/* * lm78.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> * Copyright (c) 2007, 2011 Jean Delvare <jdelvare@suse.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-vid.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> #ifdef CONFIG_ISA #include <linux/platform_device.h> #include <linux/ioport.h> #include <linux/io.h> #endif /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END }; enum chips { lm78, lm79 }; /* Many LM78 constants specified below */ /* Length of ISA address segment */ #define LM78_EXTENT 8 /* Where are the ISA address/data registers relative to the base address */ #define LM78_ADDR_REG_OFFSET 5 #define LM78_DATA_REG_OFFSET 6 /* The LM78 registers */ #define LM78_REG_IN_MAX(nr) (0x2b + (nr) * 2) #define LM78_REG_IN_MIN(nr) (0x2c + (nr) * 2) #define LM78_REG_IN(nr) (0x20 + (nr)) #define LM78_REG_FAN_MIN(nr) (0x3b + (nr)) #define LM78_REG_FAN(nr) (0x28 + (nr)) #define LM78_REG_TEMP 0x27 #define LM78_REG_TEMP_OVER 0x39 #define LM78_REG_TEMP_HYST 0x3a #define LM78_REG_ALARM1 0x41 #define LM78_REG_ALARM2 0x42 #define LM78_REG_VID_FANDIV 0x47 #define LM78_REG_CONFIG 0x40 #define LM78_REG_CHIPID 0x49 #define LM78_REG_I2C_ADDR 0x48 /* * Conversions. Rounding and limit checking is only done on the TO_REG * variants. */ /* * IN: mV (0V to 4.08V) * REG: 16mV/bit */ static inline u8 IN_TO_REG(unsigned long val) { unsigned long nval = clamp_val(val, 0, 4080); return (nval + 8) / 16; } #define IN_FROM_REG(val) ((val) * 16) static inline u8 FAN_TO_REG(long rpm, int div) { if (rpm <= 0) return 255; if (rpm > 1350000) return 1; return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); } static inline int FAN_FROM_REG(u8 val, int div) { return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div); } /* * TEMP: mC (-128C to +127C) * REG: 1C/bit, two's complement */ static inline s8 TEMP_TO_REG(long val) { int nval = clamp_val(val, -128000, 127000) ; return nval < 0 ? (nval - 500) / 1000 : (nval + 500) / 1000; } static inline int TEMP_FROM_REG(s8 val) { return val * 1000; } #define DIV_FROM_REG(val) (1 << (val)) struct lm78_data { struct i2c_client *client; struct mutex lock; enum chips type; /* For ISA device only */ const char *name; int isa_addr; struct mutex update_lock; char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ u8 in[7]; /* Register value */ u8 in_max[7]; /* Register value */ u8 in_min[7]; /* Register value */ u8 fan[3]; /* Register value */ u8 fan_min[3]; /* Register value */ s8 temp; /* Register value */ s8 temp_over; /* Register value */ s8 temp_hyst; /* Register value */ u8 fan_div[3]; /* Register encoding, shifted right */ u8 vid; /* Register encoding, combined */ u16 alarms; /* Register encoding, combined */ }; static int lm78_read_value(struct lm78_data *data, u8 reg); static int lm78_write_value(struct lm78_data *data, u8 reg, u8 value); static struct lm78_data *lm78_update_device(struct device *dev); static void lm78_init_device(struct lm78_data *data); /* 7 Voltages */ static ssize_t show_in(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct lm78_data *data = lm78_update_device(dev); return sprintf(buf, "%d\n", IN_FROM_REG(data->in[attr->index])); } static ssize_t show_in_min(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct lm78_data *data = lm78_update_device(dev); return sprintf(buf, "%d\n", IN_FROM_REG(data->in_min[attr->index])); } static ssize_t show_in_max(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct lm78_data *data = lm78_update_device(dev); return sprintf(buf, "%d\n", IN_FROM_REG(data->in_max[attr->index])); } static ssize_t set_in_min(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct lm78_data *data = dev_get_drvdata(dev); int nr = attr->index; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_min[nr] = IN_TO_REG(val); lm78_write_value(data, LM78_REG_IN_MIN(nr), data->in_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_in_max(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct lm78_data *data = dev_get_drvdata(dev); int nr = attr->index; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_max[nr] = IN_TO_REG(val); lm78_write_value(data, LM78_REG_IN_MAX(nr), data->in_max[nr]); mutex_unlock(&data->update_lock); return count; } #define show_in_offset(offset) \ static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ show_in, NULL, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ show_in_min, set_in_min, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ show_in_max, set_in_max, offset); show_in_offset(0); show_in_offset(1); show_in_offset(2); show_in_offset(3); show_in_offset(4); show_in_offset(5); show_in_offset(6); /* Temperature */ static ssize_t temp1_input_show(struct device *dev, struct device_attribute *da, char *buf) { struct lm78_data *data = lm78_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp)); } static ssize_t temp1_max_show(struct device *dev, struct device_attribute *da, char *buf) { struct lm78_data *data = lm78_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_over)); } static ssize_t temp1_max_store(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct lm78_data *data = dev_get_drvdata(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_over = TEMP_TO_REG(val); lm78_write_value(data, LM78_REG_TEMP_OVER, data->temp_over); mutex_unlock(&data->update_lock); return count; } static ssize_t temp1_max_hyst_show(struct device *dev, struct device_attribute *da, char *buf) { struct lm78_data *data = lm78_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_hyst)); } static ssize_t temp1_max_hyst_store(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct lm78_data *data = dev_get_drvdata(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_hyst = TEMP_TO_REG(val); lm78_write_value(data, LM78_REG_TEMP_HYST, data->temp_hyst); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR_RO(temp1_input); static DEVICE_ATTR_RW(temp1_max); static DEVICE_ATTR_RW(temp1_max_hyst); /* 3 Fans */ static ssize_t show_fan(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct lm78_data *data = lm78_update_device(dev); int nr = attr->index; return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t show_fan_min(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct lm78_data *data = lm78_update_device(dev); int nr = attr->index; return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct lm78_data *data = dev_get_drvdata(dev); int nr = attr->index; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); lm78_write_value(data, LM78_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan_div(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct lm78_data *data = lm78_update_device(dev); return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[attr->index])); } /* * Note: we save and restore the fan minimum here, because its value is * determined in part by the fan divisor. This follows the principle of * least surprise; the user doesn't expect the fan minimum to change just * because the divisor changed. */ static ssize_t set_fan_div(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct lm78_data *data = dev_get_drvdata(dev); int nr = attr->index; unsigned long min; u8 reg; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); switch (val) { case 1: data->fan_div[nr] = 0; break; case 2: data->fan_div[nr] = 1; break; case 4: data->fan_div[nr] = 2; break; case 8: data->fan_div[nr] = 3; break; default: dev_err(dev, "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n", val); mutex_unlock(&data->update_lock); return -EINVAL; } reg = lm78_read_value(data, LM78_REG_VID_FANDIV); switch (nr) { case 0: reg = (reg & 0xcf) | (data->fan_div[nr] << 4); break; case 1: reg = (reg & 0x3f) | (data->fan_div[nr] << 6); break; } lm78_write_value(data, LM78_REG_VID_FANDIV, reg); data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); lm78_write_value(data, LM78_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } #define show_fan_offset(offset) \ static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ show_fan, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ show_fan_min, set_fan_min, offset - 1); show_fan_offset(1); show_fan_offset(2); show_fan_offset(3); /* Fan 3 divisor is locked in H/W */ static SENSOR_DEVICE_ATTR(fan1_div, S_IRUGO | S_IWUSR, show_fan_div, set_fan_div, 0); static SENSOR_DEVICE_ATTR(fan2_div, S_IRUGO | S_IWUSR, show_fan_div, set_fan_div, 1); static SENSOR_DEVICE_ATTR(fan3_div, S_IRUGO, show_fan_div, NULL, 2); /* VID */ static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *da, char *buf) { struct lm78_data *data = lm78_update_device(dev); return sprintf(buf, "%d\n", vid_from_reg(data->vid, 82)); } static DEVICE_ATTR_RO(cpu0_vid); /* Alarms */ static ssize_t alarms_show(struct device *dev, struct device_attribute *da, char *buf) { struct lm78_data *data = lm78_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static DEVICE_ATTR_RO(alarms); static ssize_t show_alarm(struct device *dev, struct device_attribute *da, char *buf) { struct lm78_data *data = lm78_update_device(dev); int nr = to_sensor_dev_attr(da)->index; return sprintf(buf, "%u\n", (data->alarms >> nr) & 1); } static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9); static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10); static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7); static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); static struct attribute *lm78_attrs[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in6_alarm.dev_attr.attr, &dev_attr_temp1_input.attr, &dev_attr_temp1_max.attr, &dev_attr_temp1_max_hyst.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan3_div.dev_attr.attr, &sensor_dev_attr_fan3_alarm.dev_attr.attr, &dev_attr_alarms.attr, &dev_attr_cpu0_vid.attr, NULL }; ATTRIBUTE_GROUPS(lm78); /* * ISA related code */ #ifdef CONFIG_ISA /* ISA device, if found */ static struct platform_device *pdev; static unsigned short isa_address = 0x290; static struct lm78_data *lm78_data_if_isa(void) { return pdev ? platform_get_drvdata(pdev) : NULL; } /* Returns 1 if the I2C chip appears to be an alias of the ISA chip */ static int lm78_alias_detect(struct i2c_client *client, u8 chipid) { struct lm78_data *isa; int i; if (!pdev) /* No ISA chip */ return 0; isa = platform_get_drvdata(pdev); if (lm78_read_value(isa, LM78_REG_I2C_ADDR) != client->addr) return 0; /* Address doesn't match */ if ((lm78_read_value(isa, LM78_REG_CHIPID) & 0xfe) != (chipid & 0xfe)) return 0; /* Chip type doesn't match */ /* * We compare all the limit registers, the config register and the * interrupt mask registers */ for (i = 0x2b; i <= 0x3d; i++) { if (lm78_read_value(isa, i) != i2c_smbus_read_byte_data(client, i)) return 0; } if (lm78_read_value(isa, LM78_REG_CONFIG) != i2c_smbus_read_byte_data(client, LM78_REG_CONFIG)) return 0; for (i = 0x43; i <= 0x46; i++) { if (lm78_read_value(isa, i) != i2c_smbus_read_byte_data(client, i)) return 0; } return 1; } #else /* !CONFIG_ISA */ static int lm78_alias_detect(struct i2c_client *client, u8 chipid) { return 0; } static struct lm78_data *lm78_data_if_isa(void) { return NULL; } #endif /* CONFIG_ISA */ static int lm78_i2c_detect(struct i2c_client *client, struct i2c_board_info *info) { int i; struct lm78_data *isa = lm78_data_if_isa(); const char *client_name; struct i2c_adapter *adapter = client->adapter; int address = client->addr; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; /* * We block updates of the ISA device to minimize the risk of * concurrent access to the same LM78 chip through different * interfaces. */ if (isa) mutex_lock(&isa->update_lock); if ((i2c_smbus_read_byte_data(client, LM78_REG_CONFIG) & 0x80) || i2c_smbus_read_byte_data(client, LM78_REG_I2C_ADDR) != address) goto err_nodev; /* Explicitly prevent the misdetection of Winbond chips */ i = i2c_smbus_read_byte_data(client, 0x4f); if (i == 0xa3 || i == 0x5c) goto err_nodev; /* Determine the chip type. */ i = i2c_smbus_read_byte_data(client, LM78_REG_CHIPID); if (i == 0x00 || i == 0x20 /* LM78 */ || i == 0x40) /* LM78-J */ client_name = "lm78"; else if ((i & 0xfe) == 0xc0) client_name = "lm79"; else goto err_nodev; if (lm78_alias_detect(client, i)) { dev_dbg(&adapter->dev, "Device at 0x%02x appears to be the same as ISA device\n", address); goto err_nodev; } if (isa) mutex_unlock(&isa->update_lock); strlcpy(info->type, client_name, I2C_NAME_SIZE); return 0; err_nodev: if (isa) mutex_unlock(&isa->update_lock); return -ENODEV; } static int lm78_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct device *hwmon_dev; struct lm78_data *data; data = devm_kzalloc(dev, sizeof(struct lm78_data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; data->type = id->driver_data; /* Initialize the LM78 chip */ lm78_init_device(data); hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, lm78_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct i2c_device_id lm78_i2c_id[] = { { "lm78", lm78 }, { "lm79", lm79 }, { } }; MODULE_DEVICE_TABLE(i2c, lm78_i2c_id); static struct i2c_driver lm78_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "lm78", }, .probe = lm78_i2c_probe, .id_table = lm78_i2c_id, .detect = lm78_i2c_detect, .address_list = normal_i2c, }; /* * The SMBus locks itself, but ISA access must be locked explicitly! * We don't want to lock the whole ISA bus, so we lock each client * separately. * We ignore the LM78 BUSY flag at this moment - it could lead to deadlocks, * would slow down the LM78 access and should not be necessary. */ static int lm78_read_value(struct lm78_data *data, u8 reg) { struct i2c_client *client = data->client; #ifdef CONFIG_ISA if (!client) { /* ISA device */ int res; mutex_lock(&data->lock); outb_p(reg, data->isa_addr + LM78_ADDR_REG_OFFSET); res = inb_p(data->isa_addr + LM78_DATA_REG_OFFSET); mutex_unlock(&data->lock); return res; } else #endif return i2c_smbus_read_byte_data(client, reg); } static int lm78_write_value(struct lm78_data *data, u8 reg, u8 value) { struct i2c_client *client = data->client; #ifdef CONFIG_ISA if (!client) { /* ISA device */ mutex_lock(&data->lock); outb_p(reg, data->isa_addr + LM78_ADDR_REG_OFFSET); outb_p(value, data->isa_addr + LM78_DATA_REG_OFFSET); mutex_unlock(&data->lock); return 0; } else #endif return i2c_smbus_write_byte_data(client, reg, value); } static void lm78_init_device(struct lm78_data *data) { u8 config; int i; /* Start monitoring */ config = lm78_read_value(data, LM78_REG_CONFIG); if ((config & 0x09) != 0x01) lm78_write_value(data, LM78_REG_CONFIG, (config & 0xf7) | 0x01); /* A few vars need to be filled upon startup */ for (i = 0; i < 3; i++) { data->fan_min[i] = lm78_read_value(data, LM78_REG_FAN_MIN(i)); } mutex_init(&data->update_lock); } static struct lm78_data *lm78_update_device(struct device *dev) { struct lm78_data *data = dev_get_drvdata(dev); int i; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { dev_dbg(dev, "Starting lm78 update\n"); for (i = 0; i <= 6; i++) { data->in[i] = lm78_read_value(data, LM78_REG_IN(i)); data->in_min[i] = lm78_read_value(data, LM78_REG_IN_MIN(i)); data->in_max[i] = lm78_read_value(data, LM78_REG_IN_MAX(i)); } for (i = 0; i < 3; i++) { data->fan[i] = lm78_read_value(data, LM78_REG_FAN(i)); data->fan_min[i] = lm78_read_value(data, LM78_REG_FAN_MIN(i)); } data->temp = lm78_read_value(data, LM78_REG_TEMP); data->temp_over = lm78_read_value(data, LM78_REG_TEMP_OVER); data->temp_hyst = lm78_read_value(data, LM78_REG_TEMP_HYST); i = lm78_read_value(data, LM78_REG_VID_FANDIV); data->vid = i & 0x0f; if (data->type == lm79) data->vid |= (lm78_read_value(data, LM78_REG_CHIPID) & 0x01) << 4; else data->vid |= 0x10; data->fan_div[0] = (i >> 4) & 0x03; data->fan_div[1] = i >> 6; data->alarms = lm78_read_value(data, LM78_REG_ALARM1) + (lm78_read_value(data, LM78_REG_ALARM2) << 8); data->last_updated = jiffies; data->valid = 1; data->fan_div[2] = 1; } mutex_unlock(&data->update_lock); return data; } #ifdef CONFIG_ISA static int lm78_isa_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device *hwmon_dev; struct lm78_data *data; struct resource *res; /* Reserve the ISA region */ res = platform_get_resource(pdev, IORESOURCE_IO, 0); if (!devm_request_region(dev, res->start + LM78_ADDR_REG_OFFSET, 2, "lm78")) return -EBUSY; data = devm_kzalloc(dev, sizeof(struct lm78_data), GFP_KERNEL); if (!data) return -ENOMEM; mutex_init(&data->lock); data->isa_addr = res->start; platform_set_drvdata(pdev, data); if (lm78_read_value(data, LM78_REG_CHIPID) & 0x80) { data->type = lm79; data->name = "lm79"; } else { data->type = lm78; data->name = "lm78"; } /* Initialize the LM78 chip */ lm78_init_device(data); hwmon_dev = devm_hwmon_device_register_with_groups(dev, data->name, data, lm78_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static struct platform_driver lm78_isa_driver = { .driver = { .name = "lm78", }, .probe = lm78_isa_probe, }; /* return 1 if a supported chip is found, 0 otherwise */ static int __init lm78_isa_found(unsigned short address) { int val, save, found = 0; int port; /* * Some boards declare base+0 to base+7 as a PNP device, some base+4 * to base+7 and some base+5 to base+6. So we better request each port * individually for the probing phase. */ for (port = address; port < address + LM78_EXTENT; port++) { if (!request_region(port, 1, "lm78")) { pr_debug("Failed to request port 0x%x\n", port); goto release; } } #define REALLY_SLOW_IO /* * We need the timeouts for at least some LM78-like * chips. But only if we read 'undefined' registers. */ val = inb_p(address + 1); if (inb_p(address + 2) != val || inb_p(address + 3) != val || inb_p(address + 7) != val) goto release; #undef REALLY_SLOW_IO /* * We should be able to change the 7 LSB of the address port. The * MSB (busy flag) should be clear initially, set after the write. */ save = inb_p(address + LM78_ADDR_REG_OFFSET); if (save & 0x80) goto release; val = ~save & 0x7f; outb_p(val, address + LM78_ADDR_REG_OFFSET); if (inb_p(address + LM78_ADDR_REG_OFFSET) != (val | 0x80)) { outb_p(save, address + LM78_ADDR_REG_OFFSET); goto release; } /* We found a device, now see if it could be an LM78 */ outb_p(LM78_REG_CONFIG, address + LM78_ADDR_REG_OFFSET); val = inb_p(address + LM78_DATA_REG_OFFSET); if (val & 0x80) goto release; outb_p(LM78_REG_I2C_ADDR, address + LM78_ADDR_REG_OFFSET); val = inb_p(address + LM78_DATA_REG_OFFSET); if (val < 0x03 || val > 0x77) /* Not a valid I2C address */ goto release; /* The busy flag should be clear again */ if (inb_p(address + LM78_ADDR_REG_OFFSET) & 0x80) goto release; /* Explicitly prevent the misdetection of Winbond chips */ outb_p(0x4f, address + LM78_ADDR_REG_OFFSET); val = inb_p(address + LM78_DATA_REG_OFFSET); if (val == 0xa3 || val == 0x5c) goto release; /* Explicitly prevent the misdetection of ITE chips */ outb_p(0x58, address + LM78_ADDR_REG_OFFSET); val = inb_p(address + LM78_DATA_REG_OFFSET); if (val == 0x90) goto release; /* Determine the chip type */ outb_p(LM78_REG_CHIPID, address + LM78_ADDR_REG_OFFSET); val = inb_p(address + LM78_DATA_REG_OFFSET); if (val == 0x00 || val == 0x20 /* LM78 */ || val == 0x40 /* LM78-J */ || (val & 0xfe) == 0xc0) /* LM79 */ found = 1; if (found) pr_info("Found an %s chip at %#x\n", val & 0x80 ? "LM79" : "LM78", (int)address); release: for (port--; port >= address; port--) release_region(port, 1); return found; } static int __init lm78_isa_device_add(unsigned short address) { struct resource res = { .start = address, .end = address + LM78_EXTENT - 1, .name = "lm78", .flags = IORESOURCE_IO, }; int err; pdev = platform_device_alloc("lm78", address); if (!pdev) { err = -ENOMEM; pr_err("Device allocation failed\n"); goto exit; } err = platform_device_add_resources(pdev, &res, 1); if (err) { pr_err("Device resource addition failed (%d)\n", err); goto exit_device_put; } err = platform_device_add(pdev); if (err) { pr_err("Device addition failed (%d)\n", err); goto exit_device_put; } return 0; exit_device_put: platform_device_put(pdev); exit: pdev = NULL; return err; } static int __init lm78_isa_register(void) { int res; if (lm78_isa_found(isa_address)) { res = platform_driver_register(&lm78_isa_driver); if (res) goto exit; /* Sets global pdev as a side effect */ res = lm78_isa_device_add(isa_address); if (res) goto exit_unreg_isa_driver; } return 0; exit_unreg_isa_driver: platform_driver_unregister(&lm78_isa_driver); exit: return res; } static void lm78_isa_unregister(void) { if (pdev) { platform_device_unregister(pdev); platform_driver_unregister(&lm78_isa_driver); } } #else /* !CONFIG_ISA */ static int __init lm78_isa_register(void) { return 0; } static void lm78_isa_unregister(void) { } #endif /* CONFIG_ISA */ static int __init sm_lm78_init(void) { int res; /* * We register the ISA device first, so that we can skip the * registration of an I2C interface to the same device. */ res = lm78_isa_register(); if (res) goto exit; res = i2c_add_driver(&lm78_driver); if (res) goto exit_unreg_isa_device; return 0; exit_unreg_isa_device: lm78_isa_unregister(); exit: return res; } static void __exit sm_lm78_exit(void) { lm78_isa_unregister(); i2c_del_driver(&lm78_driver); } MODULE_AUTHOR("Frodo Looijaard, Jean Delvare <jdelvare@suse.de>"); MODULE_DESCRIPTION("LM78/LM79 driver"); MODULE_LICENSE("GPL"); module_init(sm_lm78_init); module_exit(sm_lm78_exit);