, struct hfi1_devdata *dd, u8 hw_pidx, u8 port); void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); int hfi1_rcd_put(struct hfi1_ctxtdata *rcd); void hfi1_rcd_get(struct hfi1_ctxtdata *rcd); struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, u16 ctxt); struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt); int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread); int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread); int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread); void set_all_slowpath(struct hfi1_devdata *dd); void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd); void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd); void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd); extern const struct pci_device_id hfi1_pci_tbl[]; void hfi1_make_ud_req_9B(struct rvt_qp *qp, struct hfi1_pkt_state *ps, struct rvt_swqe *wqe); void hfi1_make_ud_req_16B(struct rvt_qp *qp, struct hfi1_pkt_state *ps, struct rvt_swqe *wqe); /* receive packet handler dispositions */ #define RCV_PKT_OK 0x0 /* keep going */ #define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */ #define RCV_PKT_DONE 0x2 /* stop, no more packets detected */ /* calculate the current RHF address */ static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd) { return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->dd->rhf_offset; } int hfi1_reset_device(int); void receive_interrupt_work(struct work_struct *work); /* extract service channel from header and rhf */ static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf) { return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4); } #define HFI1_JKEY_WIDTH 16 #define HFI1_JKEY_MASK (BIT(16) - 1) #define HFI1_ADMIN_JKEY_RANGE 32 /* * J_KEYs are split and allocated in the following groups: * 0 - 31 - users with administrator privileges * 32 - 63 - kernel protocols using KDETH packets * 64 - 65535 - all other users using KDETH packets */ static inline u16 generate_jkey(kuid_t uid) { u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK; if (capable(CAP_SYS_ADMIN)) jkey &= HFI1_ADMIN_JKEY_RANGE - 1; else if (jkey < 64) jkey |= BIT(HFI1_JKEY_WIDTH - 1); return jkey; } /* * active_egress_rate * * returns the active egress rate in units of [10^6 bits/sec] */ static inline u32 active_egress_rate(struct hfi1_pportdata *ppd) { u16 link_speed = ppd->link_speed_active; u16 link_width = ppd->link_width_active; u32 egress_rate; if (link_speed == OPA_LINK_SPEED_25G) egress_rate = 25000; else /* assume OPA_LINK_SPEED_12_5G */ egress_rate = 12500; switch (link_width) { case OPA_LINK_WIDTH_4X: egress_rate *= 4; break; case OPA_LINK_WIDTH_3X: egress_rate *= 3; break; case OPA_LINK_WIDTH_2X: egress_rate *= 2; break; default: /* assume IB_WIDTH_1X */ break; } return egress_rate; } /* * egress_cycles * * Returns the number of 'fabric clock cycles' to egress a packet * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock * rate is (approximately) 805 MHz, the units of the returned value * are (1/805 MHz). */ static inline u32 egress_cycles(u32 len, u32 rate) { u32 cycles; /* * cycles is: * * (length) [bits] / (rate) [bits/sec] * --------------------------------------------------- * fabric_clock_period == 1 /(805 * 10^6) [cycles/sec] */ cycles = len * 8; /* bits */ cycles *= 805; cycles /= rate; return cycles; } void set_link_ipg(struct hfi1_pportdata *ppd); void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn, u32 rqpn, u8 svc_type); void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, u8 sc5, const struct ib_grh *old_grh); void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, u8 sc5, const struct ib_grh *old_grh); typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, u8 sc5, const struct ib_grh *old_grh); #define PKEY_CHECK_INVALID -1 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, u8 sc5, int8_t s_pkey_index); #define PACKET_EGRESS_TIMEOUT 350 static inline void pause_for_credit_return(struct hfi1_devdata *dd) { /* Pause at least 1us, to ensure chip returns all credits */ u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000; udelay(usec ? usec : 1); } /** * sc_to_vlt() reverse lookup sc to vl * @dd - devdata * @sc5 - 5 bit sc */ static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5) { unsigned seq; u8 rval; if (sc5 >= OPA_MAX_SCS) return (u8)(0xff); do { seq = read_seqbegin(&dd->sc2vl_lock); rval = *(((u8 *)dd->sc2vl) + sc5); } while (read_seqretry(&dd->sc2vl_lock, seq)); return rval; } #define PKEY_MEMBER_MASK 0x8000 #define PKEY_LOW_15_MASK 0x7fff /* * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent * being an entry from the ingress partition key table), return 0 * otherwise. Use the matching criteria for ingress partition keys * specified in the OPAv1 spec., section 9.10.14. */ static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent) { u16 mkey = pkey & PKEY_LOW_15_MASK; u16 ment = ent & PKEY_LOW_15_MASK; if (mkey == ment) { /* * If pkey[15] is clear (limited partition member), * is bit 15 in the corresponding table element * clear (limited member)? */ if (!(pkey & PKEY_MEMBER_MASK)) return !!(ent & PKEY_MEMBER_MASK); return 1; } return 0; } /* * ingress_pkey_table_search - search the entire pkey table for * an entry which matches 'pkey'. return 0 if a match is found, * and 1 otherwise. */ static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey) { int i; for (i = 0; i < MAX_PKEY_VALUES; i++) { if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i])) return 0; } return 1; } /* * ingress_pkey_table_fail - record a failure of ingress pkey validation, * i.e., increment port_rcv_constraint_errors for the port, and record * the 'error info' for this failure. */ static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey, u32 slid) { struct hfi1_devdata *dd = ppd->dd; incr_cntr64(&ppd->port_rcv_constraint_errors); if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) { dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK; dd->err_info_rcv_constraint.slid = slid; dd->err_info_rcv_constraint.pkey = pkey; } } /* * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1 * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx * is a hint as to the best place in the partition key table to begin * searching. This function should not be called on the data path because * of performance reasons. On datapath pkey check is expected to be done * by HW and rcv_pkey_check function should be called instead. */ static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, u8 sc5, u8 idx, u32 slid, bool force) { if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) return 0; /* If SC15, pkey[0:14] must be 0x7fff */ if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) goto bad; /* Is the pkey = 0x0, or 0x8000? */ if ((pkey & PKEY_LOW_15_MASK) == 0) goto bad; /* The most likely matching pkey has index 'idx' */ if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx])) return 0; /* no match - try the whole table */ if (!ingress_pkey_table_search(ppd, pkey)) return 0; bad: ingress_pkey_table_fail(ppd, pkey, slid); return 1; } /* * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1 * otherwise. It only ensures pkey is vlid for QP0. This function * should be called on the data path instead of ingress_pkey_check * as on data path, pkey check is done by HW (except for QP0). */ static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, u8 sc5, u16 slid) { if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) return 0; /* If SC15, pkey[0:14] must be 0x7fff */ if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) goto bad; return 0; bad: ingress_pkey_table_fail(ppd, pkey, slid); return 1; } /* MTU handling */ /* MTU enumeration, 256-4k match IB */ #define OPA_MTU_0 0 #define OPA_MTU_256 1 #define OPA_MTU_512 2 #define OPA_MTU_1024 3 #define OPA_MTU_2048 4 #define OPA_MTU_4096 5 u32 lrh_max_header_bytes(struct hfi1_devdata *dd); int mtu_to_enum(u32 mtu, int default_if_bad); u16 enum_to_mtu(int mtu); static inline int valid_ib_mtu(unsigned int mtu) { return mtu == 256 || mtu == 512 || mtu == 1024 || mtu == 2048 || mtu == 4096; } static inline int valid_opa_max_mtu(unsigned int mtu) { return mtu >= 2048 && (valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240); } int set_mtu(struct hfi1_pportdata *ppd); int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc); void hfi1_disable_after_error(struct hfi1_devdata *dd); int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit); int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode); int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t); int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t); void set_up_vau(struct hfi1_devdata *dd, u8 vau); void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf); void reset_link_credits(struct hfi1_devdata *dd); void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu); int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc); static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd) { return ppd->dd; } static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev) { return container_of(dev, struct hfi1_devdata, verbs_dev); } static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev) { return dd_from_dev(to_idev(ibdev)); } static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp) { return container_of(ibp, struct hfi1_pportdata, ibport_data); } static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi) { return container_of(rdi, struct hfi1_ibdev, rdi); } static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port) { struct hfi1_devdata *dd = dd_from_ibdev(ibdev); unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */ WARN_ON(pidx >= dd->num_pports); return &dd->pport[pidx].ibport_data; } static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd) { return &rcd->ppd->ibport_data; } void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, bool do_cnp); static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt, bool do_cnp) { bool becn; bool fecn; if (pkt->etype == RHF_RCV_TYPE_BYPASS) { fecn = hfi1_16B_get_fecn(pkt->hdr); becn = hfi1_16B_get_becn(pkt->hdr); } else { fecn = ib_bth_get_fecn(pkt->ohdr); becn = ib_bth_get_becn(pkt->ohdr); } if (unlikely(fecn || becn)) { hfi1_process_ecn_slowpath(qp, pkt, do_cnp); return fecn; } return false; } /* * Return the indexed PKEY from the port PKEY table. */ static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index) { struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); u16 ret; if (index >= ARRAY_SIZE(ppd->pkeys)) ret = 0; else ret = ppd->pkeys[index]; return ret; } /* * Return the indexed GUID from the port GUIDs table. */ static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index) { struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); WARN_ON(index >= HFI1_GUIDS_PER_PORT); return cpu_to_be64(ppd->guids[index]); } /* * Called by readers of cc_state only, must call under rcu_read_lock(). */ static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd) { return rcu_dereference(ppd->cc_state); } /* * Called by writers of cc_state only, must call under cc_state_lock. */ static inline struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd) { return rcu_dereference_protected(ppd->cc_state, lockdep_is_held(&ppd->cc_state_lock)); } /* * values for dd->flags (_device_ related flags) */ #define HFI1_INITTED 0x1 /* chip and driver up and initted */ #define HFI1_PRESENT 0x2 /* chip accesses can be done */ #define HFI1_FROZEN 0x4 /* chip in SPC freeze */ #define HFI1_HAS_SDMA_TIMEOUT 0x8 #define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */ #define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */ #define HFI1_SHUTDOWN 0x100 /* device is shutting down */ /* IB dword length mask in PBC (lower 11 bits); same for all chips */ #define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1) /* ctxt_flag bit offsets */ /* base context has not finished initializing */ #define HFI1_CTXT_BASE_UNINIT 1 /* base context initaliation failed */ #define HFI1_CTXT_BASE_FAILED 2 /* waiting for a packet to arrive */ #define HFI1_CTXT_WAITING_RCV 3 /* waiting for an urgent packet to arrive */ #define HFI1_CTXT_WAITING_URG 4 /* free up any allocated data at closes */ struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev, const struct pci_device_id *ent); void hfi1_free_devdata(struct hfi1_devdata *dd); struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra); /* LED beaconing functions */ void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, unsigned int timeoff); void shutdown_led_override(struct hfi1_pportdata *ppd); #define HFI1_CREDIT_RETURN_RATE (100) /* * The number of words for the KDETH protocol field. If this is * larger then the actual field used, then part of the payload * will be in the header. * * Optimally, we want this sized so that a typical case will * use full cache lines. The typical local KDETH header would * be: * * Bytes Field * 8 LRH * 12 BHT * ?? KDETH * 8 RHF * --- * 28 + KDETH * * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS */ #define DEFAULT_RCVHDRSIZE 9 /* * Maximal header byte count: * * Bytes Field * 8 LRH * 40 GRH (optional) * 12 BTH * ?? KDETH * 8 RHF * --- * 68 + KDETH * * We also want to maintain a cache line alignment to assist DMA'ing * of the header bytes. Round up to a good size. */ #define DEFAULT_RCVHDR_ENTSIZE 32 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm, u32 nlocked, u32 npages); int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr, size_t npages, bool writable, struct page **pages); void hfi1_release_user_pages(struct mm_struct *mm, struct page **p, size_t npages, bool dirty); static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd) { *((u64 *)rcd->rcvhdrtail_kvaddr) = 0ULL; } static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd) { /* * volatile because it's a DMA target from the chip, routine is * inlined, and don't want register caching or reordering. */ return (u32)le64_to_cpu(*rcd->rcvhdrtail_kvaddr); } /* * sysfs interface. */ extern const char ib_hfi1_version[]; int hfi1_device_create(struct hfi1_devdata *dd); void hfi1_device_remove(struct hfi1_devdata *dd); int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num, struct kobject *kobj); int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd); void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd); /* Hook for sysfs read of QSFP */ int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len); int hfi1_pcie_init(struct pci_dev *pdev, const struct pci_device_id *ent); void hfi1_clean_up_interrupts(struct hfi1_devdata *dd); void hfi1_pcie_cleanup(struct pci_dev *pdev); int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev); void hfi1_pcie_ddcleanup(struct hfi1_devdata *); int pcie_speeds(struct hfi1_devdata *dd); int request_msix(struct hfi1_devdata *dd, u32 msireq); int restore_pci_variables(struct hfi1_devdata *dd); int save_pci_variables(struct hfi1_devdata *dd); int do_pcie_gen3_transition(struct hfi1_devdata *dd); int parse_platform_config(struct hfi1_devdata *dd); int get_platform_config_field(struct hfi1_devdata *dd, enum platform_config_table_type_encoding table_type, int table_index, int field_index, u32 *data, u32 len); struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi); /* * Flush write combining store buffers (if present) and perform a write * barrier. */ static inline void flush_wc(void) { asm volatile("sfence" : : : "memory"); } void handle_eflags(struct hfi1_packet *packet); int process_receive_ib(struct hfi1_packet *packet); int process_receive_bypass(struct hfi1_packet *packet); int process_receive_error(struct hfi1_packet *packet); int kdeth_process_expected(struct hfi1_packet *packet); int kdeth_process_eager(struct hfi1_packet *packet); int process_receive_invalid(struct hfi1_packet *packet); void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd); /* global module parameter variables */ extern unsigned int hfi1_max_mtu; extern unsigned int hfi1_cu; extern unsigned int user_credit_return_threshold; extern int num_user_contexts; extern unsigned long n_krcvqs; extern uint krcvqs[]; extern int krcvqsset; extern uint kdeth_qp; extern uint loopback; extern uint quick_linkup; extern uint rcv_intr_timeout; extern uint rcv_intr_count; extern uint rcv_intr_dynamic; extern ushort link_crc_mask; extern struct mutex hfi1_mutex; /* Number of seconds before our card status check... */ #define STATUS_TIMEOUT 60 #define DRIVER_NAME "hfi1" #define HFI1_USER_MINOR_BASE 0 #define HFI1_TRACE_MINOR 127 #define HFI1_NMINORS 255 #define PCI_VENDOR_ID_INTEL 0x8086 #define PCI_DEVICE_ID_INTEL0 0x24f0 #define PCI_DEVICE_ID_INTEL1 0x24f1 #define HFI1_PKT_USER_SC_INTEGRITY \ (SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \ | SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \ | SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \ | SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK) #define HFI1_PKT_KERNEL_SC_INTEGRITY \ (SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK) static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd, u16 ctxt_type) { u64 base_sc_integrity; /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) return 0; base_sc_integrity = SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK | SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK #ifndef CONFIG_FAULT_INJECTION | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK #endif | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK | SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK | SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK | SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK | SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK | SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK | SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK; if (ctxt_type == SC_USER) base_sc_integrity |= #ifndef CONFIG_FAULT_INJECTION SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK | #endif HFI1_PKT_USER_SC_INTEGRITY; else base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY; /* turn on send-side job key checks if !A0 */ if (!is_ax(dd)) base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; return base_sc_integrity; } static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd) { u64 base_sdma_integrity; /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) return 0; base_sdma_integrity = SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK | SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK | SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK | SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK | SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK | SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK | SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK | SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK; if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)) base_sdma_integrity |= SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK; /* turn on send-side job key checks if !A0 */ if (!is_ax(dd)) base_sdma_integrity |= SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; return base_sdma_integrity; } /* * hfi1_early_err is used (only!) to print early errors before devdata is * allocated, or when dd->pcidev may not be valid, and at the tail end of * cleanup when devdata may have been freed, etc. hfi1_dev_porterr is * the same as dd_dev_err, but is used when the message really needs * the IB port# to be definitive as to what's happening.. */ #define hfi1_early_err(dev, fmt, ...) \ dev_err(dev, fmt, ##__VA_ARGS__) #define hfi1_early_info(dev, fmt, ...) \ dev_info(dev, fmt, ##__VA_ARGS__) #define dd_dev_emerg(dd, fmt, ...) \ dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \ rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) #define dd_dev_err(dd, fmt, ...) \ dev_err(&(dd)->pcidev->dev, "%s: " fmt, \ rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) #define dd_dev_err_ratelimited(dd, fmt, ...) \ dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ ##__VA_ARGS__) #define dd_dev_warn(dd, fmt, ...) \ dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \ rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) #define dd_dev_warn_ratelimited(dd, fmt, ...) \ dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ ##__VA_ARGS__) #define dd_dev_info(dd, fmt, ...) \ dev_info(&(dd)->pcidev->dev, "%s: " fmt, \ rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) #define dd_dev_info_ratelimited(dd, fmt, ...) \ dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ ##__VA_ARGS__) #define dd_dev_dbg(dd, fmt, ...) \ dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \ rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) #define hfi1_dev_porterr(dd, port, fmt, ...) \ dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \ rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__) /* * this is used for formatting hw error messages... */ struct hfi1_hwerror_msgs { u64 mask; const char *msg; size_t sz; }; /* in intr.c... */ void hfi1_format_hwerrors(u64 hwerrs, const struct hfi1_hwerror_msgs *hwerrmsgs, size_t nhwerrmsgs, char *msg, size_t lmsg); #define USER_OPCODE_CHECK_VAL 0xC0 #define USER_OPCODE_CHECK_MASK 0xC0 #define OPCODE_CHECK_VAL_DISABLED 0x0 #define OPCODE_CHECK_MASK_DISABLED 0x0 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd) { struct hfi1_pportdata *ppd; int i; dd->z_int_counter = get_all_cpu_total(dd->int_counter); dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit); dd->z_send_schedule = get_all_cpu_total(dd->send_schedule); ppd = (struct hfi1_pportdata *)(dd + 1); for (i = 0; i < dd->num_pports; i++, ppd++) { ppd->ibport_data.rvp.z_rc_acks = get_all_cpu_total(ppd->ibport_data.rvp.rc_acks); ppd->ibport_data.rvp.z_rc_qacks = get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks); } } /* Control LED state */ static inline void setextled(struct hfi1_devdata *dd, u32 on) { if (on) write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F); else write_csr(dd, DCC_CFG_LED_CNTRL, 0x10); } /* return the i2c resource given the target */ static inline u32 i2c_target(u32 target) { return target ? CR_I2C2 : CR_I2C1; } /* return the i2c chain chip resource that this HFI uses for QSFP */ static inline u32 qsfp_resource(struct hfi1_devdata *dd) { return i2c_target(dd->hfi1_id); } /* Is this device integrated or discrete? */ static inline bool is_integrated(struct hfi1_devdata *dd) { return dd->pcidev->device == PCI_DEVICE_ID_INTEL1; } int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp); #define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev)) #define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev)) static inline void hfi1_update_ah_attr(struct ib_device *ibdev, struct rdma_ah_attr *attr) { struct hfi1_pportdata *ppd; struct hfi1_ibport *ibp; u32 dlid = rdma_ah_get_dlid(attr); /* * Kernel clients may not have setup GRH information * Set that here. */ ibp = to_iport(ibdev, rdma_ah_get_port_num(attr)); ppd = ppd_from_ibp(ibp); if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) || (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) && (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) && (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) || (rdma_ah_get_make_grd(attr))) { rdma_ah_set_ah_flags(attr, IB_AH_GRH); rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid)); rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix); } } /* * hfi1_check_mcast- Check if the given lid is * in the OPA multicast range. * * The LID might either reside in ah.dlid or might be * in the GRH of the address handle as DGID if extended * addresses are in use. */ static inline bool hfi1_check_mcast(u32 lid) { return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) && (lid != be32_to_cpu(OPA_LID_PERMISSIVE))); } #define opa_get_lid(lid, format) \ __opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format) /* Convert a lid to a specific lid space */ static inline u32 __opa_get_lid(u32 lid, u8 format) { bool is_mcast = hfi1_check_mcast(lid); switch (format) { case OPA_PORT_PACKET_FORMAT_8B: case OPA_PORT_PACKET_FORMAT_10B: if (is_mcast) return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 0xF0000); return lid & 0xFFFFF; case OPA_PORT_PACKET_FORMAT_16B: if (is_mcast) return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 0xF00000); return lid & 0xFFFFFF; case OPA_PORT_PACKET_FORMAT_9B: if (is_mcast) return (lid - opa_get_mcast_base(OPA_MCAST_NR) + be16_to_cpu(IB_MULTICAST_LID_BASE)); else return lid & 0xFFFF; default: return lid; } } /* Return true if the given lid is the OPA 16B multicast range */ static inline bool hfi1_is_16B_mcast(u32 lid) { return ((lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) && (lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))); } static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr) { const struct ib_global_route *grh = rdma_ah_read_grh(attr); u32 dlid = rdma_ah_get_dlid(attr); /* Modify ah_attr.dlid to be in the 32 bit LID space. * This is how the address will be laid out: * Assuming MCAST_NR to be 4, * 32 bit permissive LID = 0xFFFFFFFF * Multicast LID range = 0xFFFFFFFE to 0xF0000000 * Unicast LID range = 0xEFFFFFFF to 1 * Invalid LID = 0 */ if (ib_is_opa_gid(&grh->dgid)) dlid = opa_get_lid_from_gid(&grh->dgid); else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && (dlid != be32_to_cpu(OPA_LID_PERMISSIVE))) dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) + opa_get_mcast_base(OPA_MCAST_NR); else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE)) dlid = be32_to_cpu(OPA_LID_PERMISSIVE); rdma_ah_set_dlid(attr, dlid); } static inline u8 hfi1_get_packet_type(u32 lid) { /* 9B if lid > 0xF0000000 */ if (lid >= opa_get_mcast_base(OPA_MCAST_NR)) return HFI1_PKT_TYPE_9B; /* 16B if lid > 0xC000 */ if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B)) return HFI1_PKT_TYPE_16B; return HFI1_PKT_TYPE_9B; } static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr) { /* * If there was an incoming 16B packet with permissive * LIDs, OPA GIDs would have been programmed when those * packets were received. A 16B packet will have to * be sent in response to that packet. Return a 16B * header type if that's the case. */ if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE)) return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ? HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B; /* * Return a 16B header type if either the the destination * or source lid is extended. */ if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B) return HFI1_PKT_TYPE_16B; return hfi1_get_packet_type(lid); } static inline void hfi1_make_ext_grh(struct hfi1_packet *packet, struct ib_grh *grh, u32 slid, u32 dlid) { struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data; struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); if (!ibp) return; grh->hop_limit = 1; grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix; if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)) grh->sgid.global.interface_id = OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE)); else grh->sgid.global.interface_id = OPA_MAKE_ID(slid); /* * Upper layers (like mad) may compare the dgid in the * wc that is obtained here with the sgid_index in * the wr. Since sgid_index in wr is always 0 for * extended lids, set the dgid here to the default * IB gid. */ grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix; grh->dgid.global.interface_id = cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]); } static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload) { return -(hdr_size + payload + (SIZE_OF_CRC << 2) + SIZE_OF_LT) & 0x7; } static inline void hfi1_make_ib_hdr(struct ib_header *hdr, u16 lrh0, u16 len, u16 dlid, u16 slid) { hdr->lrh[0] = cpu_to_be16(lrh0); hdr->lrh[1] = cpu_to_be16(dlid); hdr->lrh[2] = cpu_to_be16(len); hdr->lrh[3] = cpu_to_be16(slid); } static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr, u32 slid, u32 dlid, u16 len, u16 pkey, bool becn, bool fecn, u8 l4, u8 sc) { u32 lrh0 = 0; u32 lrh1 = 0x40000000; u32 lrh2 = 0; u32 lrh3 = 0; lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT); lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT); lrh0 = (lrh0 & ~OPA_16B_LID_MASK) | (slid & OPA_16B_LID_MASK); lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT); lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT); lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK); lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) | ((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT); lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) | ((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT); lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT); lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4; hdr->lrh[0] = lrh0; hdr->lrh[1] = lrh1; hdr->lrh[2] = lrh2; hdr->lrh[3] = lrh3; } #endif /* _HFI1_KERNEL_H */