/* * sbp2.c - SBP-2 protocol driver for IEEE-1394 * * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com) * jamesg@filanet.com (JSG) * * Copyright (C) 2003 Ben Collins <bcollins@debian.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* * Brief Description: * * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394 * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level * driver. It also registers as a SCSI lower-level driver in order to accept * SCSI commands for transport using SBP-2. * * You may access any attached SBP-2 (usually storage devices) as regular * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc.. * * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2 * specification and for where to purchase the official standard. * * TODO: * - look into possible improvements of the SCSI error handlers * - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size * - handle Logical_Unit_Number.ordered * - handle src == 1 in status blocks * - reimplement the DMA mapping in absence of physical DMA so that * bus_to_virt is no longer required * - debug the handling of absent physical DMA * - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection * (this is easy but depends on the previous two TODO items) * - make the parameter serialize_io configurable per device * - move all requests to fetch agent registers into non-atomic context, * replace all usages of sbp2util_node_write_no_wait by true transactions * Grep for inline FIXME comments below. */ #include <linux/blkdev.h> #include <linux/compiler.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/stat.h> #include <linux/string.h> #include <linux/stringify.h> #include <linux/types.h> #include <linux/wait.h> #include <linux/workqueue.h> #include <linux/scatterlist.h> #include <asm/byteorder.h> #include <asm/errno.h> #include <asm/param.h> #include <asm/system.h> #include <asm/types.h> #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA #include <asm/io.h> /* for bus_to_virt */ #endif #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_dbg.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include "csr1212.h" #include "highlevel.h" #include "hosts.h" #include "ieee1394.h" #include "ieee1394_core.h" #include "ieee1394_hotplug.h" #include "ieee1394_transactions.h" #include "ieee1394_types.h" #include "nodemgr.h" #include "sbp2.h" /* * Module load parameter definitions */ /* * Change max_speed on module load if you have a bad IEEE-1394 * controller that has trouble running 2KB packets at 400mb. * * NOTE: On certain OHCI parts I have seen short packets on async transmit * (probably due to PCI latency/throughput issues with the part). You can * bump down the speed if you are running into problems. */ static int sbp2_max_speed = IEEE1394_SPEED_MAX; module_param_named(max_speed, sbp2_max_speed, int, 0644); MODULE_PARM_DESC(max_speed, "Limit data transfer speed (5 <= 3200, " "4 <= 1600, 3 <= 800, 2 <= 400, 1 <= 200, 0 = 100 Mb/s)"); /* * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs. * This is and always has been buggy in multiple subtle ways. See above TODOs. */ static int sbp2_serialize_io = 1; module_param_named(serialize_io, sbp2_serialize_io, bool, 0444); MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers " "(default = Y, faster but buggy = N)"); /* * Adjust max_sectors if you'd like to influence how many sectors each SCSI * command can transfer at most. Please note that some older SBP-2 bridge * chips are broken for transfers greater or equal to 128KB, therefore * max_sectors used to be a safe 255 sectors for many years. We now have a * default of 0 here which means that we let the SCSI stack choose a limit. * * The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds * module parameter or in the sbp2_workarounds_table[], will override the * value of max_sectors. We should use sbp2_workarounds_table[] to cover any * bridge chip which becomes known to need the 255 sectors limit. */ static int sbp2_max_sectors; module_param_named(max_sectors, sbp2_max_sectors, int, 0444); MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported " "(default = 0 = use SCSI stack's default)"); /* * Exclusive login to sbp2 device? In most cases, the sbp2 driver should * do an exclusive login, as it's generally unsafe to have two hosts * talking to a single sbp2 device at the same time (filesystem coherency, * etc.). If you're running an sbp2 device that supports multiple logins, * and you're either running read-only filesystems or some sort of special * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster * File System, or Lustre, then set exclusive_login to zero. * * So far only bridges from Oxford Semiconductor are known to support * concurrent logins. Depending on firmware, four or two concurrent logins * are possible on OXFW911 and newer Oxsemi bridges. */ static int sbp2_exclusive_login = 1; module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644); MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " "(default = Y, use N for concurrent initiators)"); /* * If any of the following workarounds is required for your device to work, * please submit the kernel messages logged by sbp2 to the linux1394-devel * mailing list. * * - 128kB max transfer * Limit transfer size. Necessary for some old bridges. * * - 36 byte inquiry * When scsi_mod probes the device, let the inquiry command look like that * from MS Windows. * * - skip mode page 8 * Suppress sending of mode_sense for mode page 8 if the device pretends to * support the SCSI Primary Block commands instead of Reduced Block Commands. * * - fix capacity * Tell sd_mod to correct the last sector number reported by read_capacity. * Avoids access beyond actual disk limits on devices with an off-by-one bug. * Don't use this with devices which don't have this bug. * * - delay inquiry * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. * * - power condition * Set the power condition field in the START STOP UNIT commands sent by * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). * Some disks need this to spin down or to resume properly. * * - override internal blacklist * Instead of adding to the built-in blacklist, use only the workarounds * specified in the module load parameter. * Useful if a blacklist entry interfered with a non-broken device. */ static int sbp2_default_workarounds; module_param_named(workarounds, sbp2_default_workarounds, int, 0644); MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) ", set power condition in start stop unit = " __stringify(SBP2_WORKAROUND_POWER_CONDITION) ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) ", or a combination)"); /* * This influences the format of the sysfs attribute * /sys/bus/scsi/devices/.../ieee1394_id. * * The default format is like in older kernels: %016Lx:%d:%d * It contains the target's EUI-64, a number given to the logical unit by * the ieee1394 driver's nodemgr (starting at 0), and the LUN. * * The long format is: %016Lx:%06x:%04x * It contains the target's EUI-64, the unit directory's directory_ID as per * IEEE 1212 clause 7.7.19, and the LUN. This format comes closest to the * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI * Architecture Model) rev.2 to 4 annex A. Therefore and because it is * independent of the implementation of the ieee1394 nodemgr, the longer format * is recommended for future use. */ static int sbp2_long_sysfs_ieee1394_id; module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644); MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs " "(default = backwards-compatible = N, SAM-conforming = Y)"); #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args) #define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args) /* * Globals */ static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32); static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *, void (*)(struct scsi_cmnd *)); static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *); static int sbp2_start_device(struct sbp2_lu *); static void sbp2_remove_device(struct sbp2_lu *); static int sbp2_login_device(struct sbp2_lu *); static int sbp2_reconnect_device(struct sbp2_lu *); static int sbp2_logout_device(struct sbp2_lu *); static void sbp2_host_reset(struct hpsb_host *); static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *, u64, size_t, u16); static int sbp2_agent_reset(struct sbp2_lu *, int); static void sbp2_parse_unit_directory(struct sbp2_lu *, struct unit_directory *); static int sbp2_set_busy_timeout(struct sbp2_lu *); static int sbp2_max_speed_and_size(struct sbp2_lu *); static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xa, 0xa, 0xa }; static DEFINE_RWLOCK(sbp2_hi_logical_units_lock); static struct hpsb_highlevel sbp2_highlevel = { .name = SBP2_DEVICE_NAME, .host_reset = sbp2_host_reset, }; static const struct hpsb_address_ops sbp2_ops = { .write = sbp2_handle_status_write }; #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *, u64, size_t, u16); static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64, size_t, u16); static const struct hpsb_address_ops sbp2_physdma_ops = { .read = sbp2_handle_physdma_read, .write = sbp2_handle_physdma_write, }; #endif /* * Interface to driver core and IEEE 1394 core */ static const struct ieee1394_device_id sbp2_id_table[] = { { .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION, .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff, .version = SBP2_SW_VERSION_ENTRY & 0xffffff}, {} }; MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); static int sbp2_probe(struct device *); static int sbp2_remove(struct device *); static int sbp2_update(struct unit_directory *); static struct hpsb_protocol_driver sbp2_driver = { .name = SBP2_DEVICE_NAME, .id_table = sbp2_id_table, .update = sbp2_update, .driver = { .probe = sbp2_probe, .remove = sbp2_remove, }, }; /* * Interface to SCSI core */ static int sbp2scsi_queuecommand(struct scsi_cmnd *, void (*)(struct scsi_cmnd *)); static int sbp2scsi_abort(struct scsi_cmnd *); static int sbp2scsi_reset(struct scsi_cmnd *); static int sbp2scsi_slave_alloc(struct scsi_device *); static int sbp2scsi_slave_configure(struct scsi_device *); static void sbp2scsi_slave_destroy(struct scsi_device *); static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *, struct device_attribute *, char *); static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); static struct device_attribute *sbp2_sysfs_sdev_attrs[] = { &dev_attr_ieee1394_id, NULL }; static struct scsi_host_template sbp2_shost_template = { .module = THIS_MODULE, .name = "SBP-2 IEEE-1394", .proc_name = SBP2_DEVICE_NAME, .queuecommand = sbp2scsi_queuecommand, .eh_abort_handler = sbp2scsi_abort, .eh_device_reset_handler = sbp2scsi_reset, .slave_alloc = sbp2scsi_slave_alloc, .slave_configure = sbp2scsi_slave_configure, .slave_destroy = sbp2scsi_slave_destroy, .this_id = -1, .sg_tablesize = SG_ALL, .use_clustering = ENABLE_CLUSTERING, .cmd_per_lun = SBP2_MAX_CMDS, .can_queue = SBP2_MAX_CMDS, .sdev_attrs = sbp2_sysfs_sdev_attrs, }; #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ /* * List of devices with known bugs. * * The firmware_revision field, masked with 0xffff00, is the best indicator * for the type of bridge chip of a device. It yields a few false positives * but this did not break correctly behaving devices so far. */ static const struct { u32 firmware_revision; u32 model; unsigned workarounds; } sbp2_workarounds_table[] = { /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { .firmware_revision = 0x002800, .model = 0x001010, .workarounds = SBP2_WORKAROUND_INQUIRY_36 | SBP2_WORKAROUND_MODE_SENSE_8 | SBP2_WORKAROUND_POWER_CONDITION, }, /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { .firmware_revision = 0x002800, .model = 0x000000, .workarounds = SBP2_WORKAROUND_POWER_CONDITION, }, /* Initio bridges, actually only needed for some older ones */ { .firmware_revision = 0x000200, .model = SBP2_ROM_VALUE_WILDCARD, .workarounds = SBP2_WORKAROUND_INQUIRY_36, }, /* PL-3507 bridge with Prolific firmware */ { .firmware_revision = 0x012800, .model = SBP2_ROM_VALUE_WILDCARD, .workarounds = SBP2_WORKAROUND_POWER_CONDITION, }, /* Symbios bridge */ { .firmware_revision = 0xa0b800, .model = SBP2_ROM_VALUE_WILDCARD, .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, }, /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { .firmware_revision = 0x002600, .model = SBP2_ROM_VALUE_WILDCARD, .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, }, /* * iPod 2nd generation: needs 128k max transfer size workaround * iPod 3rd generation: needs fix capacity workaround */ { .firmware_revision = 0x0a2700, .model = 0x000000, .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | SBP2_WORKAROUND_FIX_CAPACITY, }, /* iPod 4th generation */ { .firmware_revision = 0x0a2700, .model = 0x000021, .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, }, /* iPod mini */ { .firmware_revision = 0x0a2700, .model = 0x000022, .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, }, /* iPod mini */ { .firmware_revision = 0x0a2700, .model = 0x000023, .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, }, /* iPod Photo */ { .firmware_revision = 0x0a2700, .model = 0x00007e, .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, } }; /************************************** * General utility functions **************************************/ #ifndef __BIG_ENDIAN /* * Converts a buffer from be32 to cpu byte ordering. Length is in bytes. */ static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length) { u32 *temp = buffer; for (length = (length >> 2); length--; ) temp[length] = be32_to_cpu(temp[length]); } /* * Converts a buffer from cpu to be32 byte ordering. Length is in bytes. */ static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length) { u32 *temp = buffer; for (length = (length >> 2); length--; ) temp[length] = cpu_to_be32(temp[length]); } #else /* BIG_ENDIAN */ /* Why waste the cpu cycles? */ #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0) #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0) #endif static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq); /* * Waits for completion of an SBP-2 access request. * Returns nonzero if timed out or prematurely interrupted. */ static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout) { long leftover; leftover = wait_event_interruptible_timeout( sbp2_access_wq, lu->access_complete, timeout); lu->access_complete = 0; return leftover <= 0; } static void sbp2_free_packet(void *packet) { hpsb_free_tlabel(packet); hpsb_free_packet(packet); } /* * This is much like hpsb_node_write(), except it ignores the response * subaction and returns immediately. Can be used from atomic context. */ static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr, quadlet_t *buf, size_t len) { struct hpsb_packet *packet; packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len); if (!packet) return -ENOMEM; hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet); hpsb_node_fill_packet(ne, packet); if (hpsb_send_packet(packet) < 0) { sbp2_free_packet(packet); return -EIO; } return 0; } static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset, quadlet_t *data, size_t len) { /* There is a small window after a bus reset within which the node * entry's generation is current but the reconnect wasn't completed. */ if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET)) return; if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset, data, len)) SBP2_ERR("sbp2util_notify_fetch_agent failed."); /* Now accept new SCSI commands, unless a bus reset happended during * hpsb_node_write. */ if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET)) scsi_unblock_requests(lu->shost); } static void sbp2util_write_orb_pointer(struct work_struct *work) { struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work); quadlet_t data[2]; data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id); data[1] = lu->last_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8); } static void sbp2util_write_doorbell(struct work_struct *work) { struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work); sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4); } static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu) { struct sbp2_command_info *cmd; struct device *dmadev = lu->hi->host->device.parent; int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS; for (i = 0; i < orbs; i++) { cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (!cmd) goto failed_alloc; cmd->command_orb_dma = dma_map_single(dmadev, &cmd->command_orb, sizeof(struct sbp2_command_orb), DMA_TO_DEVICE); if (dma_mapping_error(dmadev, cmd->command_orb_dma)) goto failed_orb; cmd->sge_dma = dma_map_single(dmadev, &cmd->scatter_gather_element, sizeof(cmd->scatter_gather_element), DMA_TO_DEVICE); if (dma_mapping_error(dmadev, cmd->sge_dma)) goto failed_sge; INIT_LIST_HEAD(&cmd->list); list_add_tail(&cmd->list, &lu->cmd_orb_completed); } return 0; failed_sge: dma_unmap_single(dmadev, cmd->command_orb_dma, sizeof(struct sbp2_command_orb), DMA_TO_DEVICE); failed_orb: kfree(cmd); failed_alloc: return -ENOMEM; } static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu, struct hpsb_host *host) { struct list_head *lh, *next; struct sbp2_command_info *cmd; unsigned long flags; spin_lock_irqsave(&lu->cmd_orb_lock, flags); if (!list_empty(&lu->cmd_orb_completed)) list_for_each_safe(lh, next, &lu->cmd_orb_completed) { cmd = list_entry(lh, struct sbp2_command_info, list); dma_unmap_single(host->device.parent, cmd->command_orb_dma, sizeof(struct sbp2_command_orb), DMA_TO_DEVICE); dma_unmap_single(host->device.parent, cmd->sge_dma, sizeof(cmd->scatter_gather_element), DMA_TO_DEVICE); kfree(cmd); } spin_unlock_irqrestore(&lu->cmd_orb_lock, flags); return; } /* * Finds the sbp2_command for a given outstanding command ORB. * Only looks at the in-use list. */ static struct sbp2_command_info *sbp2util_find_command_for_orb( struct sbp2_lu *lu, dma_addr_t orb) { struct sbp2_command_info *cmd; unsigned long flags; spin_lock_irqsave(&lu->cmd_orb_lock, flags); if (!list_empty(&lu->cmd_orb_inuse)) list_for_each_entry(cmd, &lu->cmd_orb_inuse, list) if (cmd->command_orb_dma == orb) { spin_unlock_irqrestore( &lu->cmd_orb_lock, flags); return cmd; } spin_unlock_irqrestore(&lu->cmd_orb_lock, flags); return NULL; } /* * Finds the sbp2_command for a given outstanding SCpnt. * Only looks at the in-use list. * Must be called with lu->cmd_orb_lock held. */ static struct sbp2_command_info *sbp2util_find_command_for_SCpnt( struct sbp2_lu *lu, void *SCpnt) { struct sbp2_command_info *cmd; if (!list_empty(&lu->cmd_orb_inuse)) list_for_each_entry(cmd, &lu->cmd_orb_inuse, list) if (cmd->Current_SCpnt == SCpnt) return cmd; return NULL; } static struct sbp2_command_info *sbp2util_allocate_command_orb( struct sbp2_lu *lu, struct scsi_cmnd *Current_SCpnt, void (*Current_done)(struct scsi_cmnd *)) { struct list_head *lh; struct sbp2_command_info *cmd = NULL; unsigned long flags; spin_lock_irqsave(&lu->cmd_orb_lock, flags); if (!list_empty(&lu->cmd_orb_completed)) { lh = lu->cmd_orb_completed.next; list_del(lh); cmd = list_entry(lh, struct sbp2_command_info, list); cmd->Current_done = Current_done; cmd->Current_SCpnt = Current_SCpnt; list_add_tail(&cmd->list, &lu->cmd_orb_inuse); } else SBP2_ERR("%s: no orbs available", __func__); spin_unlock_irqrestore(&lu->cmd_orb_lock, flags); return cmd; } /* * Unmaps the DMAs of a command and moves the command to the completed ORB list. * Must be called with lu->cmd_orb_lock held. */ static void sbp2util_mark_command_completed(struct sbp2_lu *lu, struct sbp2_command_info *cmd) { if (scsi_sg_count(cmd->Current_SCpnt)) dma_unmap_sg(lu->ud->ne->host->device.parent, scsi_sglist(cmd->Current_SCpnt), scsi_sg_count(cmd->Current_SCpnt), cmd->Current_SCpnt->sc_data_direction); list_move_tail(&cmd->list, &lu->cmd_orb_completed); } /* * Is lu valid? Is the 1394 node still present? */ static inline int sbp2util_node_is_available(struct sbp2_lu *lu) { return lu && lu->ne && !lu->ne->in_limbo; } /********************************************* * IEEE-1394 core driver stack related section *********************************************/ static int sbp2_probe(struct device *dev) { struct unit_directory *ud; struct sbp2_lu *lu; ud = container_of(dev, struct unit_directory, device); /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s) * instead. */ if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY) return -ENODEV; lu = sbp2_alloc_device(ud); if (!lu) return -ENOMEM; sbp2_parse_unit_directory(lu, ud); return sbp2_start_device(lu); } static int sbp2_remove(struct device *dev) { struct unit_directory *ud; struct sbp2_lu *lu; struct scsi_device *sdev; ud = container_of(dev, struct unit_directory, device); lu = dev_get_drvdata(&ud->device); if (!lu) return 0; if (lu->shost) { /* Get rid of enqueued commands if there is no chance to * send them. */ if (!sbp2util_node_is_available(lu)) sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT); /* scsi_remove_device() may trigger shutdown functions of SCSI * highlevel drivers which would deadlock if blocked. */ atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN); scsi_unblock_requests(lu->shost); } sdev = lu->sdev; if (sdev) { lu->sdev = NULL; scsi_remove_device(sdev); } sbp2_logout_device(lu); sbp2_remove_device(lu); return 0; } static int sbp2_update(struct unit_directory *ud) { struct sbp2_lu *lu = dev_get_drvdata(&ud->device); if (sbp2_reconnect_device(lu) != 0) { /* * Reconnect failed. If another bus reset happened, * let nodemgr proceed and call sbp2_update again later * (or sbp2_remove if this node went away). */ if (!hpsb_node_entry_valid(lu->ne)) return 0; /* * Or the target rejected the reconnect because we weren't * fast enough. Try a regular login, but first log out * just in case of any weirdness. */ sbp2_logout_device(lu); if (sbp2_login_device(lu) != 0) { if (!hpsb_node_entry_valid(lu->ne)) return 0; /* Maybe another initiator won the login. */ SBP2_ERR("Failed to reconnect to sbp2 device!"); return -EBUSY; } } sbp2_set_busy_timeout(lu); sbp2_agent_reset(lu, 1); sbp2_max_speed_and_size(lu); /* Complete any pending commands with busy (so they get retried) * and remove them from our queue. */ sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY); /* Accept new commands unless there was another bus reset in the * meantime. */ if (hpsb_node_entry_valid(lu->ne)) { atomic_set(&lu->state, SBP2LU_STATE_RUNNING); scsi_unblock_requests(lu->shost); } return 0; } static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud) { struct sbp2_fwhost_info *hi; struct Scsi_Host *shost = NULL; struct sbp2_lu *lu = NULL; unsigned long flags; lu = kzalloc(sizeof(*lu), GFP_KERNEL); if (!lu) { SBP2_ERR("failed to create lu"); goto failed_alloc; } lu->ne = ud->ne; lu->ud = ud; lu->speed_code = IEEE1394_SPEED_100; lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100]; lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE; INIT_LIST_HEAD(&lu->cmd_orb_inuse); INIT_LIST_HEAD(&lu->cmd_orb_completed); INIT_LIST_HEAD(&lu->lu_list); spin_lock_init(&lu->cmd_orb_lock); atomic_set(&lu->state, SBP2LU_STATE_RUNNING); INIT_WORK(&lu->protocol_work, NULL); dev_set_drvdata(&ud->device, lu); hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host); if (!hi) { hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host, sizeof(*hi)); if (!hi) { SBP2_ERR("failed to allocate hostinfo"); goto failed_alloc; } hi->host = ud->ne->host; INIT_LIST_HEAD(&hi->logical_units); #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA /* Handle data movement if physical dma is not * enabled or not supported on host controller */ if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host, &sbp2_physdma_ops, 0x0ULL, 0xfffffffcULL)) { SBP2_ERR("failed to register lower 4GB address range"); goto failed_alloc; } #endif } if (dma_get_max_seg_size(hi->host->device.parent) > SBP2_MAX_SEG_SIZE) BUG_ON(dma_set_max_seg_size(hi->host->device.parent, SBP2_MAX_SEG_SIZE)); /* Prevent unloading of the 1394 host */ if (!try_module_get(hi->host->driver->owner)) { SBP2_ERR("failed to get a reference on 1394 host driver"); goto failed_alloc; } lu->hi = hi; write_lock_irqsave(&sbp2_hi_logical_units_lock, flags); list_add_tail(&lu->lu_list, &hi->logical_units); write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags); /* Register the status FIFO address range. We could use the same FIFO * for targets at different nodes. However we need different FIFOs per * target in order to support multi-unit devices. * The FIFO is located out of the local host controller's physical range * but, if possible, within the posted write area. Status writes will * then be performed as unified transactions. This slightly reduces * bandwidth usage, and some Prolific based devices seem to require it. */ lu->status_fifo_addr = hpsb_allocate_and_register_addrspace( &sbp2_highlevel, ud->ne->host, &sbp2_ops, sizeof(struct sbp2_status_block), sizeof(quadlet_t), ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END); if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) { SBP2_ERR("failed to allocate status FIFO address range"); goto failed_alloc; } shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long)); if (!shost) { SBP2_ERR("failed to register scsi host"); goto failed_alloc; } shost->hostdata[0] = (unsigned long)lu; shost->max_cmd_len = SBP2_MAX_CDB_SIZE; if (!scsi_add_host(shost, &ud->device)) { lu->shost = shost; return lu; } SBP2_ERR("failed to add scsi host"); scsi_host_put(shost); failed_alloc: sbp2_remove_device(lu); return NULL; } static void sbp2_host_reset(struct hpsb_host *host) { struct sbp2_fwhost_info *hi; struct sbp2_lu *lu; unsigned long flags; hi = hpsb_get_hostinfo(&sbp2_highlevel, host); if (!hi) return; read_lock_irqsave(&sbp2_hi_logical_units_lock, flags); list_for_each_entry(lu, &hi->logical_units, lu_list) if (atomic_cmpxchg(&lu->state, SBP2LU_STATE_RUNNING, SBP2LU_STATE_IN_RESET) == SBP2LU_STATE_RUNNING) scsi_block_requests(lu->shost); read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags); } static int sbp2_start_device(struct sbp2_lu *lu) { struct sbp2_fwhost_info *hi = lu->hi; int error; lu->login_response = dma_alloc_coherent(hi->host->device.parent, sizeof(struct sbp2_login_response), &lu->login_response_dma, GFP_KERNEL); if (!lu->login_response) goto alloc_fail; lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent, sizeof(struct sbp2_query_logins_orb), &lu->query_logins_orb_dma, GFP_KERNEL); if (!lu->query_logins_orb) goto alloc_fail; lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent, sizeof(struct sbp2_query_logins_response), &lu->query_logins_response_dma, GFP_KERNEL); if (!lu->query_logins_response) goto alloc_fail; lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent, sizeof(struct sbp2_reconnect_orb), &lu->reconnect_orb_dma, GFP_KERNEL); if (!lu->reconnect_orb) goto alloc_fail; lu->logout_orb = dma_alloc_coherent(hi->host->device.parent, sizeof(struct sbp2_logout_orb), &lu->logout_orb_dma, GFP_KERNEL); if (!lu->logout_orb) goto alloc_fail; lu->login_orb = dma_alloc_coherent(hi->host->device.parent, sizeof(struct sbp2_login_orb), &lu->login_orb_dma, GFP_KERNEL); if (!lu->login_orb) goto alloc_fail; if (sbp2util_create_command_orb_pool(lu)) goto alloc_fail; /* Wait a second before trying to log in. Previously logged in * initiators need a chance to reconnect. */ if (msleep_interruptible(1000)) { sbp2_remove_device(lu); return -EINTR; } if (sbp2_login_device(lu)) { sbp2_remove_device(lu); return -EBUSY; } sbp2_set_busy_timeout(lu); sbp2_agent_reset(lu, 1); sbp2_max_speed_and_size(lu); if (lu->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) ssleep(SBP2_INQUIRY_DELAY); error = scsi_add_device(lu->shost, 0, lu->ud->id, 0); if (error) { SBP2_ERR("scsi_add_device failed"); sbp2_logout_device(lu); sbp2_remove_device(lu); return error; } return 0; alloc_fail: SBP2_ERR("Could not allocate memory for lu"); sbp2_remove_device(lu); return -ENOMEM; } static void sbp2_remove_device(struct sbp2_lu *lu) { struct sbp2_fwhost_info *hi; unsigned long flags; if (!lu) return; hi = lu->hi; if (!hi) goto no_hi; if (lu->shost) { scsi_remove_host(lu->shost); scsi_host_put(lu->shost); } flush_scheduled_work(); sbp2util_remove_command_orb_pool(lu, hi->host); write_lock_irqsave(&sbp2_hi_logical_units_lock, flags); list_del(&lu->lu_list); write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags); if (lu->login_response) dma_free_coherent(hi->host->device.parent, sizeof(struct sbp2_login_response), lu->login_response, lu->login_response_dma); if (lu->login_orb) dma_free_coherent(hi->host->device.parent, sizeof(struct sbp2_login_orb), lu->login_orb, lu->login_orb_dma); if (lu->reconnect_orb) dma_free_coherent(hi->host->device.parent, sizeof(struct sbp2_reconnect_orb), lu->reconnect_orb, lu->reconnect_orb_dma); if (lu->logout_orb) dma_free_coherent(hi->host->device.parent, sizeof(struct sbp2_logout_orb), lu->logout_orb, lu->logout_orb_dma); if (lu->query_logins_orb) dma_free_coherent(hi->host->device.parent, sizeof(struct sbp2_query_logins_orb), lu->query_logins_orb, lu->query_logins_orb_dma); if (lu->query_logins_response) dma_free_coherent(hi->host->device.parent, sizeof(struct sbp2_query_logins_response), lu->query_logins_response, lu->query_logins_response_dma); if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE) hpsb_unregister_addrspace(&sbp2_highlevel, hi->host, lu->status_fifo_addr); dev_set_drvdata(&lu->ud->device, NULL); module_put(hi->host->driver->owner); no_hi: kfree(lu); } #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA /* * Deal with write requests on adapters which do not support physical DMA or * have it switched off. */ static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid, int destid, quadlet_t *data, u64 addr, size_t length, u16 flags) { memcpy(bus_to_virt((u32) addr), data, length); return RCODE_COMPLETE; } /* * Deal with read requests on adapters which do not support physical DMA or * have it switched off. */ static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid, quadlet_t *data, u64 addr, size_t length, u16 flags) { memcpy(data, bus_to_virt((u32) addr), length); return RCODE_COMPLETE; } #endif /************************************** * SBP-2 protocol related section **************************************/ static int sbp2_query_logins(struct sbp2_lu *lu) { struct sbp2_fwhost_info *hi = lu->hi; quadlet_t data[2]; int max_logins; int active_logins; lu->query_logins_orb->reserved1 = 0x0; lu->query_logins_orb->reserved2 = 0x0; lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma; lu->query_logins_orb->query_response_hi = ORB_SET_NODE_ID(hi->host->node_id); lu->query_logins_orb->lun_misc = ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST); lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1); lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun); lu->query_logins_orb->reserved_resp_length = ORB_SET_QUERY_LOGINS_RESP_LENGTH( sizeof(struct sbp2_query_logins_response)); lu->query_logins_orb->status_fifo_hi = ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id); lu->query_logins_orb->status_fifo_lo = ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr); sbp2util_cpu_to_be32_buffer(lu->query_logins_orb, sizeof(struct sbp2_query_logins_orb)); memset(lu->query_logins_response, 0, sizeof(struct sbp2_query_logins_response)); data[0] = ORB_SET_NODE_ID(hi->host->node_id); data[1] = lu->query_logins_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8); if (sbp2util_access_timeout(lu, 2*HZ)) { SBP2_INFO("Error querying logins to SBP-2 device - timed out"); return -EIO; } if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) { SBP2_INFO("Error querying logins to SBP-2 device - timed out"); return -EIO; } if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) { SBP2_INFO("Error querying logins to SBP-2 device - failed"); return -EIO; } sbp2util_cpu_to_be32_buffer(lu->query_logins_response, sizeof(struct sbp2_query_logins_response)); max_logins = RESPONSE_GET_MAX_LOGINS( lu->query_logins_response->length_max_logins); SBP2_INFO("Maximum concurrent logins supported: %d", max_logins); active_logins = RESPONSE_GET_ACTIVE_LOGINS( lu->query_logins_response->length_max_logins); SBP2_INFO("Number of active logins: %d", active_logins); if (active_logins >= max_logins) { return -EIO; } return 0; } static int sbp2_login_device(struct sbp2_lu *lu) { struct sbp2_fwhost_info *hi = lu->hi; quadlet_t data[2]; if (!lu->login_orb) return -EIO; if (!sbp2_exclusive_login && sbp2_query_logins(lu)) { SBP2_INFO("Device does not support any more concurrent logins"); return -EIO; } /* assume no password */ lu->login_orb->password_hi = 0; lu->login_orb->password_lo = 0; lu->login_orb->login_response_lo = lu->login_response_dma; lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id); lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST); /* one second reconnect time */ lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0); lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login); lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1); lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun); lu->login_orb->passwd_resp_lengths = ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response)); lu->login_orb->status_fifo_hi = ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id); lu->login_orb->status_fifo_lo = ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr); sbp2util_cpu_to_be32_buffer(lu->login_orb, sizeof(struct sbp2_login_orb)); memset(lu->login_response, 0, sizeof(struct sbp2_login_response)); data[0] = ORB_SET_NODE_ID(hi->host->node_id); data[1] = lu->login_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8); /* wait up to 20 seconds for login status */ if (sbp2util_access_timeout(lu, 20*HZ)) { SBP2_ERR("Error logging into SBP-2 device - timed out"); return -EIO; } /* make sure that the returned status matches the login ORB */ if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) { SBP2_ERR("Error logging into SBP-2 device - timed out"); return -EIO; } if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) { SBP2_ERR("Error logging into SBP-2 device - failed"); return -EIO; } sbp2util_cpu_to_be32_buffer(lu->login_response, sizeof(struct sbp2_login_response)); lu->command_block_agent_addr = ((u64)lu->login_response->command_block_agent_hi) << 32; lu->command_block_agent_addr |= ((u64)lu->login_response->command_block_agent_lo); lu->command_block_agent_addr &= 0x0000ffffffffffffULL; SBP2_INFO("Logged into SBP-2 device"); return 0; } static int sbp2_logout_device(struct sbp2_lu *lu) { struct sbp2_fwhost_info *hi = lu->hi; quadlet_t data[2]; int error; lu->logout_orb->reserved1 = 0x0; lu->logout_orb->reserved2 = 0x0; lu->logout_orb->reserved3 = 0x0; lu->logout_orb->reserved4 = 0x0; lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST); lu->logout_orb->login_ID_misc |= ORB_SET_LOGIN_ID(lu->login_response->length_login_ID); lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1); lu->logout_orb->reserved5 = 0x0; lu->logout_orb->status_fifo_hi = ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id); lu->logout_orb->status_fifo_lo = ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr); sbp2util_cpu_to_be32_buffer(lu->logout_orb, sizeof(struct sbp2_logout_orb)); data[0] = ORB_SET_NODE_ID(hi->host->node_id); data[1] = lu->logout_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8); if (error) return error; /* wait up to 1 second for the device to complete logout */ if (sbp2util_access_timeout(lu, HZ)) return -EIO; SBP2_INFO("Logged out of SBP-2 device"); return 0; } static int sbp2_reconnect_device(struct sbp2_lu *lu) { struct sbp2_fwhost_info *hi = lu->hi; quadlet_t data[2]; int error; lu->reconnect_orb->reserved1 = 0x0; lu->reconnect_orb->reserved2 = 0x0; lu->reconnect_orb->reserved3 = 0x0; lu->reconnect_orb->reserved4 = 0x0; lu->reconnect_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST); lu->reconnect_orb->login_ID_misc |= ORB_SET_LOGIN_ID(lu->login_response->length_login_ID); lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1); lu->reconnect_orb->reserved5 = 0x0; lu->reconnect_orb->status_fifo_hi = ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id); lu->reconnect_orb->status_fifo_lo = ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr); sbp2util_cpu_to_be32_buffer(lu->reconnect_orb, sizeof(struct sbp2_reconnect_orb)); data[0] = ORB_SET_NODE_ID(hi->host->node_id); data[1] = lu->reconnect_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8); if (error) return error; /* wait up to 1 second for reconnect status */ if (sbp2util_access_timeout(lu, HZ)) { SBP2_ERR("Error reconnecting to SBP-2 device - timed out"); return -EIO; } /* make sure that the returned status matches the reconnect ORB */ if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) { SBP2_ERR("Error reconnecting to SBP-2 device - timed out"); return -EIO; } if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) { SBP2_ERR("Error reconnecting to SBP-2 device - failed"); return -EIO; } SBP2_INFO("Reconnected to SBP-2 device"); return 0; } /* * Set the target node's Single Phase Retry limit. Affects the target's retry * behaviour if our node is too busy to accept requests. */ static int sbp2_set_busy_timeout(struct sbp2_lu *lu) { quadlet_t data; data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE); if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4)) SBP2_ERR("%s error", __func__); return 0; } static void sbp2_parse_unit_directory(struct sbp2_lu *lu, struct unit_directory *ud) { struct csr1212_keyval *kv; struct csr1212_dentry *dentry; u64 management_agent_addr; u32 unit_characteristics, firmware_revision, model; unsigned workarounds; int i; management_agent_addr = 0; unit_characteristics = 0; firmware_revision = SBP2_ROM_VALUE_MISSING; model = ud->flags & UNIT_DIRECTORY_MODEL_ID ? ud->model_id : SBP2_ROM_VALUE_MISSING; csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) { switch (kv->key.id) { case CSR1212_KV_ID_DEPENDENT_INFO: if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET) management_agent_addr = CSR1212_REGISTER_SPACE_BASE + (kv->value.csr_offset << 2); else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) lu->lun = ORB_SET_LUN(kv->value.immediate); break; case SBP2_UNIT_CHARACTERISTICS_KEY: /* FIXME: This is ignored so far. * See SBP-2 clause 7.4.8. */ unit_characteristics = kv->value.immediate; break; case SBP2_FIRMWARE_REVISION_KEY: firmware_revision = kv->value.immediate; break; default: /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY. * Its "ordered" bit has consequences for command ORB * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */ break; } } workarounds = sbp2_default_workarounds; if (!(workarounds & SBP2_WORKAROUND_OVERRIDE)) for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { if (sbp2_workarounds_table[i].firmware_revision != SBP2_ROM_VALUE_WILDCARD && sbp2_workarounds_table[i].firmware_revision != (firmware_revision & 0xffff00)) continue; if (sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD && sbp2_workarounds_table[i].model != model) continue; workarounds |= sbp2_workarounds_table[i].workarounds; break; } if (workarounds) SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x " "(firmware_revision 0x%06x, vendor_id 0x%06x," " model_id 0x%06x)", NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid), workarounds, firmware_revision, ud->vendor_id, model); /* We would need one SCSI host template for each target to adjust * max_sectors on the fly, therefore warn only. */ if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS && (sbp2_max_sectors * 512) > (128 * 1024)) SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB " "max transfer size. WARNING: Current max_sectors " "setting is larger than 128KB (%d sectors)", NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid), sbp2_max_sectors); /* If this is a logical unit directory entry, process the parent * to get the values. */ if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) { struct unit_directory *parent_ud = container_of( ud->device.parent, struct unit_directory, device); sbp2_parse_unit_directory(lu, parent_ud); } else { lu->management_agent_addr = management_agent_addr; lu->workarounds = workarounds; if (ud->flags & UNIT_DIRECTORY_HAS_LUN) lu->lun = ORB_SET_LUN(ud->lun); } } #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2)) /* * This function is called in order to determine the max speed and packet * size we can use in our ORBs. Note, that we (the driver and host) only * initiate the transaction. The SBP-2 device actually transfers the data * (by reading from the DMA area we tell it). This means that the SBP-2 * device decides the actual maximum data it can transfer. We just tell it * the speed that it needs to use, and the max_rec the host supports, and * it takes care of the rest. */ static int sbp2_max_speed_and_size(struct sbp2_lu *lu) { struct sbp2_fwhost_info *hi = lu->hi; u8 payload; lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)]; if (lu->speed_code > sbp2_max_speed) { lu->speed_code = sbp2_max_speed; SBP2_INFO("Reducing speed to %s", hpsb_speedto_str[sbp2_max_speed]); } /* Payload size is the lesser of what our speed supports and what * our host supports. */ payload = min(sbp2_speedto_max_payload[lu->speed_code], (u8) (hi->host->csr.max_rec - 1)); /* If physical DMA is off, work around limitation in ohci1394: * packet size must not exceed PAGE_SIZE */ if (lu->ne->host->low_addr_space < (1ULL << 32)) while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE && payload) payload--; SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]", NODE_BUS_ARGS(hi->host, lu->ne->nodeid), hpsb_speedto_str[lu->speed_code], SBP2_PAYLOAD_TO_BYTES(payload)); lu->max_payload_size = payload; return 0; } static int sbp2_agent_reset(struct sbp2_lu *lu, int wait) { quadlet_t data; u64 addr; int retval; unsigned long flags; /* flush lu->protocol_work */ if (wait) flush_scheduled_work(); data = ntohl(SBP2_AGENT_RESET_DATA); addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET; if (wait) retval = hpsb_node_write(lu->ne, addr, &data, 4); else retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4); if (retval < 0) { SBP2_ERR("hpsb_node_write failed.\n"); return -EIO; } /* make sure that the ORB_POINTER is written on next command */ spin_lock_irqsave(&lu->cmd_orb_lock, flags); lu->last_orb = NULL; spin_unlock_irqrestore(&lu->cmd_orb_lock, flags); return 0; } static int sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb, struct sbp2_fwhost_info *hi, struct sbp2_command_info *cmd, unsigned int sg_count, struct scatterlist *sg, u32 orb_direction, enum dma_data_direction dma_dir) { struct device *dmadev = hi->host->device.parent; struct sbp2_unrestricted_page_table *pt; int i, n; n = dma_map_sg(dmadev, sg, sg_count, dma_dir); if (n == 0) return -ENOMEM; orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id); orb->misc |= ORB_SET_DIRECTION(orb_direction); /* special case if only one element (and less than 64KB in size) */ if (n == 1) { orb->misc |= ORB_SET_DATA_SIZE(sg_dma_len(sg)); orb->data_descriptor_lo = sg_dma_address(sg); } else { pt = &cmd->scatter_gather_element[0]; dma_sync_single_for_cpu(dmadev, cmd->sge_dma, sizeof(cmd->scatter_gather_element), DMA_TO_DEVICE); for_each_sg(sg, sg, n, i) { pt[i].high = cpu_to_be32(sg_dma_len(sg) << 16); pt[i].low = cpu_to_be32(sg_dma_address(sg)); } orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1) | ORB_SET_DATA_SIZE(n); orb->data_descriptor_lo = cmd->sge_dma; dma_sync_single_for_device(dmadev, cmd->sge_dma, sizeof(cmd->scatter_gather_element), DMA_TO_DEVICE); } return 0; } static int sbp2_create_command_orb(struct sbp2_lu *lu, struct sbp2_command_info *cmd, struct scsi_cmnd *SCpnt) { struct device *dmadev = lu->hi->host->device.parent; struct sbp2_command_orb *orb = &cmd->command_orb; unsigned int scsi_request_bufflen = scsi_bufflen(SCpnt); enum dma_data_direction dma_dir = SCpnt->sc_data_direction; u32 orb_direction; int ret; dma_sync_single_for_cpu(dmadev, cmd->command_orb_dma, sizeof(struct sbp2_command_orb), DMA_TO_DEVICE); /* * Set-up our command ORB. * * NOTE: We're doing unrestricted page tables (s/g), as this is * best performance (at least with the devices I have). This means * that data_size becomes the number of s/g elements, and * page_size should be zero (for unrestricted). */ orb->next_ORB_hi = ORB_SET_NULL_PTR(1); orb->next_ORB_lo = 0x0; orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size); orb->misc |= ORB_SET_SPEED(lu->speed_code); orb->misc |= ORB_SET_NOTIFY(1); if (dma_dir == DMA_NONE) orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER; else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen) orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA; else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen) orb_direction = ORB_DIRECTION_READ_FROM_MEDIA; else { SBP2_INFO("Falling back to DMA_NONE"); orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER; } /* set up our page table stuff */ if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) { orb->data_descriptor_hi = 0x0; orb->data_descriptor_lo = 0x0; orb->misc |= ORB_SET_DIRECTION(1); ret = 0; } else { ret = sbp2_prep_command_orb_sg(orb, lu->hi, cmd, scsi_sg_count(SCpnt), scsi_sglist(SCpnt), orb_direction, dma_dir); } sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb)); memset(orb->cdb, 0, sizeof(orb->cdb)); memcpy(orb->cdb, SCpnt->cmnd, SCpnt->cmd_len); dma_sync_single_for_device(dmadev, cmd->command_orb_dma, sizeof(struct sbp2_command_orb), DMA_TO_DEVICE); return ret; } static void sbp2_link_orb_command(struct sbp2_lu *lu, struct sbp2_command_info *cmd) { struct sbp2_fwhost_info *hi = lu->hi; struct sbp2_command_orb *last_orb; dma_addr_t last_orb_dma; u64 addr = lu->command_block_agent_addr; quadlet_t data[2]; size_t length; unsigned long flags; /* check to see if there are any previous orbs to use */ spin_lock_irqsave(&lu->cmd_orb_lock, flags); last_orb = lu->last_orb; last_orb_dma = lu->last_orb_dma; if (!last_orb) { /* * last_orb == NULL means: We know that the target's fetch agent * is not active right now. */ addr += SBP2_ORB_POINTER_OFFSET; data[0] = ORB_SET_NODE_ID(hi->host->node_id); data[1] = cmd->command_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); length = 8; } else { /* * last_orb != NULL means: We know that the target's fetch agent * is (very probably) not dead or in reset state right now. * We have an ORB already sent that we can append a new one to. * The target's fetch agent may or may not have read this * previous ORB yet. */ dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma, sizeof(struct sbp2_command_orb), DMA_TO_DEVICE); last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma); wmb(); /* Tells hardware that this pointer is valid */ last_orb->next_ORB_hi = 0; dma_sync_single_for_device(hi->host->device.parent, last_orb_dma, sizeof(struct sbp2_command_orb), DMA_TO_DEVICE); addr += SBP2_DOORBELL_OFFSET; data[0] = 0; length = 4; } lu->last_orb = &cmd->command_orb; lu->last_orb_dma = cmd->command_orb_dma; spin_unlock_irqrestore(&lu->cmd_orb_lock, flags); if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) { /* * sbp2util_node_write_no_wait failed. We certainly ran out * of transaction labels, perhaps just because there were no * context switches which gave khpsbpkt a chance to collect * free tlabels. Try again in non-atomic context. If necessary, * the workqueue job will sleep to guaranteedly get a tlabel. * We do not accept new commands until the job is over. */ scsi_block_requests(lu->shost); PREPARE_WORK(&lu->protocol_work, last_orb ? sbp2util_write_doorbell: sbp2util_write_orb_pointer); schedule_work(&lu->protocol_work); } } static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *)) { struct sbp2_command_info *cmd; cmd = sbp2util_allocate_command_orb(lu, SCpnt, done); if (!cmd) return -EIO; if (sbp2_create_command_orb(lu, cmd, SCpnt)) return -ENOMEM; sbp2_link_orb_command(lu, cmd); return 0; } /* * Translates SBP-2 status into SCSI sense data for check conditions */ static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status, unchar *sense_data) { /* OK, it's pretty ugly... ;-) */ sense_data[0] = 0x70; sense_data[1] = 0x0; sense_data[2] = sbp2_status[9]; sense_data[3] = sbp2_status[12]; sense_data[4] = sbp2_status[13]; sense_data[5] = sbp2_status[14]; sense_data[6] = sbp2_status[15]; sense_data[7] = 10; sense_data[8] = sbp2_status[16]; sense_data[9] = sbp2_status[17]; sense_data[10] = sbp2_status[18]; sense_data[11] = sbp2_status[19]; sense_data[12] = sbp2_status[10]; sense_data[13] = sbp2_status[11]; sense_data[14] = sbp2_status[20]; sense_data[15] = sbp2_status[21]; return sbp2_status[8] & 0x3f; } static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid, int destid, quadlet_t *data, u64 addr, size_t length, u16 fl) { struct sbp2_fwhost_info *hi; struct sbp2_lu *lu = NULL, *lu_tmp; struct scsi_cmnd *SCpnt = NULL; struct sbp2_status_block *sb; u32 scsi_status = SBP2_SCSI_STATUS_GOOD; struct sbp2_command_info *cmd; unsigned long flags; if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) { SBP2_ERR("Wrong size of status block"); return RCODE_ADDRESS_ERROR; } if (unlikely(!host)) { SBP2_ERR("host is NULL - this is bad!"); return RCODE_ADDRESS_ERROR; } hi = hpsb_get_hostinfo(&sbp2_highlevel, host); if (unlikely(!hi)) { SBP2_ERR("host info is NULL - this is bad!"); return RCODE_ADDRESS_ERROR; } /* Find the unit which wrote the status. */ read_lock_irqsave(&sbp2_hi_logical_units_lock, flags); list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) { if (lu_tmp->ne->nodeid == nodeid && lu_tmp->status_fifo_addr == addr) { lu = lu_tmp; break; } } read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags); if (unlikely(!lu)) { SBP2_ERR("lu is NULL - device is gone?"); return RCODE_ADDRESS_ERROR; } /* Put response into lu status fifo buffer. The first two bytes * come in big endian bit order. Often the target writes only a * truncated status block, minimally the first two quadlets. The rest * is implied to be zeros. */ sb = &lu->status_block; memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent)); memcpy(sb, data, length); sbp2util_be32_to_cpu_buffer(sb, 8); /* Ignore unsolicited status. Handle command ORB status. */ if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2)) cmd = NULL; else cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo); if (cmd) { /* Grab SCSI command pointers and check status. */ /* * FIXME: If the src field in the status is 1, the ORB DMA must * not be reused until status for a subsequent ORB is received. */ SCpnt = cmd->Current_SCpnt; spin_lock_irqsave(&lu->cmd_orb_lock, flags); sbp2util_mark_command_completed(lu, cmd); spin_unlock_irqrestore(&lu->cmd_orb_lock, flags); if (SCpnt) { u32 h = sb->ORB_offset_hi_misc; u32 r = STATUS_GET_RESP(h); if (r != RESP_STATUS_REQUEST_COMPLETE) { SBP2_INFO("resp 0x%x, sbp_status 0x%x", r, STATUS_GET_SBP_STATUS(h)); scsi_status = r == RESP_STATUS_TRANSPORT_FAILURE ? SBP2_SCSI_STATUS_BUSY : SBP2_SCSI_STATUS_COMMAND_TERMINATED; } if (STATUS_GET_LEN(h) > 1) scsi_status = sbp2_status_to_sense_data( (unchar *)sb, SCpnt->sense_buffer); if (STATUS_TEST_DEAD(h)) sbp2_agent_reset(lu, 0); } /* Check here to see if there are no commands in-use. If there * are none, we know that the fetch agent left the active state * _and_ that we did not reactivate it yet. Therefore clear * last_orb so that next time we write directly to the * ORB_POINTER register. That way the fetch agent does not need * to refetch the next_ORB. */ spin_lock_irqsave(&lu->cmd_orb_lock, flags); if (list_empty(&lu->cmd_orb_inuse)) lu->last_orb = NULL; spin_unlock_irqrestore(&lu->cmd_orb_lock, flags); } else { /* It's probably status after a management request. */ if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) || (sb->ORB_offset_lo == lu->login_orb_dma) || (sb->ORB_offset_lo == lu->query_logins_orb_dma) || (sb->ORB_offset_lo == lu->logout_orb_dma)) { lu->access_complete = 1; wake_up_interruptible(&sbp2_access_wq); } } if (SCpnt) sbp2scsi_complete_command(lu, scsi_status, SCpnt, cmd->Current_done); return RCODE_COMPLETE; } /************************************** * SCSI interface related section **************************************/ static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *)) { struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0]; struct sbp2_fwhost_info *hi; int result = DID_NO_CONNECT << 16; if (unlikely(!sbp2util_node_is_available(lu))) goto done; hi = lu->hi; if (unlikely(!hi)) { SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!"); goto done; } /* Multiple units are currently represented to the SCSI core as separate * targets, not as one target with multiple LUs. Therefore return * selection time-out to any IO directed at non-zero LUNs. */ if (unlikely(SCpnt->device->lun)) goto done; if (unlikely(!hpsb_node_entry_valid(lu->ne))) { SBP2_ERR("Bus reset in progress - rejecting command"); result = DID_BUS_BUSY << 16; goto done; } /* Bidirectional commands are not yet implemented, * and unknown transfer direction not handled. */ if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) { SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command"); result = DID_ERROR << 16; goto done; } if (sbp2_send_command(lu, SCpnt, done)) { SBP2_ERR("Error sending SCSI command"); sbp2scsi_complete_command(lu, SBP2_SCSI_STATUS_SELECTION_TIMEOUT, SCpnt, done); } return 0; done: SCpnt->result = result; done(SCpnt); return 0; } static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status) { struct list_head *lh; struct sbp2_command_info *cmd; unsigned long flags; spin_lock_irqsave(&lu->cmd_orb_lock, flags); while (!list_empty(&lu->cmd_orb_inuse)) { lh = lu->cmd_orb_inuse.next; cmd = list_entry(lh, struct sbp2_command_info, list); sbp2util_mark_command_completed(lu, cmd); if (cmd->Current_SCpnt) { cmd->Current_SCpnt->result = status << 16; cmd->Current_done(cmd->Current_SCpnt); } } spin_unlock_irqrestore(&lu->cmd_orb_lock, flags); return; } /* * Complete a regular SCSI command. Can be called in atomic context. */ static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status, struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *)) { if (!SCpnt) { SBP2_ERR("SCpnt is NULL"); return; } switch (scsi_status) { case SBP2_SCSI_STATUS_GOOD: SCpnt->result = DID_OK << 16; break; case SBP2_SCSI_STATUS_BUSY: SBP2_ERR("SBP2_SCSI_STATUS_BUSY"); SCpnt->result = DID_BUS_BUSY << 16; break; case SBP2_SCSI_STATUS_CHECK_CONDITION: SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16; break; case SBP2_SCSI_STATUS_SELECTION_TIMEOUT: SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT"); SCpnt->result = DID_NO_CONNECT << 16; scsi_print_command(SCpnt); break; case SBP2_SCSI_STATUS_CONDITION_MET: case SBP2_SCSI_STATUS_RESERVATION_CONFLICT: case SBP2_SCSI_STATUS_COMMAND_TERMINATED: SBP2_ERR("Bad SCSI status = %x", scsi_status); SCpnt->result = DID_ERROR << 16; scsi_print_command(SCpnt); break; default: SBP2_ERR("Unsupported SCSI status = %x", scsi_status); SCpnt->result = DID_ERROR << 16; } /* If a bus reset is in progress and there was an error, complete * the command as busy so that it will get retried. */ if (!hpsb_node_entry_valid(lu->ne) && (scsi_status != SBP2_SCSI_STATUS_GOOD)) { SBP2_ERR("Completing command with busy (bus reset)"); SCpnt->result = DID_BUS_BUSY << 16; } /* Tell the SCSI stack that we're done with this command. */ done(SCpnt); } static int sbp2scsi_slave_alloc(struct scsi_device *sdev) { struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0]; if (sdev->lun != 0 || sdev->id != lu->ud->id || sdev->channel != 0) return -ENODEV; lu->sdev = sdev; sdev->allow_restart = 1; /* SBP-2 requires quadlet alignment of the data buffers. */ blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36) sdev->inquiry_len = 36; return 0; } static int sbp2scsi_slave_configure(struct scsi_device *sdev) { struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0]; sdev->use_10_for_rw = 1; if (sbp2_exclusive_login) sdev->manage_start_stop = 1; if (sdev->type == TYPE_ROM) sdev->use_10_for_ms = 1; if (sdev->type == TYPE_DISK && lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) sdev->skip_ms_page_8 = 1; if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) sdev->fix_capacity = 1; if (lu->workarounds & SBP2_WORKAROUND_POWER_CONDITION) sdev->start_stop_pwr_cond = 1; if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE); return 0; } static void sbp2scsi_slave_destroy(struct scsi_device *sdev) { ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL; return; } /* * Called by scsi stack when something has really gone wrong. * Usually called when a command has timed-out for some reason. */ static int sbp2scsi_abort(struct scsi_cmnd *SCpnt) { struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0]; struct sbp2_command_info *cmd; unsigned long flags; SBP2_INFO("aborting sbp2 command"); scsi_print_command(SCpnt); if (sbp2util_node_is_available(lu)) { sbp2_agent_reset(lu, 1); /* Return a matching command structure to the free pool. */ spin_lock_irqsave(&lu->cmd_orb_lock, flags); cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt); if (cmd) { sbp2util_mark_command_completed(lu, cmd); if (cmd->Current_SCpnt) { cmd->Current_SCpnt->result = DID_ABORT << 16; cmd->Current_done(cmd->Current_SCpnt); } } spin_unlock_irqrestore(&lu->cmd_orb_lock, flags); sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY); } return SUCCESS; } /* * Called by scsi stack when something has really gone wrong. */ static int sbp2scsi_reset(struct scsi_cmnd *SCpnt) { struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0]; SBP2_INFO("reset requested"); if (sbp2util_node_is_available(lu)) { SBP2_INFO("generating sbp2 fetch agent reset"); sbp2_agent_reset(lu, 1); } return SUCCESS; } static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev; struct sbp2_lu *lu; if (!(sdev = to_scsi_device(dev))) return 0; if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0])) return 0; if (sbp2_long_sysfs_ieee1394_id) return sprintf(buf, "%016Lx:%06x:%04x\n", (unsigned long long)lu->ne->guid, lu->ud->directory_id, ORB_SET_LUN(lu->lun)); else return sprintf(buf, "%016Lx:%d:%d\n", (unsigned long long)lu->ne->guid, lu->ud->id, ORB_SET_LUN(lu->lun)); } MODULE_AUTHOR("Ben Collins <bcollins@debian.org>"); MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver"); MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME); MODULE_LICENSE("GPL"); static int sbp2_module_init(void) { int ret; if (sbp2_serialize_io) { sbp2_shost_template.can_queue = 1; sbp2_shost_template.cmd_per_lun = 1; } sbp2_shost_template.max_sectors = sbp2_max_sectors; hpsb_register_highlevel(&sbp2_highlevel); ret = hpsb_register_protocol(&sbp2_driver); if (ret) { SBP2_ERR("Failed to register protocol"); hpsb_unregister_highlevel(&sbp2_highlevel); return ret; } return 0; } static void __exit sbp2_module_exit(void) { hpsb_unregister_protocol(&sbp2_driver); hpsb_unregister_highlevel(&sbp2_highlevel); } module_init(sbp2_module_init); module_exit(sbp2_module_exit);