/* * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * Supports following chips: * * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA * w83791d 10 5 5 3 0x71 0x5ca3 yes no * * The w83791d chip appears to be part way between the 83781d and the * 83792d. Thus, this file is derived from both the w83792d.c and * w83781d.c files. * * The w83791g chip is the same as the w83791d but lead-free. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-vid.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/jiffies.h> #define NUMBER_OF_VIN 10 #define NUMBER_OF_FANIN 5 #define NUMBER_OF_TEMPIN 3 #define NUMBER_OF_PWM 5 /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END }; /* Insmod parameters */ static unsigned short force_subclients[4]; module_param_array(force_subclients, short, NULL, 0); MODULE_PARM_DESC(force_subclients, "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}"); static bool reset; module_param(reset, bool, 0); MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset"); static bool init; module_param(init, bool, 0); MODULE_PARM_DESC(init, "Set to one to force extra software initialization"); /* The W83791D registers */ static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = { 0x20, /* VCOREA in DataSheet */ 0x21, /* VINR0 in DataSheet */ 0x22, /* +3.3VIN in DataSheet */ 0x23, /* VDD5V in DataSheet */ 0x24, /* +12VIN in DataSheet */ 0x25, /* -12VIN in DataSheet */ 0x26, /* -5VIN in DataSheet */ 0xB0, /* 5VSB in DataSheet */ 0xB1, /* VBAT in DataSheet */ 0xB2 /* VINR1 in DataSheet */ }; static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = { 0x2B, /* VCOREA High Limit in DataSheet */ 0x2D, /* VINR0 High Limit in DataSheet */ 0x2F, /* +3.3VIN High Limit in DataSheet */ 0x31, /* VDD5V High Limit in DataSheet */ 0x33, /* +12VIN High Limit in DataSheet */ 0x35, /* -12VIN High Limit in DataSheet */ 0x37, /* -5VIN High Limit in DataSheet */ 0xB4, /* 5VSB High Limit in DataSheet */ 0xB6, /* VBAT High Limit in DataSheet */ 0xB8 /* VINR1 High Limit in DataSheet */ }; static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = { 0x2C, /* VCOREA Low Limit in DataSheet */ 0x2E, /* VINR0 Low Limit in DataSheet */ 0x30, /* +3.3VIN Low Limit in DataSheet */ 0x32, /* VDD5V Low Limit in DataSheet */ 0x34, /* +12VIN Low Limit in DataSheet */ 0x36, /* -12VIN Low Limit in DataSheet */ 0x38, /* -5VIN Low Limit in DataSheet */ 0xB5, /* 5VSB Low Limit in DataSheet */ 0xB7, /* VBAT Low Limit in DataSheet */ 0xB9 /* VINR1 Low Limit in DataSheet */ }; static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = { 0x28, /* FAN 1 Count in DataSheet */ 0x29, /* FAN 2 Count in DataSheet */ 0x2A, /* FAN 3 Count in DataSheet */ 0xBA, /* FAN 4 Count in DataSheet */ 0xBB, /* FAN 5 Count in DataSheet */ }; static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = { 0x3B, /* FAN 1 Count Low Limit in DataSheet */ 0x3C, /* FAN 2 Count Low Limit in DataSheet */ 0x3D, /* FAN 3 Count Low Limit in DataSheet */ 0xBC, /* FAN 4 Count Low Limit in DataSheet */ 0xBD, /* FAN 5 Count Low Limit in DataSheet */ }; static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = { 0x81, /* PWM 1 duty cycle register in DataSheet */ 0x83, /* PWM 2 duty cycle register in DataSheet */ 0x94, /* PWM 3 duty cycle register in DataSheet */ 0xA0, /* PWM 4 duty cycle register in DataSheet */ 0xA1, /* PWM 5 duty cycle register in DataSheet */ }; static const u8 W83791D_REG_TEMP_TARGET[3] = { 0x85, /* PWM 1 target temperature for temp 1 */ 0x86, /* PWM 2 target temperature for temp 2 */ 0x96, /* PWM 3 target temperature for temp 3 */ }; static const u8 W83791D_REG_TEMP_TOL[2] = { 0x87, /* PWM 1/2 temperature tolerance */ 0x97, /* PWM 3 temperature tolerance */ }; static const u8 W83791D_REG_FAN_CFG[2] = { 0x84, /* FAN 1/2 configuration */ 0x95, /* FAN 3 configuration */ }; static const u8 W83791D_REG_FAN_DIV[3] = { 0x47, /* contains FAN1 and FAN2 Divisor */ 0x4b, /* contains FAN3 Divisor */ 0x5C, /* contains FAN4 and FAN5 Divisor */ }; #define W83791D_REG_BANK 0x4E #define W83791D_REG_TEMP2_CONFIG 0xC2 #define W83791D_REG_TEMP3_CONFIG 0xCA static const u8 W83791D_REG_TEMP1[3] = { 0x27, /* TEMP 1 in DataSheet */ 0x39, /* TEMP 1 Over in DataSheet */ 0x3A, /* TEMP 1 Hyst in DataSheet */ }; static const u8 W83791D_REG_TEMP_ADD[2][6] = { {0xC0, /* TEMP 2 in DataSheet */ 0xC1, /* TEMP 2(0.5 deg) in DataSheet */ 0xC5, /* TEMP 2 Over High part in DataSheet */ 0xC6, /* TEMP 2 Over Low part in DataSheet */ 0xC3, /* TEMP 2 Thyst High part in DataSheet */ 0xC4}, /* TEMP 2 Thyst Low part in DataSheet */ {0xC8, /* TEMP 3 in DataSheet */ 0xC9, /* TEMP 3(0.5 deg) in DataSheet */ 0xCD, /* TEMP 3 Over High part in DataSheet */ 0xCE, /* TEMP 3 Over Low part in DataSheet */ 0xCB, /* TEMP 3 Thyst High part in DataSheet */ 0xCC} /* TEMP 3 Thyst Low part in DataSheet */ }; #define W83791D_REG_BEEP_CONFIG 0x4D static const u8 W83791D_REG_BEEP_CTRL[3] = { 0x56, /* BEEP Control Register 1 */ 0x57, /* BEEP Control Register 2 */ 0xA3, /* BEEP Control Register 3 */ }; #define W83791D_REG_GPIO 0x15 #define W83791D_REG_CONFIG 0x40 #define W83791D_REG_VID_FANDIV 0x47 #define W83791D_REG_DID_VID4 0x49 #define W83791D_REG_WCHIPID 0x58 #define W83791D_REG_CHIPMAN 0x4F #define W83791D_REG_PIN 0x4B #define W83791D_REG_I2C_SUBADDR 0x4A #define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */ #define W83791D_REG_ALARM2 0xAA /* realtime status register2 */ #define W83791D_REG_ALARM3 0xAB /* realtime status register3 */ #define W83791D_REG_VBAT 0x5D #define W83791D_REG_I2C_ADDR 0x48 /* * The SMBus locks itself. The Winbond W83791D has a bank select register * (index 0x4e), but the driver only accesses registers in bank 0. Since * we don't switch banks, we don't need any special code to handle * locking access between bank switches */ static inline int w83791d_read(struct i2c_client *client, u8 reg) { return i2c_smbus_read_byte_data(client, reg); } static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value) { return i2c_smbus_write_byte_data(client, reg, value); } /* * The analog voltage inputs have 16mV LSB. Since the sysfs output is * in mV as would be measured on the chip input pin, need to just * multiply/divide by 16 to translate from/to register values. */ #define IN_TO_REG(val) (clamp_val((((val) + 8) / 16), 0, 255)) #define IN_FROM_REG(val) ((val) * 16) static u8 fan_to_reg(long rpm, int div) { if (rpm == 0) return 255; rpm = clamp_val(rpm, 1, 1000000); return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); } #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \ ((val) == 255 ? 0 : \ 1350000 / ((val) * (div)))) /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */ #define TEMP1_FROM_REG(val) ((val) * 1000) #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \ (val) >= 127000 ? 127 : \ (val) < 0 ? ((val) - 500) / 1000 : \ ((val) + 500) / 1000) /* * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius * Assumes the top 8 bits are the integral amount and the bottom 8 bits * are the fractional amount. Since we only have 0.5 degree resolution, * the bottom 7 bits will always be zero */ #define TEMP23_FROM_REG(val) ((val) / 128 * 500) #define TEMP23_TO_REG(val) (DIV_ROUND_CLOSEST(clamp_val((val), -128000, \ 127500), 500) * 128) /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */ #define TARGET_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \ 1000) /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */ #define TOL_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \ 1000) #define BEEP_MASK_TO_REG(val) ((val) & 0xffffff) #define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff) #define DIV_FROM_REG(val) (1 << (val)) static u8 div_to_reg(int nr, long val) { int i; /* fan divisors max out at 128 */ val = clamp_val(val, 1, 128) >> 1; for (i = 0; i < 7; i++) { if (val == 0) break; val >>= 1; } return (u8) i; } struct w83791d_data { struct device *hwmon_dev; struct mutex update_lock; char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ /* array of 2 pointers to subclients */ struct i2c_client *lm75[2]; /* volts */ u8 in[NUMBER_OF_VIN]; /* Register value */ u8 in_max[NUMBER_OF_VIN]; /* Register value */ u8 in_min[NUMBER_OF_VIN]; /* Register value */ /* fans */ u8 fan[NUMBER_OF_FANIN]; /* Register value */ u8 fan_min[NUMBER_OF_FANIN]; /* Register value */ u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */ /* Temperature sensors */ s8 temp1[3]; /* current, over, thyst */ s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the * integral part, bottom 8 bits are the * fractional part. We only use the top * 9 bits as the resolution is only * to the 0.5 degree C... * two sensors with three values * (cur, over, hyst) */ /* PWMs */ u8 pwm[5]; /* pwm duty cycle */ u8 pwm_enable[3]; /* pwm enable status for fan 1-3 * (fan 4-5 only support manual mode) */ u8 temp_target[3]; /* pwm 1-3 target temperature */ u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */ /* Misc */ u32 alarms; /* realtime status register encoding,combined */ u8 beep_enable; /* Global beep enable */ u32 beep_mask; /* Mask off specific beeps */ u8 vid; /* Register encoding, combined */ u8 vrm; /* hwmon-vid */ }; static int w83791d_probe(struct i2c_client *client, const struct i2c_device_id *id); static int w83791d_detect(struct i2c_client *client, struct i2c_board_info *info); static int w83791d_remove(struct i2c_client *client); static int w83791d_read(struct i2c_client *client, u8 reg); static int w83791d_write(struct i2c_client *client, u8 reg, u8 value); static struct w83791d_data *w83791d_update_device(struct device *dev); #ifdef DEBUG static void w83791d_print_debug(struct w83791d_data *data, struct device *dev); #endif static void w83791d_init_client(struct i2c_client *client); static const struct i2c_device_id w83791d_id[] = { { "w83791d", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, w83791d_id); static struct i2c_driver w83791d_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "w83791d", }, .probe = w83791d_probe, .remove = w83791d_remove, .id_table = w83791d_id, .detect = w83791d_detect, .address_list = normal_i2c, }; /* following are the sysfs callback functions */ #define show_in_reg(reg) \ static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ struct sensor_device_attribute *sensor_attr = \ to_sensor_dev_attr(attr); \ struct w83791d_data *data = w83791d_update_device(dev); \ int nr = sensor_attr->index; \ return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ } show_in_reg(in); show_in_reg(in_min); show_in_reg(in_max); #define store_in_reg(REG, reg) \ static ssize_t store_in_##reg(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t count) \ { \ struct sensor_device_attribute *sensor_attr = \ to_sensor_dev_attr(attr); \ struct i2c_client *client = to_i2c_client(dev); \ struct w83791d_data *data = i2c_get_clientdata(client); \ int nr = sensor_attr->index; \ unsigned long val; \ int err = kstrtoul(buf, 10, &val); \ if (err) \ return err; \ mutex_lock(&data->update_lock); \ data->in_##reg[nr] = IN_TO_REG(val); \ w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \ mutex_unlock(&data->update_lock); \ \ return count; \ } store_in_reg(MIN, min); store_in_reg(MAX, max); static struct sensor_device_attribute sda_in_input[] = { SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0), SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1), SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2), SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3), SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4), SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5), SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6), SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7), SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8), SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9), }; static struct sensor_device_attribute sda_in_min[] = { SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0), SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1), SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2), SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3), SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4), SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5), SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6), SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7), SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8), SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9), }; static struct sensor_device_attribute sda_in_max[] = { SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0), SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1), SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2), SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3), SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4), SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5), SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6), SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7), SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8), SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9), }; static ssize_t show_beep(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); struct w83791d_data *data = w83791d_update_device(dev); int bitnr = sensor_attr->index; return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1); } static ssize_t store_beep(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); struct i2c_client *client = to_i2c_client(dev); struct w83791d_data *data = i2c_get_clientdata(client); int bitnr = sensor_attr->index; int bytenr = bitnr / 8; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; val = val ? 1 : 0; mutex_lock(&data->update_lock); data->beep_mask &= ~(0xff << (bytenr * 8)); data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr]) << (bytenr * 8); data->beep_mask &= ~(1 << bitnr); data->beep_mask |= val << bitnr; w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr], (data->beep_mask >> (bytenr * 8)) & 0xff); mutex_unlock(&data->update_lock); return count; } static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); struct w83791d_data *data = w83791d_update_device(dev); int bitnr = sensor_attr->index; return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1); } /* * Note: The bitmask for the beep enable/disable is different than * the bitmask for the alarm. */ static struct sensor_device_attribute sda_in_beep[] = { SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0), SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13), SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2), SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3), SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8), SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9), SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10), SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16), SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17), SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14), }; static struct sensor_device_attribute sda_in_alarm[] = { SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0), SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1), SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2), SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3), SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8), SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9), SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10), SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19), SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20), SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14), }; #define show_fan_reg(reg) \ static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ struct sensor_device_attribute *sensor_attr = \ to_sensor_dev_attr(attr); \ struct w83791d_data *data = w83791d_update_device(dev); \ int nr = sensor_attr->index; \ return sprintf(buf, "%d\n", \ FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \ } show_fan_reg(fan); show_fan_reg(fan_min); static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); struct i2c_client *client = to_i2c_client(dev); struct w83791d_data *data = i2c_get_clientdata(client); int nr = sensor_attr->index; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr])); w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct w83791d_data *data = w83791d_update_device(dev); return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr])); } /* * Note: we save and restore the fan minimum here, because its value is * determined in part by the fan divisor. This follows the principle of * least surprise; the user doesn't expect the fan minimum to change just * because the divisor changed. */ static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); struct i2c_client *client = to_i2c_client(dev); struct w83791d_data *data = i2c_get_clientdata(client); int nr = sensor_attr->index; unsigned long min; u8 tmp_fan_div; u8 fan_div_reg; u8 vbat_reg; int indx = 0; u8 keep_mask = 0; u8 new_shift = 0; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; /* Save fan_min */ min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); mutex_lock(&data->update_lock); data->fan_div[nr] = div_to_reg(nr, val); switch (nr) { case 0: indx = 0; keep_mask = 0xcf; new_shift = 4; break; case 1: indx = 0; keep_mask = 0x3f; new_shift = 6; break; case 2: indx = 1; keep_mask = 0x3f; new_shift = 6; break; case 3: indx = 2; keep_mask = 0xf8; new_shift = 0; break; case 4: indx = 2; keep_mask = 0x8f; new_shift = 4; break; #ifdef DEBUG default: dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr); count = -EINVAL; goto err_exit; #endif } fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx]) & keep_mask; tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask; w83791d_write(client, W83791D_REG_FAN_DIV[indx], fan_div_reg | tmp_fan_div); /* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */ if (nr < 3) { keep_mask = ~(1 << (nr + 5)); vbat_reg = w83791d_read(client, W83791D_REG_VBAT) & keep_mask; tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask; w83791d_write(client, W83791D_REG_VBAT, vbat_reg | tmp_fan_div); } /* Restore fan_min */ data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr])); w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]); #ifdef DEBUG err_exit: #endif mutex_unlock(&data->update_lock); return count; } static struct sensor_device_attribute sda_fan_input[] = { SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0), SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1), SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2), SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3), SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4), }; static struct sensor_device_attribute sda_fan_min[] = { SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 0), SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 1), SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 2), SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 3), SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 4), }; static struct sensor_device_attribute sda_fan_div[] = { SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 0), SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 1), SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 2), SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 3), SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 4), }; static struct sensor_device_attribute sda_fan_beep[] = { SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6), SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7), SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11), SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21), SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22), }; static struct sensor_device_attribute sda_fan_alarm[] = { SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6), SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7), SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11), SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21), SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22), }; /* read/write PWMs */ static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct w83791d_data *data = w83791d_update_device(dev); return sprintf(buf, "%u\n", data->pwm[nr]); } static ssize_t store_pwm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); struct i2c_client *client = to_i2c_client(dev); struct w83791d_data *data = i2c_get_clientdata(client); int nr = sensor_attr->index; unsigned long val; if (kstrtoul(buf, 10, &val)) return -EINVAL; mutex_lock(&data->update_lock); data->pwm[nr] = clamp_val(val, 0, 255); w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]); mutex_unlock(&data->update_lock); return count; } static struct sensor_device_attribute sda_pwm[] = { SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0), SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1), SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 2), SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 3), SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 4), }; static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct w83791d_data *data = w83791d_update_device(dev); return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1); } static ssize_t store_pwmenable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); struct i2c_client *client = to_i2c_client(dev); struct w83791d_data *data = i2c_get_clientdata(client); int nr = sensor_attr->index; unsigned long val; u8 reg_cfg_tmp; u8 reg_idx = 0; u8 val_shift = 0; u8 keep_mask = 0; int ret = kstrtoul(buf, 10, &val); if (ret || val < 1 || val > 3) return -EINVAL; mutex_lock(&data->update_lock); data->pwm_enable[nr] = val - 1; switch (nr) { case 0: reg_idx = 0; val_shift = 2; keep_mask = 0xf3; break; case 1: reg_idx = 0; val_shift = 4; keep_mask = 0xcf; break; case 2: reg_idx = 1; val_shift = 2; keep_mask = 0xf3; break; } reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]); reg_cfg_tmp = (reg_cfg_tmp & keep_mask) | data->pwm_enable[nr] << val_shift; w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp); mutex_unlock(&data->update_lock); return count; } static struct sensor_device_attribute sda_pwmenable[] = { SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwmenable, store_pwmenable, 0), SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwmenable, store_pwmenable, 1), SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwmenable, store_pwmenable, 2), }; /* For Smart Fan I / Thermal Cruise */ static ssize_t show_temp_target(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); struct w83791d_data *data = w83791d_update_device(dev); int nr = sensor_attr->index; return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr])); } static ssize_t store_temp_target(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); struct i2c_client *client = to_i2c_client(dev); struct w83791d_data *data = i2c_get_clientdata(client); int nr = sensor_attr->index; long val; u8 target_mask; if (kstrtol(buf, 10, &val)) return -EINVAL; mutex_lock(&data->update_lock); data->temp_target[nr] = TARGET_TEMP_TO_REG(val); target_mask = w83791d_read(client, W83791D_REG_TEMP_TARGET[nr]) & 0x80; w83791d_write(client, W83791D_REG_TEMP_TARGET[nr], data->temp_target[nr] | target_mask); mutex_unlock(&data->update_lock); return count; } static struct sensor_device_attribute sda_temp_target[] = { SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO, show_temp_target, store_temp_target, 0), SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO, show_temp_target, store_temp_target, 1), SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO, show_temp_target, store_temp_target, 2), }; static ssize_t show_temp_tolerance(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); struct w83791d_data *data = w83791d_update_device(dev); int nr = sensor_attr->index; return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr])); } static ssize_t store_temp_tolerance(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); struct i2c_client *client = to_i2c_client(dev); struct w83791d_data *data = i2c_get_clientdata(client); int nr = sensor_attr->index; unsigned long val; u8 target_mask; u8 reg_idx = 0; u8 val_shift = 0; u8 keep_mask = 0; if (kstrtoul(buf, 10, &val)) return -EINVAL; switch (nr) { case 0: reg_idx = 0; val_shift = 0; keep_mask = 0xf0; break; case 1: reg_idx = 0; val_shift = 4; keep_mask = 0x0f; break; case 2: reg_idx = 1; val_shift = 0; keep_mask = 0xf0; break; } mutex_lock(&data->update_lock); data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val); target_mask = w83791d_read(client, W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask; w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx], (data->temp_tolerance[nr] << val_shift) | target_mask); mutex_unlock(&data->update_lock); return count; } static struct sensor_device_attribute sda_temp_tolerance[] = { SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO, show_temp_tolerance, store_temp_tolerance, 0), SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO, show_temp_tolerance, store_temp_tolerance, 1), SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO, show_temp_tolerance, store_temp_tolerance, 2), }; /* read/write the temperature1, includes measured value and limits */ static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct w83791d_data *data = w83791d_update_device(dev); return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index])); } static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct w83791d_data *data = i2c_get_clientdata(client); int nr = attr->index; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp1[nr] = TEMP1_TO_REG(val); w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]); mutex_unlock(&data->update_lock); return count; } /* read/write temperature2-3, includes measured value and limits */ static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct w83791d_data *data = w83791d_update_device(dev); int nr = attr->nr; int index = attr->index; return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index])); } static ssize_t store_temp23(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct i2c_client *client = to_i2c_client(dev); struct w83791d_data *data = i2c_get_clientdata(client); long val; int err; int nr = attr->nr; int index = attr->index; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_add[nr][index] = TEMP23_TO_REG(val); w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2], data->temp_add[nr][index] >> 8); w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1], data->temp_add[nr][index] & 0x80); mutex_unlock(&data->update_lock); return count; } static struct sensor_device_attribute_2 sda_temp_input[] = { SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0), SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0), SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0), }; static struct sensor_device_attribute_2 sda_temp_max[] = { SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR, show_temp1, store_temp1, 0, 1), SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR, show_temp23, store_temp23, 0, 1), SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR, show_temp23, store_temp23, 1, 1), }; static struct sensor_device_attribute_2 sda_temp_max_hyst[] = { SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp1, store_temp1, 0, 2), SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR, show_temp23, store_temp23, 0, 2), SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR, show_temp23, store_temp23, 1, 2), }; /* * Note: The bitmask for the beep enable/disable is different than * the bitmask for the alarm. */ static struct sensor_device_attribute sda_temp_beep[] = { SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4), SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5), SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1), }; static struct sensor_device_attribute sda_temp_alarm[] = { SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4), SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5), SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13), }; /* get realtime status of all sensors items: voltage, temp, fan */ static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83791d_data *data = w83791d_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static DEVICE_ATTR_RO(alarms); /* Beep control */ #define GLOBAL_BEEP_ENABLE_SHIFT 15 #define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT) static ssize_t show_beep_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct w83791d_data *data = w83791d_update_device(dev); return sprintf(buf, "%d\n", data->beep_enable); } static ssize_t show_beep_mask(struct device *dev, struct device_attribute *attr, char *buf) { struct w83791d_data *data = w83791d_update_device(dev); return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask)); } static ssize_t store_beep_mask(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct w83791d_data *data = i2c_get_clientdata(client); int i; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); /* * The beep_enable state overrides any enabling request from * the masks */ data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK; data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); val = data->beep_mask; for (i = 0; i < 3; i++) { w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff)); val >>= 8; } mutex_unlock(&data->update_lock); return count; } static ssize_t store_beep_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct w83791d_data *data = i2c_get_clientdata(client); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->beep_enable = val ? 1 : 0; /* Keep the full mask value in sync with the current enable */ data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK; data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT); /* * The global control is in the second beep control register * so only need to update that register */ val = (data->beep_mask >> 8) & 0xff; w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val); mutex_unlock(&data->update_lock); return count; } static struct sensor_device_attribute sda_beep_ctrl[] = { SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR, show_beep_enable, store_beep_enable, 0), SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR, show_beep_mask, store_beep_mask, 1) }; /* cpu voltage regulation information */ static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83791d_data *data = w83791d_update_device(dev); return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); } static DEVICE_ATTR_RO(cpu0_vid); static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83791d_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", data->vrm); } static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct w83791d_data *data = dev_get_drvdata(dev); unsigned long val; int err; /* * No lock needed as vrm is internal to the driver * (not read from a chip register) and so is not * updated in w83791d_update_device() */ err = kstrtoul(buf, 10, &val); if (err) return err; if (val > 255) return -EINVAL; data->vrm = val; return count; } static DEVICE_ATTR_RW(vrm); #define IN_UNIT_ATTRS(X) \ &sda_in_input[X].dev_attr.attr, \ &sda_in_min[X].dev_attr.attr, \ &sda_in_max[X].dev_attr.attr, \ &sda_in_beep[X].dev_attr.attr, \ &sda_in_alarm[X].dev_attr.attr #define FAN_UNIT_ATTRS(X) \ &sda_fan_input[X].dev_attr.attr, \ &sda_fan_min[X].dev_attr.attr, \ &sda_fan_div[X].dev_attr.attr, \ &sda_fan_beep[X].dev_attr.attr, \ &sda_fan_alarm[X].dev_attr.attr #define TEMP_UNIT_ATTRS(X) \ &sda_temp_input[X].dev_attr.attr, \ &sda_temp_max[X].dev_attr.attr, \ &sda_temp_max_hyst[X].dev_attr.attr, \ &sda_temp_beep[X].dev_attr.attr, \ &sda_temp_alarm[X].dev_attr.attr static struct attribute *w83791d_attributes[] = { IN_UNIT_ATTRS(0), IN_UNIT_ATTRS(1), IN_UNIT_ATTRS(2), IN_UNIT_ATTRS(3), IN_UNIT_ATTRS(4), IN_UNIT_ATTRS(5), IN_UNIT_ATTRS(6), IN_UNIT_ATTRS(7), IN_UNIT_ATTRS(8), IN_UNIT_ATTRS(9), FAN_UNIT_ATTRS(0), FAN_UNIT_ATTRS(1), FAN_UNIT_ATTRS(2), TEMP_UNIT_ATTRS(0), TEMP_UNIT_ATTRS(1), TEMP_UNIT_ATTRS(2), &dev_attr_alarms.attr, &sda_beep_ctrl[0].dev_attr.attr, &sda_beep_ctrl[1].dev_attr.attr, &dev_attr_cpu0_vid.attr, &dev_attr_vrm.attr, &sda_pwm[0].dev_attr.attr, &sda_pwm[1].dev_attr.attr, &sda_pwm[2].dev_attr.attr, &sda_pwmenable[0].dev_attr.attr, &sda_pwmenable[1].dev_attr.attr, &sda_pwmenable[2].dev_attr.attr, &sda_temp_target[0].dev_attr.attr, &sda_temp_target[1].dev_attr.attr, &sda_temp_target[2].dev_attr.attr, &sda_temp_tolerance[0].dev_attr.attr, &sda_temp_tolerance[1].dev_attr.attr, &sda_temp_tolerance[2].dev_attr.attr, NULL }; static const struct attribute_group w83791d_group = { .attrs = w83791d_attributes, }; /* * Separate group of attributes for fan/pwm 4-5. Their pins can also be * in use for GPIO in which case their sysfs-interface should not be made * available */ static struct attribute *w83791d_attributes_fanpwm45[] = { FAN_UNIT_ATTRS(3), FAN_UNIT_ATTRS(4), &sda_pwm[3].dev_attr.attr, &sda_pwm[4].dev_attr.attr, NULL }; static const struct attribute_group w83791d_group_fanpwm45 = { .attrs = w83791d_attributes_fanpwm45, }; static int w83791d_detect_subclients(struct i2c_client *client) { struct i2c_adapter *adapter = client->adapter; struct w83791d_data *data = i2c_get_clientdata(client); int address = client->addr; int i, id, err; u8 val; id = i2c_adapter_id(adapter); if (force_subclients[0] == id && force_subclients[1] == address) { for (i = 2; i <= 3; i++) { if (force_subclients[i] < 0x48 || force_subclients[i] > 0x4f) { dev_err(&client->dev, "invalid subclient " "address %d; must be 0x48-0x4f\n", force_subclients[i]); err = -ENODEV; goto error_sc_0; } } w83791d_write(client, W83791D_REG_I2C_SUBADDR, (force_subclients[2] & 0x07) | ((force_subclients[3] & 0x07) << 4)); } val = w83791d_read(client, W83791D_REG_I2C_SUBADDR); if (!(val & 0x08)) data->lm75[0] = i2c_new_dummy(adapter, 0x48 + (val & 0x7)); if (!(val & 0x80)) { if ((data->lm75[0] != NULL) && ((val & 0x7) == ((val >> 4) & 0x7))) { dev_err(&client->dev, "duplicate addresses 0x%x, " "use force_subclient\n", data->lm75[0]->addr); err = -ENODEV; goto error_sc_1; } data->lm75[1] = i2c_new_dummy(adapter, 0x48 + ((val >> 4) & 0x7)); } return 0; /* Undo inits in case of errors */ error_sc_1: i2c_unregister_device(data->lm75[0]); error_sc_0: return err; } /* Return 0 if detection is successful, -ENODEV otherwise */ static int w83791d_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int val1, val2; unsigned short address = client->addr; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80) return -ENODEV; val1 = w83791d_read(client, W83791D_REG_BANK); val2 = w83791d_read(client, W83791D_REG_CHIPMAN); /* Check for Winbond ID if in bank 0 */ if (!(val1 & 0x07)) { if ((!(val1 & 0x80) && val2 != 0xa3) || ((val1 & 0x80) && val2 != 0x5c)) { return -ENODEV; } } /* * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR * should match */ if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address) return -ENODEV; /* We want bank 0 and Vendor ID high byte */ val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78; w83791d_write(client, W83791D_REG_BANK, val1 | 0x80); /* Verify it is a Winbond w83791d */ val1 = w83791d_read(client, W83791D_REG_WCHIPID); val2 = w83791d_read(client, W83791D_REG_CHIPMAN); if (val1 != 0x71 || val2 != 0x5c) return -ENODEV; strlcpy(info->type, "w83791d", I2C_NAME_SIZE); return 0; } static int w83791d_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct w83791d_data *data; struct device *dev = &client->dev; int i, err; u8 has_fanpwm45; #ifdef DEBUG int val1; val1 = w83791d_read(client, W83791D_REG_DID_VID4); dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n", (val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1); #endif data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); mutex_init(&data->update_lock); err = w83791d_detect_subclients(client); if (err) return err; /* Initialize the chip */ w83791d_init_client(client); /* * If the fan_div is changed, make sure there is a rational * fan_min in place */ for (i = 0; i < NUMBER_OF_FANIN; i++) data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]); /* Register sysfs hooks */ err = sysfs_create_group(&client->dev.kobj, &w83791d_group); if (err) goto error3; /* Check if pins of fan/pwm 4-5 are in use as GPIO */ has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10; if (has_fanpwm45) { err = sysfs_create_group(&client->dev.kobj, &w83791d_group_fanpwm45); if (err) goto error4; } /* Everything is ready, now register the working device */ data->hwmon_dev = hwmon_device_register(dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto error5; } return 0; error5: if (has_fanpwm45) sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45); error4: sysfs_remove_group(&client->dev.kobj, &w83791d_group); error3: i2c_unregister_device(data->lm75[0]); i2c_unregister_device(data->lm75[1]); return err; } static int w83791d_remove(struct i2c_client *client) { struct w83791d_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &w83791d_group); i2c_unregister_device(data->lm75[0]); i2c_unregister_device(data->lm75[1]); return 0; } static void w83791d_init_client(struct i2c_client *client) { struct w83791d_data *data = i2c_get_clientdata(client); u8 tmp; u8 old_beep; /* * The difference between reset and init is that reset * does a hard reset of the chip via index 0x40, bit 7, * but init simply forces certain registers to have "sane" * values. The hope is that the BIOS has done the right * thing (which is why the default is reset=0, init=0), * but if not, reset is the hard hammer and init * is the soft mallet both of which are trying to whack * things into place... * NOTE: The data sheet makes a distinction between * "power on defaults" and "reset by MR". As far as I can tell, * the hard reset puts everything into a power-on state so I'm * not sure what "reset by MR" means or how it can happen. */ if (reset || init) { /* keep some BIOS settings when we... */ old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG); if (reset) { /* ... reset the chip and ... */ w83791d_write(client, W83791D_REG_CONFIG, 0x80); } /* ... disable power-on abnormal beep */ w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80); /* disable the global beep (not done by hard reset) */ tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]); w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef); if (init) { /* Make sure monitoring is turned on for add-ons */ tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG); if (tmp & 1) { w83791d_write(client, W83791D_REG_TEMP2_CONFIG, tmp & 0xfe); } tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG); if (tmp & 1) { w83791d_write(client, W83791D_REG_TEMP3_CONFIG, tmp & 0xfe); } /* Start monitoring */ tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7; w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01); } } data->vrm = vid_which_vrm(); } static struct w83791d_data *w83791d_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct w83791d_data *data = i2c_get_clientdata(client); int i, j; u8 reg_array_tmp[3]; u8 vbat_reg; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + (HZ * 3)) || !data->valid) { dev_dbg(dev, "Starting w83791d device update\n"); /* Update the voltages measured value and limits */ for (i = 0; i < NUMBER_OF_VIN; i++) { data->in[i] = w83791d_read(client, W83791D_REG_IN[i]); data->in_max[i] = w83791d_read(client, W83791D_REG_IN_MAX[i]); data->in_min[i] = w83791d_read(client, W83791D_REG_IN_MIN[i]); } /* Update the fan counts and limits */ for (i = 0; i < NUMBER_OF_FANIN; i++) { /* Update the Fan measured value and limits */ data->fan[i] = w83791d_read(client, W83791D_REG_FAN[i]); data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]); } /* Update the fan divisor */ for (i = 0; i < 3; i++) { reg_array_tmp[i] = w83791d_read(client, W83791D_REG_FAN_DIV[i]); } data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03; data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03; data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03; data->fan_div[3] = reg_array_tmp[2] & 0x07; data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07; /* * The fan divisor for fans 0-2 get bit 2 from * bits 5-7 respectively of vbat register */ vbat_reg = w83791d_read(client, W83791D_REG_VBAT); for (i = 0; i < 3; i++) data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04; /* Update PWM duty cycle */ for (i = 0; i < NUMBER_OF_PWM; i++) { data->pwm[i] = w83791d_read(client, W83791D_REG_PWM[i]); } /* Update PWM enable status */ for (i = 0; i < 2; i++) { reg_array_tmp[i] = w83791d_read(client, W83791D_REG_FAN_CFG[i]); } data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03; data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03; data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03; /* Update PWM target temperature */ for (i = 0; i < 3; i++) { data->temp_target[i] = w83791d_read(client, W83791D_REG_TEMP_TARGET[i]) & 0x7f; } /* Update PWM temperature tolerance */ for (i = 0; i < 2; i++) { reg_array_tmp[i] = w83791d_read(client, W83791D_REG_TEMP_TOL[i]); } data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f; data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f; data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f; /* Update the first temperature sensor */ for (i = 0; i < 3; i++) { data->temp1[i] = w83791d_read(client, W83791D_REG_TEMP1[i]); } /* Update the rest of the temperature sensors */ for (i = 0; i < 2; i++) { for (j = 0; j < 3; j++) { data->temp_add[i][j] = (w83791d_read(client, W83791D_REG_TEMP_ADD[i][j * 2]) << 8) | w83791d_read(client, W83791D_REG_TEMP_ADD[i][j * 2 + 1]); } } /* Update the realtime status */ data->alarms = w83791d_read(client, W83791D_REG_ALARM1) + (w83791d_read(client, W83791D_REG_ALARM2) << 8) + (w83791d_read(client, W83791D_REG_ALARM3) << 16); /* Update the beep configuration information */ data->beep_mask = w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) + (w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) + (w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16); /* Extract global beep enable flag */ data->beep_enable = (data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01; /* Update the cpu voltage information */ i = w83791d_read(client, W83791D_REG_VID_FANDIV); data->vid = i & 0x0f; data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01) << 4; data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); #ifdef DEBUG w83791d_print_debug(data, dev); #endif return data; } #ifdef DEBUG static void w83791d_print_debug(struct w83791d_data *data, struct device *dev) { int i = 0, j = 0; dev_dbg(dev, "======Start of w83791d debug values======\n"); dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN); for (i = 0; i < NUMBER_OF_VIN; i++) { dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]); dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]); dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]); } dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN); for (i = 0; i < NUMBER_OF_FANIN; i++) { dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]); dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]); dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]); } /* * temperature math is signed, but only print out the * bits that matter */ dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN); for (i = 0; i < 3; i++) dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]); for (i = 0; i < 2; i++) { for (j = 0; j < 3; j++) { dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j, (u16) data->temp_add[i][j]); } } dev_dbg(dev, "Misc Information: ===>\n"); dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms); dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask); dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable); dev_dbg(dev, "vid is: 0x%02x\n", data->vid); dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm); dev_dbg(dev, "=======End of w83791d debug values========\n"); dev_dbg(dev, "\n"); } #endif module_i2c_driver(w83791d_driver); MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>"); MODULE_DESCRIPTION("W83791D driver"); MODULE_LICENSE("GPL");