/* * STMicroelectronics hts221 sensor driver * * Copyright 2016 STMicroelectronics Inc. * * Lorenzo Bianconi * * Licensed under the GPL-2. */ #include #include #include #include #include #include #include #include "hts221.h" #define HTS221_REG_WHOAMI_ADDR 0x0f #define HTS221_REG_WHOAMI_VAL 0xbc #define HTS221_REG_CNTRL1_ADDR 0x20 #define HTS221_REG_CNTRL2_ADDR 0x21 #define HTS221_REG_CNTRL3_ADDR 0x22 #define HTS221_REG_AVG_ADDR 0x10 #define HTS221_REG_H_OUT_L 0x28 #define HTS221_REG_T_OUT_L 0x2a #define HTS221_HUMIDITY_AVG_MASK 0x07 #define HTS221_TEMP_AVG_MASK 0x38 #define HTS221_ODR_MASK 0x87 #define HTS221_BDU_MASK BIT(2) #define HTS221_DRDY_MASK BIT(2) #define HTS221_ENABLE_SENSOR BIT(7) #define HTS221_HUMIDITY_AVG_4 0x00 /* 0.4 %RH */ #define HTS221_HUMIDITY_AVG_8 0x01 /* 0.3 %RH */ #define HTS221_HUMIDITY_AVG_16 0x02 /* 0.2 %RH */ #define HTS221_HUMIDITY_AVG_32 0x03 /* 0.15 %RH */ #define HTS221_HUMIDITY_AVG_64 0x04 /* 0.1 %RH */ #define HTS221_HUMIDITY_AVG_128 0x05 /* 0.07 %RH */ #define HTS221_HUMIDITY_AVG_256 0x06 /* 0.05 %RH */ #define HTS221_HUMIDITY_AVG_512 0x07 /* 0.03 %RH */ #define HTS221_TEMP_AVG_2 0x00 /* 0.08 degC */ #define HTS221_TEMP_AVG_4 0x08 /* 0.05 degC */ #define HTS221_TEMP_AVG_8 0x10 /* 0.04 degC */ #define HTS221_TEMP_AVG_16 0x18 /* 0.03 degC */ #define HTS221_TEMP_AVG_32 0x20 /* 0.02 degC */ #define HTS221_TEMP_AVG_64 0x28 /* 0.015 degC */ #define HTS221_TEMP_AVG_128 0x30 /* 0.01 degC */ #define HTS221_TEMP_AVG_256 0x38 /* 0.007 degC */ /* calibration registers */ #define HTS221_REG_0RH_CAL_X_H 0x36 #define HTS221_REG_1RH_CAL_X_H 0x3a #define HTS221_REG_0RH_CAL_Y_H 0x30 #define HTS221_REG_1RH_CAL_Y_H 0x31 #define HTS221_REG_0T_CAL_X_L 0x3c #define HTS221_REG_1T_CAL_X_L 0x3e #define HTS221_REG_0T_CAL_Y_H 0x32 #define HTS221_REG_1T_CAL_Y_H 0x33 #define HTS221_REG_T1_T0_CAL_Y_H 0x35 struct hts221_odr { u8 hz; u8 val; }; struct hts221_avg { u8 addr; u8 mask; struct hts221_avg_avl avg_avl[HTS221_AVG_DEPTH]; }; static const struct hts221_odr hts221_odr_table[] = { { 1, 0x01 }, /* 1Hz */ { 7, 0x02 }, /* 7Hz */ { 13, 0x03 }, /* 12.5Hz */ }; static const struct hts221_avg hts221_avg_list[] = { { .addr = HTS221_REG_AVG_ADDR, .mask = HTS221_HUMIDITY_AVG_MASK, .avg_avl = { { 4, HTS221_HUMIDITY_AVG_4 }, { 8, HTS221_HUMIDITY_AVG_8 }, { 16, HTS221_HUMIDITY_AVG_16 }, { 32, HTS221_HUMIDITY_AVG_32 }, { 64, HTS221_HUMIDITY_AVG_64 }, { 128, HTS221_HUMIDITY_AVG_128 }, { 256, HTS221_HUMIDITY_AVG_256 }, { 512, HTS221_HUMIDITY_AVG_512 }, }, }, { .addr = HTS221_REG_AVG_ADDR, .mask = HTS221_TEMP_AVG_MASK, .avg_avl = { { 2, HTS221_TEMP_AVG_2 }, { 4, HTS221_TEMP_AVG_4 }, { 8, HTS221_TEMP_AVG_8 }, { 16, HTS221_TEMP_AVG_16 }, { 32, HTS221_TEMP_AVG_32 }, { 64, HTS221_TEMP_AVG_64 }, { 128, HTS221_TEMP_AVG_128 }, { 256, HTS221_TEMP_AVG_256 }, }, }, }; static const struct iio_chan_spec hts221_channels[] = { { .type = IIO_HUMIDITYRELATIVE, .address = HTS221_REG_H_OUT_L, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), .scan_index = 0, .scan_type = { .sign = 's', .realbits = 16, .storagebits = 16, .endianness = IIO_LE, }, }, { .type = IIO_TEMP, .address = HTS221_REG_T_OUT_L, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), .scan_index = 1, .scan_type = { .sign = 's', .realbits = 16, .storagebits = 16, .endianness = IIO_LE, }, }, IIO_CHAN_SOFT_TIMESTAMP(2), }; static int hts221_write_with_mask(struct hts221_hw *hw, u8 addr, u8 mask, u8 val) { u8 data; int err; mutex_lock(&hw->lock); err = hw->tf->read(hw->dev, addr, sizeof(data), &data); if (err < 0) { dev_err(hw->dev, "failed to read %02x register\n", addr); goto unlock; } data = (data & ~mask) | (val & mask); err = hw->tf->write(hw->dev, addr, sizeof(data), &data); if (err < 0) dev_err(hw->dev, "failed to write %02x register\n", addr); unlock: mutex_unlock(&hw->lock); return err; } static int hts221_check_whoami(struct hts221_hw *hw) { u8 data; int err; err = hw->tf->read(hw->dev, HTS221_REG_WHOAMI_ADDR, sizeof(data), &data); if (err < 0) { dev_err(hw->dev, "failed to read whoami register\n"); return err; } if (data != HTS221_REG_WHOAMI_VAL) { dev_err(hw->dev, "wrong whoami {%02x vs %02x}\n", data, HTS221_REG_WHOAMI_VAL); return -ENODEV; } return 0; } int hts221_config_drdy(struct hts221_hw *hw, bool enable) { u8 val = enable ? BIT(2) : 0; int err; err = hts221_write_with_mask(hw, HTS221_REG_CNTRL3_ADDR, HTS221_DRDY_MASK, val); return err < 0 ? err : 0; } static int hts221_update_odr(struct hts221_hw *hw, u8 odr) { int i, err; u8 val; for (i = 0; i < ARRAY_SIZE(hts221_odr_table); i++) if (hts221_odr_table[i].hz == odr) break; if (i == ARRAY_SIZE(hts221_odr_table)) return -EINVAL; val = HTS221_ENABLE_SENSOR | HTS221_BDU_MASK | hts221_odr_table[i].val; err = hts221_write_with_mask(hw, HTS221_REG_CNTRL1_ADDR, HTS221_ODR_MASK, val); if (err < 0) return err; hw->odr = odr; return 0; } static int hts221_update_avg(struct hts221_hw *hw, enum hts221_sensor_type type, u16 val) { int i, err; const struct hts221_avg *avg = &hts221_avg_list[type]; for (i = 0; i < HTS221_AVG_DEPTH; i++) if (avg->avg_avl[i].avg == val) break; if (i == HTS221_AVG_DEPTH) return -EINVAL; err = hts221_write_with_mask(hw, avg->addr, avg->mask, avg->avg_avl[i].val); if (err < 0) return err; hw->sensors[type].cur_avg_idx = i; return 0; } static ssize_t hts221_sysfs_sampling_freq(struct device *dev, struct device_attribute *attr, char *buf) { int i; ssize_t len = 0; for (i = 0; i < ARRAY_SIZE(hts221_odr_table); i++) len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", hts221_odr_table[i].hz); buf[len - 1] = '\n'; return len; } static ssize_t hts221_sysfs_rh_oversampling_avail(struct device *dev, struct device_attribute *attr, char *buf) { const struct hts221_avg *avg = &hts221_avg_list[HTS221_SENSOR_H]; ssize_t len = 0; int i; for (i = 0; i < ARRAY_SIZE(avg->avg_avl); i++) len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", avg->avg_avl[i].avg); buf[len - 1] = '\n'; return len; } static ssize_t hts221_sysfs_temp_oversampling_avail(struct device *dev, struct device_attribute *attr, char *buf) { const struct hts221_avg *avg = &hts221_avg_list[HTS221_SENSOR_T]; ssize_t len = 0; int i; for (i = 0; i < ARRAY_SIZE(avg->avg_avl); i++) len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", avg->avg_avl[i].avg); buf[len - 1] = '\n'; return len; } int hts221_power_on(struct hts221_hw *hw) { int err; err = hts221_update_odr(hw, hw->odr); if (err < 0) return err; hw->enabled = true; return 0; } int hts221_power_off(struct hts221_hw *hw) { __le16 data = 0; int err; err = hw->tf->write(hw->dev, HTS221_REG_CNTRL1_ADDR, sizeof(data), (u8 *)&data); if (err < 0) return err; hw->enabled = false; return 0; } static int hts221_parse_temp_caldata(struct hts221_hw *hw) { int err, *slope, *b_gen; s16 cal_x0, cal_x1, cal_y0, cal_y1; u8 cal0, cal1; err = hw->tf->read(hw->dev, HTS221_REG_0T_CAL_Y_H, sizeof(cal0), &cal0); if (err < 0) return err; err = hw->tf->read(hw->dev, HTS221_REG_T1_T0_CAL_Y_H, sizeof(cal1), &cal1); if (err < 0) return err; cal_y0 = (le16_to_cpu(cal1 & 0x3) << 8) | cal0; err = hw->tf->read(hw->dev, HTS221_REG_1T_CAL_Y_H, sizeof(cal0), &cal0); if (err < 0) return err; cal_y1 = (((cal1 & 0xc) >> 2) << 8) | cal0; err = hw->tf->read(hw->dev, HTS221_REG_0T_CAL_X_L, sizeof(cal_x0), (u8 *)&cal_x0); if (err < 0) return err; cal_x0 = le16_to_cpu(cal_x0); err = hw->tf->read(hw->dev, HTS221_REG_1T_CAL_X_L, sizeof(cal_x1), (u8 *)&cal_x1); if (err < 0) return err; cal_x1 = le16_to_cpu(cal_x1); slope = &hw->sensors[HTS221_SENSOR_T].slope; b_gen = &hw->sensors[HTS221_SENSOR_T].b_gen; *slope = ((cal_y1 - cal_y0) * 8000) / (cal_x1 - cal_x0); *b_gen = (((s32)cal_x1 * cal_y0 - (s32)cal_x0 * cal_y1) * 1000) / (cal_x1 - cal_x0); *b_gen *= 8; return 0; } static int hts221_parse_rh_caldata(struct hts221_hw *hw) { int err, *slope, *b_gen; s16 cal_x0, cal_x1, cal_y0, cal_y1; u8 data; err = hw->tf->read(hw->dev, HTS221_REG_0RH_CAL_Y_H, sizeof(data), &data); if (err < 0) return err; cal_y0 = data; err = hw->tf->read(hw->dev, HTS221_REG_1RH_CAL_Y_H, sizeof(data), &data); if (err < 0) return err; cal_y1 = data; err = hw->tf->read(hw->dev, HTS221_REG_0RH_CAL_X_H, sizeof(cal_x0), (u8 *)&cal_x0); if (err < 0) return err; cal_x0 = le16_to_cpu(cal_x0); err = hw->tf->read(hw->dev, HTS221_REG_1RH_CAL_X_H, sizeof(cal_x1), (u8 *)&cal_x1); if (err < 0) return err; cal_x1 = le16_to_cpu(cal_x1); slope = &hw->sensors[HTS221_SENSOR_H].slope; b_gen = &hw->sensors[HTS221_SENSOR_H].b_gen; *slope = ((cal_y1 - cal_y0) * 8000) / (cal_x1 - cal_x0); *b_gen = (((s32)cal_x1 * cal_y0 - (s32)cal_x0 * cal_y1) * 1000) / (cal_x1 - cal_x0); *b_gen *= 8; return 0; } static int hts221_get_sensor_scale(struct hts221_hw *hw, enum iio_chan_type ch_type, int *val, int *val2) { s64 tmp; s32 rem, div, data; switch (ch_type) { case IIO_HUMIDITYRELATIVE: data = hw->sensors[HTS221_SENSOR_H].slope; div = (1 << 4) * 1000; break; case IIO_TEMP: data = hw->sensors[HTS221_SENSOR_T].slope; div = (1 << 6) * 1000; break; default: return -EINVAL; } tmp = div_s64(data * 1000000000LL, div); tmp = div_s64_rem(tmp, 1000000000LL, &rem); *val = tmp; *val2 = rem; return IIO_VAL_INT_PLUS_NANO; } static int hts221_get_sensor_offset(struct hts221_hw *hw, enum iio_chan_type ch_type, int *val, int *val2) { s64 tmp; s32 rem, div, data; switch (ch_type) { case IIO_HUMIDITYRELATIVE: data = hw->sensors[HTS221_SENSOR_H].b_gen; div = hw->sensors[HTS221_SENSOR_H].slope; break; case IIO_TEMP: data = hw->sensors[HTS221_SENSOR_T].b_gen; div = hw->sensors[HTS221_SENSOR_T].slope; break; default: return -EINVAL; } tmp = div_s64(data * 1000000000LL, div); tmp = div_s64_rem(tmp, 1000000000LL, &rem); *val = tmp; *val2 = rem; return IIO_VAL_INT_PLUS_NANO; } static int hts221_read_oneshot(struct hts221_hw *hw, u8 addr, int *val) { u8 data[HTS221_DATA_SIZE]; int err; err = hts221_power_on(hw); if (err < 0) return err; msleep(50); err = hw->tf->read(hw->dev, addr, sizeof(data), data); if (err < 0) return err; hts221_power_off(hw); *val = (s16)get_unaligned_le16(data); return IIO_VAL_INT; } static int hts221_read_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *ch, int *val, int *val2, long mask) { struct hts221_hw *hw = iio_priv(iio_dev); int ret; ret = iio_device_claim_direct_mode(iio_dev); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = hts221_read_oneshot(hw, ch->address, val); break; case IIO_CHAN_INFO_SCALE: ret = hts221_get_sensor_scale(hw, ch->type, val, val2); break; case IIO_CHAN_INFO_OFFSET: ret = hts221_get_sensor_offset(hw, ch->type, val, val2); break; case IIO_CHAN_INFO_SAMP_FREQ: *val = hw->odr; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: { u8 idx; const struct hts221_avg *avg; switch (ch->type) { case IIO_HUMIDITYRELATIVE: avg = &hts221_avg_list[HTS221_SENSOR_H]; idx = hw->sensors[HTS221_SENSOR_H].cur_avg_idx; *val = avg->avg_avl[idx].avg; ret = IIO_VAL_INT; break; case IIO_TEMP: avg = &hts221_avg_list[HTS221_SENSOR_T]; idx = hw->sensors[HTS221_SENSOR_T].cur_avg_idx; *val = avg->avg_avl[idx].avg; ret = IIO_VAL_INT; break; default: ret = -EINVAL; break; } break; } default: ret = -EINVAL; break; } iio_device_release_direct_mode(iio_dev); return ret; } static int hts221_write_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct hts221_hw *hw = iio_priv(iio_dev); int ret; ret = iio_device_claim_direct_mode(iio_dev); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: ret = hts221_update_odr(hw, val); break; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->type) { case IIO_HUMIDITYRELATIVE: ret = hts221_update_avg(hw, HTS221_SENSOR_H, val); break; case IIO_TEMP: ret = hts221_update_avg(hw, HTS221_SENSOR_T, val); break; default: ret = -EINVAL; break; } break; default: ret = -EINVAL; break; } iio_device_release_direct_mode(iio_dev); return ret; } static int hts221_validate_trigger(struct iio_dev *iio_dev, struct iio_trigger *trig) { struct hts221_hw *hw = iio_priv(iio_dev); return hw->trig == trig ? 0 : -EINVAL; } static IIO_DEVICE_ATTR(in_humidity_oversampling_ratio_available, S_IRUGO, hts221_sysfs_rh_oversampling_avail, NULL, 0); static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available, S_IRUGO, hts221_sysfs_temp_oversampling_avail, NULL, 0); static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(hts221_sysfs_sampling_freq); static struct attribute *hts221_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_humidity_oversampling_ratio_available.dev_attr.attr, &iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr, NULL, }; static const struct attribute_group hts221_attribute_group = { .attrs = hts221_attributes, }; static const struct iio_info hts221_info = { .driver_module = THIS_MODULE, .attrs = &hts221_attribute_group, .read_raw = hts221_read_raw, .write_raw = hts221_write_raw, .validate_trigger = hts221_validate_trigger, }; static const unsigned long hts221_scan_masks[] = {0x3, 0x0}; int hts221_probe(struct iio_dev *iio_dev) { struct hts221_hw *hw = iio_priv(iio_dev); int err; u8 data; mutex_init(&hw->lock); err = hts221_check_whoami(hw); if (err < 0) return err; hw->odr = hts221_odr_table[0].hz; iio_dev->modes = INDIO_DIRECT_MODE; iio_dev->dev.parent = hw->dev; iio_dev->available_scan_masks = hts221_scan_masks; iio_dev->channels = hts221_channels; iio_dev->num_channels = ARRAY_SIZE(hts221_channels); iio_dev->name = HTS221_DEV_NAME; iio_dev->info = &hts221_info; /* configure humidity sensor */ err = hts221_parse_rh_caldata(hw); if (err < 0) { dev_err(hw->dev, "failed to get rh calibration data\n"); return err; } data = hts221_avg_list[HTS221_SENSOR_H].avg_avl[3].avg; err = hts221_update_avg(hw, HTS221_SENSOR_H, data); if (err < 0) { dev_err(hw->dev, "failed to set rh oversampling ratio\n"); return err; } /* configure temperature sensor */ err = hts221_parse_temp_caldata(hw); if (err < 0) { dev_err(hw->dev, "failed to get temperature calibration data\n"); return err; } data = hts221_avg_list[HTS221_SENSOR_T].avg_avl[3].avg; err = hts221_update_avg(hw, HTS221_SENSOR_T, data); if (err < 0) { dev_err(hw->dev, "failed to set temperature oversampling ratio\n"); return err; } if (hw->irq > 0) { err = hts221_allocate_buffers(hw); if (err < 0) return err; err = hts221_allocate_trigger(hw); if (err) return err; } return devm_iio_device_register(hw->dev, iio_dev); } EXPORT_SYMBOL(hts221_probe); static int __maybe_unused hts221_suspend(struct device *dev) { struct iio_dev *iio_dev = dev_get_drvdata(dev); struct hts221_hw *hw = iio_priv(iio_dev); __le16 data = 0; int err; err = hw->tf->write(hw->dev, HTS221_REG_CNTRL1_ADDR, sizeof(data), (u8 *)&data); return err < 0 ? err : 0; } static int __maybe_unused hts221_resume(struct device *dev) { struct iio_dev *iio_dev = dev_get_drvdata(dev); struct hts221_hw *hw = iio_priv(iio_dev); int err = 0; if (hw->enabled) err = hts221_update_odr(hw, hw->odr); return err; } const struct dev_pm_ops hts221_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(hts221_suspend, hts221_resume) }; EXPORT_SYMBOL(hts221_pm_ops); MODULE_AUTHOR("Lorenzo Bianconi "); MODULE_DESCRIPTION("STMicroelectronics hts221 sensor driver"); MODULE_LICENSE("GPL v2");